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Plenty of microbes in our human body play a vital role in the process of cell physiology.
In recent years, there is accumulating evidence indicating that microbes are closely
related to many complex human diseases. In-depth investigation of disease-associated
microbes can contribute to understanding the pathogenesis of diseases and thus
provide novel strategies for the treatment, diagnosis, and prevention of diseases. To
date, many computational models have been proposed for predicting microbe–disease
associations using available similarity networks. However, these similarity networks are
not effectively fused. In this study, we proposed a novel computational model based
on multi-data integration and network consistency projection for Human Microbe–
Disease Associations Prediction (HMDA-Pred), which fuses multiple similarity networks
by a linear network fusion method. HMDA-Pred yielded AUC values of 0.9589 and
0.9361 ± 0.0037 in the experiments of leave-one-out cross validation (LOOCV) and
5-fold cross validation (5-fold CV), respectively. Furthermore, in case studies, 10, 8, and
10 out of the top 10 predicted microbes of asthma, colon cancer, and inflammatory
bowel disease were confirmed by the literatures, respectively.

Keywords: disease, microbe, association prediction, multi-data integration, network consistency projection

INTRODUCTION

As far as we know, microbes are ubiquitous in our living environment, and they occupy nearly all
habitats including humans and animals (Kouzuma et al., 2015). According to existing literatures,
the microbes are mainly classified into fungi, archaea, bacteria, protozoa, and viruses in the
human body (Methé et al., 2012; Sommer and Bäckhed, 2013). More and more studies have
shown that most of these microbes are friendly to human beings and play a significant role in
the physiology processes of the human body, such as regulating gastrointestinal development,
providing protection for pathogens, and enhancing metabolic capability (Ventura et al., 2009).
Specifically, the overwhelming majority of microbes inhabit the gastrointestinal tract in an adult
gut, where they not only synthesize essential vitamins and amino acids but also promote the
digestion of indigestible components in the human diet (Huang et al., 2017). Thus, abnormal
changes in the microbe communities may affect human health and diseases. For example, low
microbial diversity could result in inflammatory bowel disease and obesity (Turnbaugh et al.,
2009; Qin et al., 2010). However, high microbial diversity is associated with bacterial vaginosis
in the vagina (Fredricks et al., 2005). Researchers have confirmed the close relationship between

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 1 August 2020 | Volume 8 | Article 831

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2020.00831
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fbioe.2020.00831
http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2020.00831&domain=pdf&date_stamp=2020-08-04
https://www.frontiersin.org/articles/10.3389/fbioe.2020.00831/full
http://loop.frontiersin.org/people/981751/overview
http://loop.frontiersin.org/people/981839/overview
http://loop.frontiersin.org/people/962667/overview
http://loop.frontiersin.org/people/1040037/overview
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00831 August 4, 2020 Time: 13:51 # 2

Fan et al. HMDA-Pred

microbes and diseases. Some microbes may cause various
diseases, such as colon cancer (Sears and Garrett, 2014), kidney
stones (Hoppe et al., 2011), asthma (Hilty et al., 2010), colorectal
carcinoma (Sobhani et al., 2011; Kostic et al., 2012), and
inflammatory bowel disease (Frank et al., 2007). On the one
hand, uncovering the disease-associated microbes can contribute
to better understanding the pathogenesis of the diseases. On
the other hand, understanding the mechanism of microbes
behind the diseases provides novel strategies for the prevention,
diagnosis, and treatment of the diseases (Zou et al., 2017;
Peng et al., 2018). Unfortunately, the traditional biological
experiments to uncover the relationship between microbes and
diseases are time-consuming and costly. Thus, there is an urgent
need to construct computational models to predict the disease-
associated microbes.

In recent years, researchers have developed a number of
feasible and effective prediction models for microbe–disease
associations, which could provide the most promising disease-
associated microbes for experimental verification. For example,
according to the hypothesis that functionally similar microbes
tend to be associated with similar diseases (Chen et al., 2016),
Chen et al. (2016) proposed using the KATZ measurement
to predict human microbe–disease associations (KATZHMDA)
on a large scale. Huang et al. (2017) applied the designed
depth-first search algorithm on the heterogeneous networks
and proposed a path-based approach (PBHMDA) to reveal
the microbes that are likely to be associated with the disease.
Wang et al. (2017) developed a machine learning-based
computational approach called LRLSHMDA, which calculates
the association scores for microbe–disease pairs based on
the known microbe–disease association network. Huang et al.
(2017) developed a novel computational method (NGRHMDA),
which can predict microbe–disease associations by applying
collaborative recommendation model on a graph. Bao et al.
(2017) proposed the computational model named NCPHMDA,
which combines space consistency projection scores for diseases
and microbes to predict latent disease-associated microbes.
Zou et al. (2017) put forward a new prediction model called
BiRWHMDA, which simultaneously performs random walks
on the microbe similar network and disease similar network
to uncover potential microbe–disease associations. Shi et al.
(2018) proposed a predictive method based on Binary Matrix
Completion (BMCMDA) for inferring the associations of
microbe–disease.

However, the abovementioned methods have their own
various shortcomings in uncovering microbe–disease
associations. Multiple available similarity networks can be
used for predicting disease–microbe associations. However,
most of the previous methods are performed on individual
networks, ignoring the complementarity between different
similarity networks. How to better fuse them is still worth
investigating. In this paper, to resolve the abovementioned
limitations, we presented a novel computational model of
multi-data integration and network consistency projection for
prediction of Human Microbe–Disease Associations (HMDA-
Pred) to boost the performance of human microbe–disease
association prediction, which integrates multiple similarity
networks. To begin with, the Gaussian interaction profile

kernel similarity network and cosine similarity network for
microbes and diseases were constructed based on known
microbe–disease associations. Subsequently, we integrated
the Gaussian interaction profile kernel similarity network of
microbes and cosine similarity network of microbes by a linear
network fusion method. In the same way, we integrated the
Gaussian interaction profile kernel similarity network of diseases
and cosine similarity network of diseases. Finally, we applied
the network consistency projection algorithm to uncover the
microbe–disease associations. Two evaluation strategies were
implemented to evaluate the performance of HMDA-Pred,
including leave-one-out cross validation (LOOCV) and 5-fold
cross validation (5-fold CV). Related data and source code are
available online at: https://github.com/AugustMe/HMDA-Pred.

MATERIALS AND METHODS

Known Microbe–Disease Associations
We used the same microbe–disease associations as the existing
literatures (Chen et al., 2016; Huang et al., 2017; Peng et al., 2018).
The dataset was initially derived from the Human Microbe–
Disease Association Database named HMDAD (Ma et al.,
2016)1, which collected 483 microbe–disease associations from
literatures. After removing duplicate associations of the dataset,
we obtained 450 unique associations between 292 microbes
and 39 diseases. Then, we constructed an adjacency matrix
MD(nm × nd) to describe the association relationship between
microbes and diseases, where nm and nd represented the number
of microbes and diseases, respectively. If microbe m(i) was proved
to be associated with disease d(j), the value of MD(i, j) was 1,
otherwise 0. If the value of MD(i, j) is 0, that means there is no
evidence yet showing microbe m(i) is associated with disease d(j).

In addition, we analyzed the degree distribution characteristics
of the microbe–disease association network (Table 1 and
Figure 1). The degree of a disease represents the number
of microbes related to this disease. The degree of a microbe
represents the number of diseases related to this microbe. In the
left graph of Figure 1, the abscissa indicates the range of disease
degree, which presents how many microbes are related to each
disease; the ordinate counts the number of each disease degree.
In the right graph of Figure 1, the abscissa indicates the range of
microbe degree, which shows how many diseases are related to
each microbe; the ordinate counts the number of each microbe
degree. On average, each disease is related to 11.54 microbes and
each microbe is involved with 1.54 diseases.

Gaussian Interaction Profile Kernel
Similarity for Diseases and Microbes
According to the hypothesis that diseases have similar patterns
with functionally similar microbes (Chen et al., 2016), we
constructed a Gaussian interaction profile kernel similarity
network for microbes and diseases based on the adjacency matrix
MD, respectively. First, a binary vector GIP(m(i)) represents
the interaction profiles of microbe m(i) by observing whether
microbe m(i) has a known association with each disease or not

1www.cuilab.cn//hmdad
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TABLE 1 | Characteristics of the microbe–disease association network.

No. of microbes No. of diseases No. of microbe–disease associations Avg. degree of diseases Avg. degree of microbes

292 39 450 11.54 1.54

FIGURE 1 | The degree distribution of diseases and microbes.

(i.e., the ith row of adjacency matrix MD). Second, the Gaussian
interaction profile kernel similarity between microbe m(i) and
microbe m(j) could be defined as follows:

KM(m(i), m(j)) = exp(−λm||GIP(m(i))− GIP(m(j))||2) (1)

λm = λ
′

m/(
1

nm

nm∑
i=1

||GIP(m(i))||2) (2)

where the parameter λm is a regulation parameter, which could
be obtained by normalizing a new parameter λ

′

m to control the
kernel bandwidth. For the sake of simplicity, we set λ

′

m to 1
according to previous studies (van Laarhoven et al., 2011; Chen
and Yan, 2013).

With the same processing, the Gaussian interaction profile
kernel similarity between disease d(i) and disease d(j) was
calculated as follows:

KD (d(i), d(j)) = exp(−λd||GIP(d(i))− GIP(d(j))||2) (3)

λd = λ
′

d/(
1

nd

nd∑
i=1

||GIP(d(i))||2) (4)

where GIP(d(i)) represents the interaction profile of disease
d(i) (i.e., the ith column of adjacency matrix MD). Here, the
meaning of parameter λd is the same as λm and we also set
the value of parameter λ

′

d to 1 (van Laarhoven et al., 2011;
Chen and Yan, 2013).

In the end, we could obtain the microbe Gaussian interaction
profile kernel similarity matrix KM (nm × nm) and the

disease Gaussian interaction profile kernel similarity matrix
KD(nd × nd), respectively.

Cosine Similarity for Diseases and
Microbes
The calculation of disease cosine similarity is based on the
assumption that if disease d(i) and disease d(j) are similar
to each other (Xie et al., 2019), then, in the microbe–disease
association matrix, pattern MD(:, i) (i.e., the ith column of the
adjacency matrix MD) and pattern MD(:, j) (i.e., the jth column
of adjacency matrix MD) should be similar to each other. The
same assumption should also be true for microbes. Therefore, the
cosine similarity between disease d(i) and disease d(j) is defined
as follows:

CD(d(i), d(j)) =
MD(:, i) ·MD(:, j)

||MD(:, i)|| × ||MD(:, j)||
(5)

After calculating the disease–disease cosine similarity of each
pair, the disease cosine similarity matrix CD(nd × nd)
can be constructed.

Similarly, the cosine similarity between microbe m(i) and
microbe m(j) is given:

CM(m(i), m(j)) =
MD(i, :) ·MD(j, :)

||MD(i, :)|| × ||MD(j, :)||
(6)

where MD(i,:) represents the ith row of adjacency matrix MD,
and after calculating the microbe–microbe cosine similarity of
each pair, the microbe cosine similarity matrix CM(nm × nm)
can be constructed.
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Integrated Similarity for Diseases and
Microbes
To make full use of disease Gaussian interaction profile kernel
similarity matrix KD and disease cosine similarity matrix CD,
a comprehensive disease similarity matrix DS(nd × nd) was
constructed by integrating the KD and CD similarity matrices.
We proposed a linear network fusion (LNF) method to integrate
KD and CD, defined as follows:

DS(d(i), d(j)) = α · KD(d(i), d(j))+ (1− α) · CD(d(i), d(j))
(7)

where entity DS(d(i), d(j)) represents the integrated similarity
between disease d(i) and disease d(j) and α represents the weight
of disease similarity matrix (0 < α < 1).

In the same way, microbe Gaussian interaction profile kernel
similarity matrix KM and microbe cosine similarity matrix CM
are integrated to a comprehensive microbe similarity matrix
MS(nm× nm) as follows:

MS(m(i), m(j)) = β · KM(m(i), m(j))+ (1− β) · CM(m(i), m(j))
(8)

where entity MS(m(i), m(j)) represents the integrated similarity
between microbe m(i) and microbe m(j) and β represents the
weight of microbe similarity matrix (0 < β < 1).

In the end, we obtained a comprehensive microbe similarity
matrix MS and a comprehensive disease similarity matrix
DS, respectively.

HMDA-Pred
HMDA-Pred is a network-based computation approach to
infer the disease-associated microbes based on the network
consistency projection (NCP) algorithm. The flowchart of
HMDA-Pred is shown in Figure 2. To begin with, based on
known microbe–disease associations, we calculated the Gaussian
interaction profile kernel similarity matrix and cosine similarity
matrix for microbes and diseases, respectively. Then, we
integrated two similarity matrices for microbes and for diseases
through LNF, respectively. Finally, we uncovered the microbe–
disease associations by scores obtained from the network
consistency projection algorithm. The NCP algorithm has been
successfully used to measure the similarity between nodes in the
link prediction problems in a heterogeneous network (Gu et al.,
2016; Bao et al., 2017). The following is how the NCP algorithm
works in HMDA-Pred.

First, we calculated the disease space projection score as
follows:

NCPD(i, j) =
MD(i, :) · DS(:, j)
|MD(i, :)|

(9)

where MD(i,:) is composed of the associations of microbe m(i)
and all diseases (i.e., the ith row of adjacency matrix MD),
DS(:, j) is composed of the similarities of disease d(j) and all
diseases (i.e., the ith column of adjacency matrix DS), and |
MD(i,:)| represents the norm of MD(i,:). NCPD(i, j) represents

FIGURE 2 | The flowchart of HMDA-Pred.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 4 August 2020 | Volume 8 | Article 831

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00831 August 4, 2020 Time: 13:51 # 5

Fan et al. HMDA-Pred

the projection score of microbe m(i) and disease d(j) from the
projection space of disease.

Second, we calculated the microbe space projection score as
follows:

NCPM(i, j) =
MS(i, :) ·MD(:, j)
|MD(:, j)|

(10)

where MD(:, j) is composed of the associations of disease d(i)
and all microbes (i.e., the ith column of adjacency matrix MD),
MS(i,:) is composed of the similarities of microbe m(i) and
all microbes (i.e., the ith row of adjacency matrix DS), and |
MD(:, j)| represents the norm of MD(:, j). NCPM(i, j) represents
the projection score of microbe m(i) and disease d(j) from the
projection space of microbe.

Finally, we combined and normalized NCPD and NCPM as
follows:

NCP(i, j) =
NCPD(i, j)+ NCPM(i, j)
|DS(:, j)| + |MS(i, :)|

(11)

NCP is the final probability matrix of microbe–disease
associations, and the element NCP(i, j) represents the final
association score of network consistency projection of microbe
m(i) and disease d(j).

RESULTS

Performance Evaluation
To make the evaluation criteria consistent with existing methods,
we performed LOOCV and 5-fold CV on our benchmark dataset,
which are widely used not only in machine learning classification
tasks based on sequence feature analysis but also in biological
association prediction problems (Chen et al., 2016; Wang et al.,
2017; Liu, 2019; Liu et al., 2019). For LOOCV, one of the 450
confirmed microbe–disease associations pairs was used as a test
sample while the left 449 associations were used as the training
samples. For 5-fold CV, we randomly divided the 450 confirmed
microbe–disease association pairs into five subsets, where one
subset is used as test samples and the remaining four subsets
as training samples. The 5-fold CV was repeated 100 times to
decrease the bias brought by the random splitting.

To visualize the performance of HMDA-Pred, the receiver
operating characteristic (ROC) curve was used to plot the
relationship between false-positive rate (1-specificity, 1-Spe) and
true positive rate (sensitivity, Sen). The area under the ROC
curve (AUC) was calculated, whose value of 1 represents perfect
prediction performance, while 0.5 indicates purely random
prediction performance (Chen et al., 2012, 2016; Fan and Shen,
2014; Pan and Shen, 2018). Moreover, we used the area under
the precision-recall (PR) curve (AUPR) as an another indicator
for model evaluation (Pan and Shen, 2019, 2020). In addition, we
adopted accuracy (Acc), precision (Pre), Matthews’s correlation
coefficient (MCC), and F1 score (F1) to further evaluate the
model. They are defined as follows:

Spe =
TN

TN + FP
(12)

Sen =
TP

TP + FN
(13)

Acc =
TP + TN

TP + TN + FN + FP
(14)

Pre =
TP

TP + FP
(15)

MCC =
TP × TN − FP × FN

√
(TP + FN)× (TP + FP)× (TN + FN)× (TN + FP)

(16)

F1=
2× TP

2× TP + FN + FP
(17)

where TP represents the number of known microbe–disease
associations that are correctly identified, FP represents the
number of unknown microbe–disease associations that are
incorrectly identified, TN represents the number of unknown
microbe–disease associations that are correctly identified, and FN
represents the number of known microbe–disease associations
that are incorrectly identified.

Parameter Selection
In this study, the parameters to be adjusted are α and β in
LNF. We set the values of α and β from 0.1 to 0.9 with a step
size of 0.1. In order to determine the best parameters, we ran
LOOCV on the benchmark dataset to select the parameters with
the best performance. As shown in Table 2, we observed that
HMDA-Pred achieves the best AUC when α is 0.3 and β is 0.6.

Comparison With Other Integration
Strategies
The similarity integration strategy proposed in this study is a
linear network fusion (LNF) method. In order to verify the
superior integration performance of the LNF, we compared LNF
with two common similarity fusion strategies: similarity network
fusion (SNF) (Zheng et al., 2017) and similarity kernel fusion
(SKF) (Jiang et al., 2018; Xie et al., 2019). As shown in Figure 3,
based on the LOOCV scheme, we plotted the ROC curve of
three different integration methods. The AUC value of LNF
achieved 0.9589, while those of SNF and SKF were 0.9437 and
0.8843, respectively. It can be seen that the AUC value of LNF
is higher than that of SNF and SKF. Therefore, in the HMDA-
Pred method, the performance of LNF is superior to the other
two fusion methods in terms of the prediction accuracy of the
microbe–disease associations.

Comparison With Single Similarity
In this study, we proposed to integrate different similarity
data of microbes (i.e., Gaussian interaction profile kernel
similarity and cosine similarity for microbes) and different
similarity data of diseases (i.e., Gaussian interaction profile kernel
similarity and cosine similarity for diseases) by LNF, respectively.
The integration effect was verified by designing comparative
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TABLE 2 | The AUC values of LNF integration method with different values of α and β.

β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.5 β = 0.6 β = 0.7 β = 0.8 β = 0.9

α = 0.1 0.9505 0.9541 0.9551 0.9557 0.9563 0.9564 0.9564 0.9560 0.9551

α = 0.2 0.9522 0.9559 0.9574 0.9579 0.9581 0.9583 0.9582 0.9578 0.9568

α = 0.3 0.9527 0.9562 0.9576 0.9584 0.9588 0.9589 0.9586 0.9578 0.9566

α = 0.4 0.9524 0.9558 0.9573 0.9581 0.9586 0.9586 0.9582 0.9571 0.9556

α = 0.5 0.9518 0.9550 0.9564 0.9576 0.9581 0.9575 0.9571 0.9561 0.9541

α = 0.6 0.9510 0.9542 0.9556 0.9568 0.9571 0.9561 0.9556 0.9544 0.9523

α = 0.7 0.9503 0.9535 0.9547 0.9556 0.9554 0.9547 0.9539 0.9524 0.9499

α = 0.8 0.9491 0.9524 0.9536 0.9541 0.9540 0.9530 0.9519 0.9501 0.9469

α = 0.9 0.9476 0.9510 0.9521 0.9526 0.9523 0.9512 0.9499 0.9477 0.9436

The bold value is the highest AUC value.

FIGURE 3 | The ROC curve of three integration strategies.

experiments, including all combinations of single similarity data
of diseases and microbes. The experimental results are shown
in Table 3. The proposed strategy of using LNF to integrate
Gaussian interaction profile kernel similarity data and cosine
similarity data presented the highest AUC values in LOOCV and
5-fold CV, which were 0.9589 and 0.9361± 0.0037, respectively.

Comparison With Other Existing
Methods
In order to further verify the superior predictive performance
of HMDA-Pred, we compared HMDA-Pred with three state-of-
the-art methods used to predict microbe–disease associations,
namely, KATZHMDA (Chen et al., 2016), BiRWHMDA

TABLE 3 | The AUC values of HMDA-Pred and other single similarity in LOOCV
and 5-fold CV.

Microbe similarity Disease similarity LOOCV 5-fold CV

Gaussian Gaussian 0.9295 0.9053 ± 0.0035

Gaussian Cosine 0.9480 0.9154 ± 0.0044

Cosine Cosine 0.9333 0.9049 ± 0.0062

Cosine Gaussian 0.9287 0.9033 ± 0.0080

Gaussian + cosine Gaussian + cosine 0.9589 0.9361 ± 0.0037

The bold values are the highest AUC value in LOOCV and 5-fold CV respectively.

(Zou et al., 2017), and LRLSHMDA (Wang et al., 2017). Figure 4
shows the comparisons of the AUC values between different
methods based on the benchmark data set. By LOOCV, the
AUC values of KATZHMDA, BiRWHMDA, LRLSHMDA, and
HMDA-Pred are 0.8873, 0.8284, 0.8816, and 0.9589, respectively.
However, after repeating for 100 times the 5-fold CV, the
AUC values of KATZHMDA, BiRWHMDA, LRLSHMDA,
and HMDA-Pred are 0.8428 ± 0.0035, 0.7984 ± 0.0027,
0.8410± 0.0052, and 0.9361± 0.0037, respectively.

In this study, the known microbe–disease associations are
far less than unknown microbe–disease associations in the
benchmark dataset, which is imbalanced. Therefore, the AUPR
value (area under the PR curve) is an indispensable model
evaluation indicator to show the balance of recall and precision,
which is suitable to investigate the performance of different
methods in the imbalanced dataset (Li et al., 2018). Based on the
benchmark data set, we plotted the PR curve of each method and
calculated the AUPR value of each method by LOOCV. As shown
in Figure 5, the AUPR values of HMDA-Pred, BiRWHMDA,
KATZHMAD, and LRLSHMDA are 0.6510, 0.4363, 0.4782, and
0.5045, respectively, which reflects that the performance of
HMDA-Pred is better than the other three methods in the case
of imbalanced data set.

Moreover, we used two stringency levels to further measure
the predictive performance of the model (Sun et al., 2016). As
shown in Table 4, at the medium specificity level (Spe = 95.0%),
the Sen, Acc, Pre, F1, and MCC of HMDA-Pred are 79.1, 94.4,
39.4, 52.6, and 53.4%, respectively; of KATZHMDA are 59.7,
93.6, 32.9, 42.4, and 41.2%, respectively; that of LRLSHMDA
are 55.1, 93.4, 31.2, 39.8, and 38.3%, respectively; and that of
BiRWHMDA are 46.9, 93.1, 27.8, 34.9, and 32.7%, respectively.
When Spe = 99.0% (i.e., at the high specificity level), the Sen,
Acc, Pre, F1, and MCC of HMDA-Pred are 49.9, 97.1, 67.3,
57.2, and 56.4%, which are higher than those of KATZHMDA,
LRLSHMDA, and BiRWHMDA methods.

In addition, we compared the HMDA-Pred method with
the BRWMDA (Yan et al., 2019), PBHMDA (Huang et al.,
2017), PRWHMDA (Wu et al., 2018), NGRHMDA (Huang
et al., 2017), KATZBNRA (Li et al., 2019), NTSHMDA (Luo
and Long, 2018), BMCMDA (Shi et al., 2018), NCPHMDA
(Bao et al., 2017), ABHMDA (Peng et al., 2018), NBLPIHMDA
(Wang et al., 2019), and GRNMFHMDA (He et al., 2018)
methods. As shown in Figure 6, these AUC values extracted from
the original papers include 0.9397, 0.9169, 0.9150, 0.9111, 0.9098,
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FIGURE 4 | The ROC curve of different methods in LOOCV and 5-fold CV.

FIGURE 5 | The PR curve of different methods in LOOCV.

0.9070, 0.9060, 0.9039, 0.8869, 0.8777, and 0.8715. The AUC value
of HMDA-Pred is 0.9589, which is higher than those of other
10 methods by 0.0192, 0.0420, 0.0439, 0.0478, 0.0491, 0.0519,
0.0529, 0.0550, 0.0720, 0.0812, and 0.0874, respectively. The
above experimental results fully demonstrate that the HMDA-
Pred method has better prediction performance than the other
state-of-the-art methods.

Case Studies
In this section, we investigated the top 10 microbes predicted
by HMDA-Pred to be potentially associated with asthma,
colon cancer, and inflammatory bowel disease, respectively.
Then, we validated the predicted results by searching the
relevant literatures, with the purpose of further evaluating the
performance of HMDA-Pred.

Asthma is a common chronic disease, generally considered
to be caused by a combination of genetic and environmental
factors (Althani et al., 2016). The top 10 microbes predicted by

the HMDA-Pred method have been confirmed to be potentially
related to asthma in the relevant literatures, as shown in Table 5.
Colon cancer is a common gastrointestinal malignant tumor with
high morbidity and mortality (Bao et al., 2017). We selected the
top 10 microbes that were potentially related to colon cancer
predicted by HMDA-Pred, and through searching the relevant

TABLE 4 | The evaluation indicators of different methods at two stringency levels.

HMDA-Pred
(%)

KATZHMDA
(%)

LRLSHMDA
(%)

BiRWHMDA
(%)

Spe = 99.0%

Sen 49.9 32.9 37.8 32.9

Acc 97.1 96.4 96.6 96.4

Pre 67.3 57.6 60.9 57.6

F1 57.2 41.9 46.6 41.9

MCC 56.4 41.8 46.4 41.8

Spe = 95.0%

Sen 79.1 59.7 55.1 46.9

Acc 94.4 93.6 93.4 93.1

Pre 39.4 32.9 31.2 27.8

F1 52.6 42.4 39.8 34.9

MCC 53.4 41.2 38.3 32.7

TABLE 5 | The top 10 potential asthma-related microbes predicted by
HMDA-Pred.

Rank Microbe Evidence

1 Firmicutes PMID:23265859

2 Pseudomonas PMID:13268970

3 Clostridium coccoides PMID:21477358

4 Actinobacteria PMID:28947029

5 Burkholderia PMID:24451910

6 Lactobacillus PMID:20592920

7 Lachnospiraceae Ciaccio et al., 2014

8 Propionibacterium PMID:27433177

9 Propionibacterium acnes PMID:27433177

10 Fusobacterium nucleatum Dang et al., 2013
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FIGURE 6 | AUC values of different methods in LOOCV.

TABLE 6 | The top 10 potential colon cancer-related microbes predicted by
HMDA-pred.

Rank Microbe Evidence

1 Proteobacteria PMID:24603888

2 Clostridium coccoides PMID:19807912

3 Haemophilus PMID:22761885

4 Lactobacillus PMID:15828052

5 Staphylococcus Unconfirmed

6 Helicobacter pylori PMID:11774957

7 Lachnospiraceae PMID:21850056

8 Actinobacteria PMID:24316595

9 Faecalibacterium prausnitzii Unconfirmed

10 Streptococcus PMID:21247505

literatures, we confirmed that 8 of them were related to colon
cancer, as shown in Table 6. Inflammatory bowel disease is also
known as non-specific enteritis or idiopathic enteritis, whose
etiology has not been completely clear. Also, there is no cure for
it in medicine currently (Wu et al., 2018). The top 10 microbes
most likely to be associated with inflammatory bowel disease were
predicted by HMDA_Pred, which was confirmed by relevant
literatures, as shown in Table 7.

DISCUSSION

Effective computational methods can predict microbe–disease
associations in a more efficient and low-cost manner, thus
becoming an important aid to biological experimental methods.

TABLE 7 | The top 10 potential inflammatory bowel disease-related microbes
predicted by HMDA-Pred.

Rank Microbe Evidence

1 Clostridium coccoides PMID:19235886

2 Bacteroidetes PMID:25307765

3 Staphylococcus Luo and Long, 2018

4 Firmicutes PMID:25307765

5 Prevotella PMID:25307765

6 Helicobacter pylori PMID:22221289

7 Clostridium difficile Luo and Long, 2018

8 Haemophilus PMID:24013298

9 Propionibacterium PMID:26640113

10 Propionibacterium acnes PMID:26640113

In this study, we present a novel prediction method called
HMDA-Pred based on known microbe–disease associations,
Gaussian interaction profile kernel similarity for microbes and
diseases, and cosine similarity for microbes and diseases to infer
disease-associated microbes. HMDA-Pred achieved AUC values
of 0.9589 and 0.9361 ± 0.0037 in the LOOCV and 5-fold CV,
respectively. In addition, we conducted case studies of asthma,
colon cancer, and inflammatory bowel disease to further validate
the predictive performance of HMDA-Pred, where 10, 8, and 10
of the top 10 candidate microbes were confirmed from literatures,
respectively. Given the superior performance of HMDA-Pred,
we expect HMDA-Pred to be a promising and effective tool for
assisting clinical and biological research.

There are several reasons why HMDA-Pred performs well
in microbe–disease associations prediction. First, the datasets
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used in HMDA-Pred are relatively more reliable. Secondly,
a linear network fusion method is used to fuse multiple
similarity networks to obtain an informative matrix. Third,
network consistency projection executed on microbe and
disease spatial networks is efficient and reliable. There is
also room for improvement of HMDA-Pred in future work.
First, although the predictive performance of HMDA-Pred has
improved compared to previous methods, it will be further
improved if more reliable similarities are considered, such as
the semantic similarity of diseases and the functional similarity
of microbes. Second, HMDA-Pred will inevitably lead to a
bias in disease with more known related microbes due to
data imbalance.
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