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Although regenerative medicine products are at the forefront of scientific research,
technological innovation, and clinical translation, their reproducibility and large-scale
production are compromised by automation, monitoring, and standardization issues. To
overcome these limitations, new technologies at software (e.g., algorithms and artificial
intelligence models, combined with imaging software and machine learning techniques)
and hardware (e.g., automated liquid handling, automated cell expansion bioreactor
systems, automated colony-forming unit counting and characterization units, and
scalable cell culture plates) level are under intense investigation. Automation, monitoring
and standardization should be considered at the early stages of the developmental cycle
of cell products to deliver more robust and effective therapies and treatment plans to
the bedside, reducing healthcare expenditure and improving services and patient care.

Keywords: cell therapy, scalability, manufacturing, monitoring, spheroid culture, biorectors

INTRODUCTION

Cell and cell-based tissue engineering products have an extraordinary clinical potential by offering
unique therapeutic solutions to disease conditions without any effective treatments yet, such as
non-curable cancers or non-healing or hard to heal tissues (Perez et al., 2018; Abreu et al., 2019). So
far, their promises have been successfully translated only in few commercial products, primarily due
to difficulties in reproducible and economical scalability, regulatory hurdles, and reimbursement
issues (Morrow et al., 2017). For example, it is still challenging to translate labor-intense academic-
based discoveries (automated systems often come at a prohibitive cost for academic setting and,
by nature, academia is more research, as opposed to development, orientated) to automatedly
manufactured industrial products. Further, the prolonged culture times required to develop a cell-
based tissue engineering implantable device are associated with cell phenotypic drift and high
manufacturing costs (Cigognini et al., 2013; Schrock et al., 2017; Vormittag et al., 2018). Yet again,
cell therapies market size continuously raising, considering that they have the potential to transform
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patient care. As a fact, the global market size of cell therapies
was estimated at US$ 5 billion in 2017 and it is expected to
increase at a 5.34% compound annual growth rate (CAGR)
until 2025 (Grand-View-Research, 2018). Although the market is
shaped mainly by allogeneic therapies, autologous cell therapies
are expected to rise to more than 33.3% of the total cell therapy
size. Stem cell therapy market share was valued at US$ 0.8 billion
in 2018 and is expected to impressively grow to US$ 11 billion by
2029 (Kanafi et al., 2013).

While there are major differences between autologous (e.g.,
immuno-compatible) and allogeneic (e.g., relatively readily
available in large numbers) cell therapies, they share limitations in
manufacturing (e.g., cell harvesting, expansion and purification;
cell phenotype preservation; and development of a reproducible
formulation) that may compromise the administration of a
successful therapy to patients and increase costs (Aijaz et al.,
2018). For example, scalable, reproducible, and biomimetic
culture conditions are required to maintain cellular function
during ex vivo culture (Liu et al., 2017; Stephenson and Grayson,
2018; Ruiz et al., 2019; Serra et al., 2019). Further, large-capacity
and automated bioreactor systems have the potential to reduce
batch-to-batch variability and the use of expensive highly skilled
labor (Peroglio et al., 2018; Costariol et al., 2019; de Sousa Pinto
et al., 2019; Hamad et al., 2019). In the case of allogeneic therapies,
the aim is to scale up processes for numerous patients. In the
case of autologous therapies, however, where a single patient
is treated from his/her own cells, there is no need for large
scale production of multiple batches with high expansion rates.
Instead, manufacturers aim to culture simultaneously cells from
different patients in an attempt to level up production and make
it viable. An option would also be to continue culturing the
cells for other patients, should appropriate consent forms be
granted. Nonetheless, autologous cell therapies are still produced
at small-scale, in dedicated suites, in centralized or localized
manufacturing facilities at the point-of-care, which results in very
expensive production costs.

In any case, both autologous and allogeneic therapies require
skilled and expensive personnel, often susceptible to error,
resulting in increased batch-to-batch variability, manufacturing
costs and risk of contamination, which represents the biggest
part of the cost of goods (COGs) for manufacturing, including
tissue procurement, material acquisition, facility operation,
production, storage, and shipment (Lipsitz et al., 2017). Although
decentralization (Harrison et al., 2018b) and micro-factories
(Harrison et al., 2018a) approaches have been proposed,
automation is key for rendering these therapies more attractive,
reducing the COGs, de-risking the supply chain and establishing
a reliable batch-to-batch reproducibility (Hunsberger et al.,
2018; Moutsatsou et al., 2019). Yet again, many questions
have to be answered. For example, if the manufacturing
process is scalable and suitable for automation, how can be
fitted in the user requirement specifications (URS)? Regulatory
considerations and ease of implementation in industrial/scalable
environment are also essential. The business model should be
well defined and adapted to the final product and market.
The automation program should be considered as part of
the full life cycle of the product, integrated into overall

product development plan and its commercial manufacturing,
while every potential impact of automation into the final
product should be investigated. European agencies, such as
the European Medicines Agency’s Innovation Task Force may
assist with the development of automated processes starting
with the designation of the automation, whether it should
be a device or laboratory equipment. Automation challenges,
coupled with lack of reliable and effective standardization,
process monitoring, product reproducibility, and inadequate
donor availability increase the production and reimbursement
costs. It is imperative to address automation challenges in an
effective way and implement process modifications with minimal
disruption of the bioprocess to ensure delivery of a safe product
in a commercially viable manner.

Automation offers control over a bioprocess, leading to a
more accurate and faster process optimization, de-risking the
supply chain, via optimized quality control, quality assurance,
ultimately making the process more regulatory compliant.
Although biological variations are difficult to tackle due to
the complexity of the products, in-process human variation
must be addressed to ensure consistent product quality.
Indeed, automated pipetting, for example, can timely, accurately,
repeatedly, and consistently perform liquid handling, including
mixing and transferring of liquids, reducing variability within
and between batches. Automation of monitoring processes (e.g.,
advanced algorithmic approaches, such as machine learning,
coupled with image acquisition and processing) eliminates the
need of subjective human judgments (e.g., cell morphology
assessment, confluency assessment) further enhancing control
over reproducible product development. As cell-based therapies
are maturing, it is imperative to standardize and control
manufacturing engineering strategies and implement robust
automation and process monitoring and control for safety (above
all), consistency and reproducibility purposes (Ball et al., 2018;
Hunsberger et al., 2018; Pigeau et al., 2018; Moutsatsou et al.,
2019). This manuscript will describe some real-life indicative
examples of automation and monitoring designed to address
manufacturing issues in cell-based therapies domain.

AUTOMATING PRECISE PIPETTING

Pipettes are laboratory tools used in the areas of chemistry,
biology, and medicine, where precise, accurate and reproducible
transfer of small volume of liquids is required. The accuracy
of the pipetted volume can vary significantly due the quality
of pipettes and tips, calibration and performance checking,
environmental conditions (e.g., the temperature and density
of the liquid), pipetting methods (e.g., forward or reverse),
as well as the individual ability of the operator (Lippi et al.,
2017). Examples of inadequate operator techniques include usage
outside of pipette range, volume selection inaccuracy, fast or
careless aspiration and dispensing, over-aspiration and barrel
contamination. Considering the potentially high levels of user-
dependent inaccuracy, in recent years, the use of automated
pipetting systems has increased significantly to meet the need for
high accuracy and high throughput in biomedical laboratories.
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Robots work without fatigue, perform consistently, increase the
production and ensure accuracy and precision. A typical liquid-
handling robotic workstation (Figure 1) consists of a control
center, dispensing apparatus, robots, washing modules, and
sensors (Kong et al., 2012). The robot, coordinated by the control
center, moves between the dispensing part and the washing
station. Dispensing tools include dispensing heads, actuators, and
substrates. The dispensing head expels liquid samples on the
substrates for further processing. The washing station cleans the
dispensing head to lengthen its life and to ensure the integrity
of the sample. Sensors monitor the status of the dispensing
component to ensure that feedback control can be performed
by the control center. One of the main challenges regarding
automated pipetting systems is the viscous material handling.
The key factor is the distance between the dispensing needle tip
and the base of the well (Peddi et al., 2007; Yaxin et al., 2011).
If the distance is too great, the sample from the needle forms
a continuous cylinder and is not delivered to the well, whereas,
if the distance is too short, the sample remains attached to the
needle. In order to choose an adequate distance, it is necessary to
consider relevant parameters, such as needle size, syringe volume,
pumping temperature, flow speed, and viscosity grade. Moreover,
dusty and viscous materials, air bubbles or the accumulation of
liquid debris may cause clogging in tubes, valves and dispensing
heads; thus, clogging detection is required (Kong et al., 2012).

Automated precise pipetting plays a central role in cell
culture automation. Automated cell culture systems enable
large-scale production of cells and enhance technical precision,
reproducibility and efficiency (Konagaya et al., 2015). Monitoring
the flow rate, for example, during media change, is an important
operation to ensure that shear forces on cells are contained
(Ly et al., 2013). A fine-tuning of the pipetting settings could
decrease the shear stress, but very slow aspirating steps are
associated with a long duration of the process. However, a
benefit of automation should be a reduced process time compared
to manual operations (Lehmann et al., 2016). A prerequisite
for the successful implementation of automated procedures in
cell culture experiments is a complete and adequate validation,
during which automated pipetting systems are directly compared
to manual pipetting, conducted by an experienced laboratory
technician. In a previously published case study (Rothmiller et al.,
2020), toxicity studies in HaCaT cells were conducted using two
epMotion R© automated pipetting systems (Eppendorf, Germany),
which were validated / contrasted against an experienced.
Validation analysis revealed that automated seeding was faster
and more precise than manual seeding, with a significantly
lower variability and equivalent intraday variability. Collectively,
automated pipetting, if it is not already, should become an
industry standard for accurate, reproducible and cost-effective
development of cell-based products.

AUTOMATION AND SCREENING

In an increasing and demanding tissue engineering market,
advanced automation and screening for quality control are
essential for sustainability. In this direction, recent commercial

efforts have made available automated systems for cell
manufacturing (e.g., CliniMACS Prodigy R©, Miltenyi Biotec;
Sefia S-2000, GE Healthcare, Life Sciences). For industrialization
and manufacturing, quality control requires well-characterized,
fully reproducible and safe products to ensure delivery of the
expected medical benefits. Considering that cell morphology is
indicative of phenotype, effective monitoring of cells’ and cell
clusters’ morphology are prerequisites for standardization and
homogenous product delivery (Maddah et al., 2014; Boutros et al.,
2015; Nagasaka et al., 2017). Microscopic observations are the
routine method used for the assessment of cell culture. The need
for automated and fast evaluation has led to the development of
machine learning algorithms and artificial intelligence, able to
assess morphological and functional properties of cell culture.
The principle of machine learning includes the development of
algorithms that are being trained by data input, thus improving
their intrinsic processes and providing more accurate outputs.
Since many single or populational characteristics would indicate
the suitability of cells for further experimentation, it is imperative
that techniques can fast and accurately process large volume of
data (e.g., images). Indeed, image processing machine learning
techniques have been successfully implemented and validated
in oncological studies to predict specific function based on
gene phenotype similarities (Sailem et al., 2020), in predicting
cell growth per passage from batches obtained from donors
varying in age (Mehrian et al., 2020) or phenotypically and
structurally evaluating different cell types (Logan et al., 2016;
Van Valen et al., 2016; Wakui et al., 2017; Buskermolen et al.,
2018; Radio and Frank, 2018; Lam et al., 2019; Orita et al.,
2019). Following successful implementation of machine learning
for cell morphology analysis, automation on the level of cell
production and screening is the next vital step, which systems,
such as the StemCellFactory, aspire to achieve. This system
automates reprogramming and expansion of induced pluripotent
stem cells (iPSCs) for disease modeling and drug screening
(Jung et al., 2018). The system is comprised of various devices
(Figure 2), which are functionally joined and integrated into
a central control system orchestrating the process execution
and data handling.

Each device has its local software agent, which serves as
middleware interface and abstracts the hardware heterogeneity
by offering data and functionality in a service-oriented way
to the control unit. Local information and functionality from
the individual device are processed in the middleware up to
the higher-level of the control system, such that the user only
operates one software with control over the complete system. In
order to expand and monitor the iPSCs, the system is equipped
with an automated microscope to assess their morphological
structure and confluency level. The control system utilizes data
handling and flexible process control to perform the tasks. For
example, the user can input a confluence level that will lead
to cell splitting or media change. Due to the high amount of
data generated (20 GB per media transfer protocol) and the
needed high computational power for evaluation, deep learning
algorithms are used. These algorithms classify an image into six
different classes that are color-indicated (Figure 3). Automation
can also be achieved in genome editing or reprogramming during
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FIGURE 1 | A typical liquid-handling robotic workstation.

cell culture steps. To this end, for the automated detection of iPSC
colonies, the CellCelector system is implemented, which allows
automated picking of clones for subsequent clonal expansion
on the StemCellFactory. Even more, the Nucleofector device
allows automated genome editing. So far, the StemCellFactory
has been used for the automated reprogramming of human
dermal fibroblasts, clonal selection and expansion of primary
iPSC clones and scaled enzyme-free sub-cultivation of iPSC lines.
To summarize, the StemCellFactory can provide reproducible
results, growth behavior monitoring, high throughput through
parallelization. These automated platform and novel software
tools address the technological challenges for automation of
complex stem cell culture processes and are expected to meet the
challenges of the increasing demand for patient-derived iPSCs
and their derivatives.

AUTOMATED CLASSIFICATION AND
QUANTITATION OF COLONIES OF
BLOOD CELLS

The transplantation of hematopoietic stem and progenitor cells
(HSPC) from human bone marrow (BM), adult mobilized
peripheral blood (MPB) or umbilical cord blood (CB) has for
more than 50 years been employed as an effective treatment for
a variety of blood disorders and malignancies (Juric et al., 2016;
Takami, 2018; DeFilipp et al., 2019). An important approach
to assess their potency and predict the likelihood of robust

engraftment is to determine the number and quality of lineage-
specific progenitor cells and multipotent stem cells among
the cells to be transplanted. Many studies have shown that
the number of HSPCs is directly correlated with engraftment
outcomes (Prasad et al., 2008; Page et al., 2011). Several criteria
are commonly used to establish graft potency and quality,
including the total number of viable nucleated cells, the number
of cells expressing the CD34 antigen and the number of cells
able to produce discrete colonies of mature blood cells upon
culture in semi-solid growth media. Hematopoietic cells with
the latter capability form colony-forming units (CFU) and the
CFU assay is the current gold standard for determining the
number of functional HSPCs. Hematopoietic progenitor cells can
differentiate into several blood cell lineages in the CFU assay.
Depending on the growth factors present in the culture medium,
the assay can identify (a) erythroid progenitor cells that produce
either very small or medium to large colonies comprised of pure
red blood cells [i.e., colony-forming units-erythroid (CFU-E) and
burst-forming units-erythroid (BFU-E), respectively]; (b) uni- or
bi- potent myeloid progenitor cells [i.e., colony-forming units
granulocyte (CFU-G), colony-forming units macrophage (CFU-
M), and colony-forming units granulocyte-macrophage (CFU-
GM)]; or (c) multipotent progenitor cells that generate large
colonies comprised of all four major non-lymphoid cell types
[colony-forming units granulocyte, erythrocyte, macrophage,
megakaryocyte (CFU-GEMM)]. Shown in Figure 4 are examples
of colonies derived from CFU-GEMM and CFU-GM with
each exhibiting distinct morphological features, most notably
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FIGURE 2 | The StemCellFactory, an automated system for reprogramming and expansion of iPSCs.

different size and cellular composition. These colonies produced
by CFU in vitro are usually counted manually using an
inverted microscope by trained personnel with (ideally) extensive
experience, but who nevertheless must often make difficult
judgements on the boundaries and composition of the discrete
colonies that they observe. For example, colonies produced by
BFU-E or CFU-GEMM share overlapping characteristics that
pose challenges to colony classification. This can contribute to
a degree of inter-individual variability in CFU assay scoring
accuracy, typically between 10 and >100% depending on
the colony sub-type (Pamphilon et al., 2013). In addition,
manual counting and characterization of CFU colonies is
labor intensive. Thus, an automated solution would increase
both the speed and accuracy and facilitate standardization in
performing the CFU assay.

Toward these objectives, STEMCELL Technologies Inc.
developed STEMvisionTM (Figure 4), a bench-top instrument
designed specifically for imaging, classifying and counting
hematopoietic colonies produced by human or mouse progenitor
cells in the CFU assay. The instrument separately counts
and identifies colonies generated by CFU-E, BFU-E, CFU-
GM, or CFU-GEMM that develop in the conventional 14-day
CFU assay performed using MethoCultTM, a line of semi-
solid methylcellulose-based culture media supplemented with
combinations of hematopoietic growth factors that stimulate
the survival, proliferation and differentiation of all sub-
types of CFUs. STEMvisionTM eliminates the inter- and

intra-individual and laboratory variations associated with manual
colony counting by using sophisticated image acquisition and
analysis software to identify and classify hematopoietic colonies.
The morphological criteria that facilitate classification of the
different sub-types of CFUs are applied consistently, facilitating
standardization of the CFU assay to ensure accuracy and
reproducible results. All of the common and particularly
challenging phenomena encountered when counting CFU assays
are addressed. For example, colonies can occasionally present
with multiple foci or clusters, which some individuals may
consider to be separate colonies thus erroneously skewing the
total count to higher CFU numbers that in turn may lead to
an overestimation of HSPC graft potency. Conversely, colonies
at the edge of the culture dishes may be missed in the
shadow produced by the meniscus of the MethoCultTM medium,
leading to under-counting of CFUs and under-estimation of graft
potential. By performing the assay in SmartDishTM culture plates
that prevent meniscus formation and employing standardized
imaging and analysis software that are specifically developed
and validated for counting all of the different types of colonies
produced by CFU from BM, MPB or CB, use of this platform
results in significantly greater accuracy and less variability
in colony counts. Improved colony characterization is also
accomplished by analyzing colony features from both dark-
field (i.e., black and white) and bright-field (i.e., color) images
(Figure 4) to improve automated decision-making. Following
analysis with STEMvisionTM, data can be visualized in a pdf
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FIGURE 3 | Cell classification with the deep learning algorithms that are color-indicated (background is depicted in black, single iPSCs in blue, iPSC colonies in gray,
cells in 3D structure in green, differentiated cells in red, and dead cells in purple).

report format that can be pre-filled with information, such as
donor ID, sample ID, number of cells plated and additional
qualifiers defined by the user. The report is automatically
generated and results are expressed as CFU frequencies with
digital images of the analyzed cultures available for manual review
and long-term archiving. The plate and sample ID are linked to
each image for traceability and time stamped.

The development of new gene-editing tools such as
CRISPR/Cas9 technologies has opened up new avenues for
gene therapy approaches to blood disorders and researchers are

vigorously testing and optimizing new protocols for correcting
genetic defects in HSCs (Dever et al., 2016; Naldini, 2019).
Given the current guidelines for quality and process control for
all types of manipulated HSCs, advancement of HSPC-based
cellular therapies will certainly depend increasingly on the use of
standardized potency assays, such as the CFU assay, especially
when these cells are modified through CRISPR/Cas9 targeting
prior to transplantation. Current guidelines set out by the FDA
specify that frozen CB units must be tested not only for cell
viability, but also for potency since cryopreservation and thawing
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FIGURE 4 | An example of a CFU-GEMM (A) and CFU-GM (B) in a typical 14 day CFU assay from bone marrow-derived hematopoietic stem cells. The automated
colony-forming unit counting and characterization instrument, STEMvisionTM (C). STEMvision records both dark-field (D) and bright-field (E) images of CFUs and
utilizes state-of-art software to identify colonies. (F) Yellow circles represent CFU-GM; blue circles represent CFU-GEMM; and red circles represent BFU-E.

are often associated with reduced growth and differentiation
capacity of HSPCs (Watts and Linch, 2016). Several investigators
have validated STEMvisionTM for standardizing the CFU assay
within and across labs (Velier et al., 2019) and it is clear that
STEMvisionTM provides an effective automated approach to
classify and count CFUs during the evaluation of hematopoietic
stem cell viability and potency.

3D CELL CULTURE SYSTEMS: THE
CASE OF PANCREATIC ISLET CELL
CLUSTERS FOR TYPE I DIABETES

Diabetes affects globally >382 million individuals with expected
increase almost to 600 million in the next 15 years (Guariguata
et al., 2014; Cho et al., 2018). There are different types of
diabetes, of which type 1 diabetes has gained more attention
due to its autoimmune nature. Type 1 diabetes is associated
with malfunction of the pancreatic islets and more specifically
with the destruction of the insulin-producing cells (beta cells),
which reside inside the islets. Destruction of beta cells leads to
insufficiency of insulin production from the body, leading to
inability of glucose entering the cells, which leads to elevated level
of sugars into the bloodstream (Fu et al., 2013; Kettunen and
Tuomi, 2020). Moreover, diabetes is the main cause for kidney
disease with a correlation of 25% of diabetic people resulting in
kidney failure (Guariguata et al., 2014; Marshall, 2014). To be safe
and effective, islet cell transplantation needs size standardization,

which would lead to much higher cell survival due to better
oxygenation of the islet (Papas et al., 2019). In addition, limited
availability, immuno-rejection and procedure issues should be
addressed to alleviate islet cell loss and to improve engraftment
outcomes (Shapiro et al., 2017; Gamble et al., 2018).

In vitro cell culture platforms have the potential to standardize
islets (Hilderink et al., 2015; Ichihara et al., 2016; Vlahos
et al., 2019) and also provide an environment to prepare
autologous or allogeneic stem cell therapies for diabetes (Lilly
et al., 2016; Cierpka-Kmiec et al., 2019; Kumar et al., 2019). In
recent years three dimensional spheroid culture systems have
emerged that simulate more effectively the physiological tissue
microenvironment due to the cell-cell and cell-ECM contact
and interaction (Mitchell, 2017; Langhans, 2018). Cells spheroids
have shown improved osteogenic, adipogenic and chondrogenic
potential over conventional culture systems (Yoon et al., 2012;
Yamaguchi et al., 2014; Cesarz and Tamama, 2016; Miyamoto
et al., 2017; Moritani et al., 2018; Tsai et al., 2019), improved
vascularization in ischemic tissue (Bhang et al., 2012) and
constitute the first choice in cancer models and evaluation of
anti-cancer drugs (Chatzinikolaidou, 2016; Zanoni et al., 2016;
Rodrigues et al., 2018). Various scaffold-free [e.g., seeding cells
in a porous microwell agarose microchip (Colle et al., 2020),
seeding cells in 3D printed well inserts (Boyer et al., 2018) or the
hanging drop method (Kapur et al., 2012)] and scaffold-based
[e.g., natural or synthetic hydrogels are used as substrates for
spheroids growth (Murphy et al., 2014; Chang et al., 2018; Lee
et al., 2018; Kim et al., 2019)] have been described in the literature.
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Regarding scalability, of significant importance are recent studies
that describe scaffold-free cell spheroids production using the
hanging drop method performed by a robotic device (Gutzweiler
et al., 2017) and a robotic automated droplet microfluidic
platform (Langer and Joensson, 2020). We should also mention
that automated production of cell spheroids in outer space has
also been documented (Pietsch et al., 2017).

In diabetes field, cell spheroids can provide an inducive
environment for islet differentiation from stem cells, upregulate
stemness factors and allow production of angiogenic and non-
thrombogenic therapies (Moritz et al., 2002; Oh et al., 2018;
Lo et al., 2019). Early data of islets/mesenchymal stem cell
co-cultures in spheroids demonstrated improved islet long
term viability, but not function (Rawal et al., 2017). Recent
data however study demonstrated that incorporation of human
amniotic epithelial cells into islet organoids to markedly
enhance engraftment, viability and graft function in a mouse
type 1 diabetes model (Lebreton et al., 2019). Although the
potential of spheroids in regenerative medicine has already been
demonstrated in preclinical models for most organ systems
(Hagemann et al., 2017; Petrenko et al., 2017; Polonchuk et al.,
2017; Ong et al., 2018), their slow clinical translation may be
attributed to variable cluster size, which affects cell response
(Moritz et al., 2002; Van Hoof et al., 2011; Anitha et al., 2020).

Thus, spheroid production must be standardized to bridge the
gap between preclinical testing and clinical translation.

The link between islet transplantation and regenerative
medicine is that islet transplantation is the only
spheroid/cluster/organoid transplantation in the world that
is being performed in a routine clinical fashion for 20 years
(Bottino et al., 2018). Therefore, the clinical experience of
islet transplantation can be taken as a ‘blueprint’ for future
cell therapies with spheroids. The format and thus handling,
challenges and principles are literally the same. Having said that,
even in classical islet transplantation, the formed cell clusters
are not flawless, mainly due to anoxia occurring in the center
of large clusters due to the high diffusion distance (Brandhorst
et al., 2016). After transplantation, the only oxygen supply path
is through diffusion whereas they remain in hypoxic condition
in the portal system (Moritz et al., 2002). This is the reason why
currently 80–90% of the transplanted islet cells are not surviving
the first days of transplantation (Suszynski et al., 2016). Oxygen
consumption is also directly correlated to the insulin production
(Porterfield et al., 2000) and cluster size (Labuschagne et al.,
2019). Indeed, in vitro and clinical data in patients suffering
from type 1 diabetes have shown in large clusters less insulin-
expressing cells both in normoxic and hypoxic conditions
and the larger islets were significantly reduced in size under

FIGURE 5 | Spheroid development with Sphericalplate 5D. COC, cycloolefin copolymer.
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hypoxia (Lehmann et al., 2007). The Sphericalplate 5D is an
example of a cell culture platform that can produce regular cell
clusters in the desired numbers and quality for improved clinical
islet transplantation and future applications with spheroids
(Zuppinger, 2019; Schulze-Tanzil et al., 2020). The shape of
the Sphericalplate 5D platform allows size standardization
and also correct stem cell communication within the formed
spheroids by recreating the physiological niche environment in
thousands of microwells (Figure 5). Regarding scalability and
automation, the Sphericalplate 5D platform fulfils necessary first
principles of clinical cell transplantation, such as reproducibility,
medium change capacity and optimized mechanobiology for
every single spheroid (Kugelmeier et al., 2010). So far, diverse
populations of cells (e.g., islets, embryonic stem cells, iPSCs,
BM stem cells, prostate cancer cells, hepatocytes) have been
successfully expanded in this platform (Schmidhauser et al.,
2019) and the first clinical trial is planned for 2021 to
improve current islet cell transplantation by standardizing
spheroid/cluster size and consequently cell survival in the
Sphericalplate 5D. More such scalable and, hopefully, effective
technologies will enable the development of functional and
affordable cell therapies.

CONCLUSION

Cell-based therapies have the potential to offer an effective
treatment to still uncurable disease conditions. Their broad
commercialization has been jeopardized by limitations (e.g.,
scaling up and automating labor-intense academic discoveries,

high manufacturing costs and variation between batches) in large
scale automated manufacturing. Herein, we discussed examples
in the field of cell manufacturing automation, monitoring and
standardization. Such successful examples of automated and
controlled cell product manufacturing and monitoring should
inspire the development of cost-effective cell products for the
benefit of patients still suffering from uncurable diseases.
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