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Power-Force-Velocity profile obtained during a sprint test is crucial for designing
personalized training and evaluating injury risks. Estimation of instantaneous velocity
is requisite for developing these profiles and the predominant method for this estimation
assumes it to have a first order exponential behavior. While this method remains
appropriate for maximal sprints, the sprint velocity profile may not always show a first-
order exponential behavior. Alternately, velocity profile has been estimated using inertial
sensors, with a speed radar, or a smartphone application. Existing methods either relied
on the exponential behavior or timing gates for drift removal, or estimated only the mean
velocity. Thus, there is a need for a more flexible and appropriate approach, allowing
for instantaneous velocity estimation during sprint tests. The proposed method aims
to solve this problem using a sensor fusion approach, by combining the signals from
wearable Global Navigation Satellite System (GNSS) and inertial measurement unit (IMU)
sensors. We collected data from nine elite sprinters, equipped with a wearable GNSS-
IMU sensor, who ran two trials each of 60 and 30/40 m sprints. We developed an
algorithm using a gradient descent-based orientation filter, which simplified our model
to a linear one-dimensional model, thus allowing us to use a simple Kalman filter (KF) for
velocity estimation. We used two cascaded KFs, to segment the sprint data precisely,
and to estimate the velocity and the sprint duration, respectively. We validated the
estimated velocity and duration with speed radar and photocell data as reference. The
median RMS error for the estimated velocity ranged from 6 to 8%, while that for the
estimated sprint duration lied between 0.1 and −6.0%. The Bland–Altman plot showed
close agreement between the estimated and the reference values of maximum velocity.
Examination of fitting errors indicated a second order exponential behavior for the sprint
velocity profile, unlike the first order behavior previously suggested in literature. The
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proposed sensor-fusion algorithm is valid to compute an accurate velocity profile with
respect to the radar; it can compensate for and improve upon the accuracy of the
individual IMU and GNSS velocities. This method thus enables the use of wearable
sensors in the analysis of sprint test.

Keywords: sensor fusion, sprinting, functional capacity test, wearable GNSS-IMU sensor, validation study,
velocity profile, athlete monitoring

INTRODUCTION

Sprinting not only represents the peak of human speed but
also forms the basis of performance in a variety of sports. The
capacity to generate maximal force and power in the direction
of running is a decisive factor behind an athlete’s performance
in sports such as athletics, soccer, hockey, rugby, etc. (Cronin
and Hansen, 2005). To ascertain this capacity, sprint tests with
a distance varying from 20 to 60 m are typically utilized. A wealth
of research into sprint mechanics (Morin et al., 2012; Buchheit
et al., 2014; Cross et al., 2015; Rabita et al., 2015; Haugen and
Martin, 2016) has shown that parameters such as maximum
power produced by the sprinter, maximum horizontal force,
horizontal velocity at zero acceleration, maximum theoretical
horizontal force (f 0), maximum theoretical horizontal power
(pmax), maximum theoretical horizontal velocity (v0) etc., along
with the horizontal force-velocity (F-V) and horizontal power-
velocity (P-V) profiles can be crucial for designing personalized
training programs, evaluating injury risks, and athlete readiness
to resume high intensity training and return to competition
after injury (Morin and Samozino, 2016). These parameters and
the force-power-velocity profiles can be ascertained using the
velocity profile during sprint. An accurate estimation of the in-
field sprinting velocity can thus be immensely helpful to improve
the performance of athletes in a multitude of sports.

The prominent model of estimating instantaneous sprint
velocity (vmdl(t)) is based on the use of a Doppler radar to
measure the maximum velocity in combination with the Eq. 1
(Furusawa et al., 1927; Samozino et al., 2016):

vmdl(t) = vmax

(
1− e

{
−

t
τ

})
(1)

where vmax is the maximum horizontal velocity during the sprint
and τ is a constant, estimated using ensemble experimental
data. The obtained velocity profile (vmdl(t)) is differentiated
to obtain horizontal acceleration, and subsequently the F-V
and P-V profiles. While this method provides ease of use, it
is only valid when the athletes can approach or attain vmax.
However, the sprinters may not achieve vmax over short distances
such as 30 m or they may not be able to maintain vmax over
longer distances such as 60–100 m, especially during training
sessions, and thus the sprint velocity profile for all athletes
may not necessarily show a first-order exponential behavior.

Abbreviations: amdl, acceleration from model; vmdl_max,1, first order model based
on maximum velocity; vmdl_end,1, first order model based on speed end; aGFx ,
forward acceleration in global frame; vest, IMU-GNSS fusion estimated speed; vmax,
maximum velocity; vR (t), radar speed; vmdl,2, second order model; vend, velocity at
the endpoint of sprint; vGNSS, velocity measured by GNSS; vmdl, velocity of the
exponential model.

Sprint velocity has also been estimated with a recently developed
application (Stanton et al., 2016) for a smartphone; wherein
the in-built camera tracks and records the motion. Based on
the distance entered manually, the application calculates the
total sprint time and subsequently the mean velocity. Thus,
this application cannot estimate instantaneous velocity and the
measurable sprint distance might be limited by the field-of-
view of the camera.

While wearable inertial sensors have shown promising results
in the assessment of temporal gait parameters in running and
sprinting (Leitch et al., 2011; Bergamini et al., 2012; Norris et al.,
2014; Falbriard et al., 2018; Macadam et al., 2019), their use
for analysis of instantaneous sprint velocity and other sprint
mechanics has been rather rare. Recently, a magnetic and inertial
measurement unit (MIMU) based algorithm (Setuain et al., 2018)
has been developed to assess sprint mechanics with various
parameters such as maximal velocity, maximal horizontal force
and power, velocity at zero horizontal force, etc., for 20 m sprints.
Though this work allows the measurement of sprint mechanics
using a single MIMU mounted on the trunk, the algorithm relies
on the use of split times from photocells at specific distances to
remove the accumulated drift in the velocity. Other works on
velocity estimation using a trunk-based MIMU (Gurchiek et al.,
2018, 2019), utilized Eq. 1 for drift removal and used machine
learning to estimate the parameters vmax and τ, respectively.
Nevertheless, as explained earlier, Eq. 1 may not hold true
over different sprint distances and sub-maximal efforts. Finally,
Global Navigation Satellite System (GNSS) with wearable receiver
provides another avenue of running velocity measurement in
field and has been used to assess training and match performance
in sports like soccer and rugby (Cummins et al., 2013). However,
the ground velocity signal from GNSS is not responsive enough
to measure the velocity during sprint (Nagahara et al., 2017) and
can lead to an underestimation of the sprint velocity. This issue is
even more exacerbated among elite athletes, who produce a high
magnitude of horizontal acceleration and for whom, the timing
difference can be critical (Morin and Samozino, 2016).

A Kalman filter based sensor fusion approach to combine
GNSS and MIMU signals can overcome their respective
limitations of responsiveness and drift-induced errors, as
demonstrated successfully in sports applications such as skiing
(Waegli et al., 2007; Brodie et al., 2008; Zihajehzadeh et al.,
2015) and running (Tan et al., 2008). However, the works on
skiing utilized magnetometers and focused on estimating and
validating the skier’s trajectory and not the velocity, whereas
the running movement did not present the challenge of high
starting acceleration encountered in sprinting. Use of sprinting
as a functional capacity test also imposes an important constraint
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in terms of usability for in-field implementation, thus limiting the
number of wearables that can be utilized.

To address the problem of estimating instantaneous velocity in
sprinting over a range of distances, we introduce a new approach
based on using a gradient descent algorithm as an orientation
filter (Madgwick et al., 2011), in combination with cascaded
simple Kalman filters used for precise data segmentation and
velocity estimation, respectively. The orientation filter utilizes the
IMU data to convert the acceleration signals from the sensor
frame to the global frame, which is then given as input to the
first Kalman filter for estimating the precise sprint duration.
This duration is used to segment the sensor data, which is
then provided to the second Kalman filter, which fuses the
GNSS signal and IMU acceleration to estimate the instantaneous
velocity. To test this approach, we used the instantaneous velocity
obtained from a Doppler effect-based radar for validating the
estimated velocity and sprint timings acquired from a photocell
for comparing the sprint duration.

MATERIALS AND EQUIPMENT

We conducted measurements with nine healthy elite-level
sprinters, four (3 male, 1 female, 60 m sprint time 7.49 ± 0.35 s)
at the Aix-les-Bains Athletics club and five (4 male, 1 female,
60 m sprint time 7.65 ± 0.67 s) from the Lausanne Athletics
club, respectively. Ethical approval for the study was obtained
from the university human research ethics committee (HREC
039-2018) and prior written consent was obtained from all the
participants. The Aix-les-Bains cohort performed 2 × 40 m and
2 × 60 m sprints, while the Lausanne one performed 2 × 30 m
and 2 × 60 m sprints. These distances are typically used in
sprint tests and for training sprinters. For both measurements,
participants were wearing a vest equipped with the GNSS-IMU
sensor (Fieldwiz, ASI, CH) on the upper back (Figure 1); GNSS
here represents the GNSS and IMU the inertial measurement

unit. Apart from the vest, the sprinters dressed as they would for
a regular training session.

This GNSS-IMU wearable sensor was chosen because it is
already used in soccer training for performance and training
monitoring (Clemente et al., 2018). This sensor, with a sampling
frequency of 200 Hz for the IMU and 10 Hz for the GNSS unit,
was used in the “airborne <4 g” configuration of the in-built u-
blox GNSS module. A speed radar (ATS Pro II, Stalker Sport,
United States) with a sampling frequency of 50 Hz, selected on
the basis of Haugen and Martin (2016), was positioned directly
behind the starting point (Figure 1) of the sprinter. Data from
the radar was used in the measurements as a reference value
for velocity. Photocells (Witty, Microgate corp, Italy) from the
respective athletics clubs were used at the start and the end as
reference value for the duration of the sprints.

METHODS

Velocity and Duration Estimation
Algorithm
The flowchart for the algorithm is shown in Figure 2; the
algorithm includes three phases: (i) sprint segmentation (ii)
velocity estimation, and (iii) sprint duration estimation. Sprint
segmentation aims to detect the period for each specific
sprint. First, the data recorded on the GNSS-IMU sensor
is segmented by manually selecting an approximate starting
sample for the relevant sprint. Following this, the algorithm is
designed to choose a precise starting time (ts) by selecting an
appropriate threshold (0.3 m/s) on the velocity obtained from
the GNSS sensor. A sensitivity analysis (Appendix Figure A1)
was conducted to see the impact of this threshold on the velocity
estimation error. Using gravity and the IMU data during the
static period at the start of sprint, the initial orientation is
estimated along X and Y direction, wherein the direction of

FIGURE 1 | Sensor setup and measurement protocol, (A) Snapshot of a sprinter wearing the Fieldwiz sensor with the speed radar in the foreground (B)
Specifications of the Fieldwiz sensor and the measurement protocol, wherein the sprinters ran two trials each of 60 m and 30 or 40 m distances with the speed
radar as the velocity reference. Photocells were positioned at the start/end to record the sprint duration. GF and SF represent the global and sensor frames.
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FIGURE 2 | Flowchart for the sprint velocity estimation algorithm. The “coarse segmentation” block is manual and creates a window to select the approximate
starting point of the relevant sprint, while remaining algorithm is automated. The “Sprint detection” and “GNSS-IMU fusion” filters are simple Kalman filters. aGFx

denotes the horizontal acceleration in the global frame, vGNSS the ground velocity from the GNSS sensor, while vest and Test represent the estimated velocity and
sprint duration, respectively.

sprinter progression is assumed to be the global X-axis and Y
is the vertical axis. The changes from this initial orientation
are estimated using the gyroscope data and corrected with the
accelerometer data using a gradient-descent based optimization
method (Madgwick et al., 2011). Thus, the X-axis here is not truly
a global axis and it is defined anew for every sprint. The changes
in orientation are represented by quaternions q, which are used to
convert the acceleration signals from the segmented data from the
sensor frame (SF) to the global frame (GF) X–Y–Z using Eq. 2:

aGF = q⊗ [0 aSF]⊗ q∗ (2)

Where q represents the quaternions transforming the sensor
frame (SF) to the global frame (GF) and q∗ their transpose.
These quaternions are estimated by fusing accelerometer and
gyroscope data using a gradient descent algorithm (Madgwick
et al., 2011); aSF is the acceleration in the sensor frame, and aGF is
the acceleration in the global frame X–Y–Z with positive X-axis
representing the direction of sprinting.

The acceleration along the positive X-axis of the global frame
(aGFx) is provided as an input to the Sprint detection filter (linear
Kalman filter) in combination with the ground velocity (vGNSS)
from the GNSS sensor. The main assumption here is that the
sprinters run along a straight line (within sagittal plane), thus
the acceleration (aGFx) can be assumed to represent acceleration
along the direction of running and the dynamical model of the
system can be assumed to be constant. This assumption is also
used during the measurements with a speed radar; in our case, it
simplified the system to a linear model and allowed the use of a
simple Kalman filter, which is the optimal estimator for a linear
system (Burl, 1998). This filter has the following prediction and
update steps:
Prediction:

vest(n|n− 1) = [1] vest(n− 1)+ [1t] aGFx(n− 1)+ µ (3.1)

Update:

vest (n | n) = vest (n | n− 1)

+ K (n) (vGNSS (n)− vest (n | n− 1)) (3.2)

Kalman gain:

K (n) = p (n | n− 1) (p (n | n− 1)+ η)−1 (4)

Where vest is the estimated horizontal velocity, aGFx(n) is the
horizontal acceleration in global frame, 1t is the sampling time,
µ is the process (accelerometer) noise, vGNSS (n) is the velocity
measured by the GNSS sensor, K (n) is the Kalman gain, p(n) is
the estimation uncertainty, and η is the measurement (GNSS)
noise. Since aGFx has a sampling frequency of 200 Hz, vGNSS
is upsampled from 50 to 200 Hz by “zero padding.” If the
velocity from vGNSS is non-zero, the update sequence is initiated,
otherwise the prediction model continues to run without update.

The magnitudes of η and µ were set to 0.01 and 0.4,
respectively, obtained via manual tuning of the filter. In order to
refine the magnitude of η further, the rationale of the exponential
behavior of sprint velocity (Samozino et al., 2016) is utilized. By
subtracting both sides of Eq. 1 from vmax, we get:

vmax − vH(t) = vmax

(
e
{
−

t
τ

})
(5)

Based on this equation, vGNSS is subtracted from the maximum
velocity and an exponential curve was fitted to it and if fit is good
(R2 > 0.91), the value of ηk is unchanged from 0.01. In case of
a bad fit, this value is increased by an order of magnitude to 0.1.
The velocity (vest) obtained from this Kalman filter is integrated
from the starting time (ts) to obtain the distance profile, which
is subsequently compared to the actual sprint distance and used
to estimate the ending time te and segment sprint period (td =

te − ts) precisely.
In the second phase, a more accurate exponential fitting is

made using a more refined sprint period (td) obtained in the first
phase. Precisely segmented vGNSS and aGFx are provided as inputs
to the GNSS-IMU fusion filter, which is also a simple Kalman
filter, with the same process and measurement models as the
first filter. This filter is used to update the final sprint velocity
(vest) precisely by considering the sprint period and the fine-
tuning of GNSS noise. In the final step, vest is integrated to obtain
the displacement-time profile and the timestamp at the relevant
sprint distance is computed. The starting time (ts) of the sprint
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is then subtracted from the value of this timestamp to obtain the
sprint duration (T est).

Estimation of Profiles – Velocity, Force,
and Power
To estimate force-velocity and power-velocity profiles, the first
step is to estimate the approximate velocity profile from vest
using the exponential fit (Samozino et al., 2016) presented in
Eq. 1. While the maximum velocity during the sprint (vmax)and
the velocity at the end (vend) are the same in case of an ideal
exponential velocity profile, this may not be the case with real-
world velocity profiles. As a result, vmax and vend tend to deviate
from each other. To investigate which velocity profile leads
to a better fit, the two first-order velocity profiles, based on
vmax

(
vmdl_max,1(t)

)
and vend

(
vmdl_end,1(t)

)
, respectively, were

compared to a second-order velocity profile, defined as:

vmdl,2 (t) = aeτ1t
− aeτ2t (6)

Where τ1, τ2 and a were computed with the “trust-region
reflective” algorithm, using the “lsqcurvefit” function native
to Matlab application. Approximate velocity profile obtained
from the best performing fitting method is differentiated to
obtain the approximate horizontal acceleration amdl(t), which in
combination with the sprinter’s mass (M), led to the force profile:

Fmdl (t) = Mamdl (t) (7)

Finally, we computed the power profile as a product this force
profile and the velocity profile:

Pmdl (t) = Fmdl (t) amdl (t) (8)

Validation Process
The velocity measured at 50 Hz by the radar (vR (t)) was used
as reference for velocity validation. To match the sampling
frequency of the reference signal, vest was downsampled from 200
to 50 Hz by keeping the first sample and every fifth sample after
the first, and vGNSS was upsampled from 10 to 50 Hz using linear
interpolation. An error vector (Eq. 9) between vest and vR was
then computed for each trial. Following this, the RMS for each
error vector were calculated. Finally, median and interquartile
range (IQR) were computed from the RMS error value for each
sprint distance to investigate the bias and precision. Similar
procedure was applied to estimate error for vGNSS.

εv (t) =
vR (t)− vest (t)

max (vR (t))
× 100% (9)

In order to investigate the different fitting methods explained
earlier, we calculated the error vectors (Eq. 10) of the fitted
curves vmdl (t) [i.e., vmdl_max,1(t), vmdl_end,1(t) and vmdl,2 (t)] with
respect to vR, followed by calculating RMS, median, and IQR.
Further, we also investigated the fitting performance qualitatively
by observing the different fitted velocity profile curves. Similarly,
the error for fitted curves with respect to vest was calculated.

εfit (t) = vR (t)− vfit (t) (10)

The time recorded in the photocells
(
TRef

)
was used as reference

for validation of the estimated sprint duration (Test). Percentage
error for the sprint duration was calculated by Eq. 11:

εt =
TRef − Test

TRef
× 100% (11)

Similar process was carried out for the duration obtained from
the radar (Trad), in order to compare the performance of the
algorithm with that of the radar. Subsequently, the RMS, median,
and IQR for these error values were calculated.

Lastly, the maximum velocity is an important metric
according to earlier research on sprint mechanics (Morin et al.,
2012) and thus, we opted to compare the value obtained from
our method with that from the radar. Another reason to
focus on the maximal speed was that the RMS error did not
capture this parameter properly. The Bland–Altman plot (mean-
difference) was used (Altman, 1990) for this purpose, along with
the calculation of the Lin’s concordance correlation coefficient
(ccc) at 95% confidence interval (Lawrence and Lin, 1989) as
a measure of agreement between our method and the radar.
A correlation coefficient value greater than 0.7 was considered
“strong,” according to the ranges suggested in Hopkins et al.
(2009) for sports science research. Bland–Altman plots were also
utilized to compare the theoretical maximum theoretical velocity
v0 (m/s), maximum theoretical horizontal force per unit mass f 0
(N/kg), and maximum theoretical horizontal power pmax per unit
mass (W/kg) values obtained from the vest(t) using the second-
order exponential fit to those computed from the vR (t). The pmax
values were obtained from the apex values of the P-V profile.

RESULTS

Data for the nine athletes (7 male, 2 female, 60 m sprint
time 7.39 ± 0.37 s) was utilized in this research. Four athletes
performed 2 × 40 m sprints and 2 × 60 m sprints, while
remaining five athletes performed 2 × 30 m sprint and 2 × 60 m
sprints. For one 60 m sprint and three 30 m sprints, a delay in
triggering the reference radar system was noticed during data
processing. Since the sprint start was not recorded for these
sprints, their data was discarded from the final analysis. Thus, a
total seven sprints were considered for 30 m distance, eight for
40 m, and 17 for 60 m. Out of these, data for two 40 m sprints was
used for tuning the algorithm, while the data for all sprints was
used for validation.

Velocity Estimation
Figure 3 illustrates one example each of situations where vGNSS
severely underestimated the actual vR (Figure 3A) and when
the vGNSS approximately matches vR (Figure 3B). In both cases,
vest matched vR closely. Figure 3C, in turn, represents the
intermediate ‘Evaluate exponential fit’ block of the algorithm
(Figure 2 and Eq. 5), for adjusting the measurement noise
parameter of the Kalman filter. For the case presented here,
vGNSS(t) did not show an exponential behavior (R2 = 0.66) and
so the measurement noise, (η = 0.1) was set higher than scenario
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when vGNSS(t) would have been exponential (R2 > 0.91) in
nature. Apart from this one case of 30 m, vGNSS(t) did not show
an exponential behavior in one of 40 m sprints.

Validity of Estimated Velocity
The error results for vest and vGNSS are shown in Figure 4 and
Table 1; vest presents a similar error magnitude as vGNSS for 40
and 60 m, while showing a lower error for the 30 m sprint.
The median of RMS errors of the vest ranged from 6.2 to 8.1%
(Figure 4A and Table 1) for the three sprint distances and was
lower or similar to that of the vGNSS. Furthermore, the IQR
(Table 1) for the RMS errors for the vest was lower than that of
the vGNSS, especially for the 30 and 60 m sprint distances.

The median error for Test ranged from 0.1 to −6.3%
(Figure 4B), while that for Test varied from 3.3% to −2.3%,
thus both showed a similar range. The IQR (Table 1) for Trad

were lower as compared to Test for 40 and 60 m sprints. For
30 m sprint, Test had a lower median error, but a higher IQR
than Trad. For the maximum velocity (vmax), the Bland–Altman
plot showed close agreement between the estimated and the
reference magnitudes, with all the values lying between the
two standard deviations and the Lin’s concordance correlation
coefficient being 0.76 (p < 0.05). The estimated values, however,
showed a slight negative bias of −0.16 m/s, although this was
miniscule as compared to actual maximum velocities, which were
around 10 m/s. For the v0, f0, and pmax, the Bland–Altman plot
(Figure 5A) showed close agreement between the estimated and
reference values, with almost all values lying between the two
standard deviations. v0 presented a bias of −0.17 m/s which is
similar to that of vmax, f0 showed almost zero bias, and the bias
for pmax was −0.31 W/kg, which is substantially smaller than the
actual pmax values, which range from 16 to 28 W/kg.

FIGURE 3 | (A) Example of a specific case of 30 m sprint when vGNSS(t) was inaccurate while the estimated velocity is accurate. (B) Example of a specific case of
40 m sprint when vGNSS(t) was accurate and so was the estimated velocity. (C) Example of exponential fit (Eq. 5) used to adjust measurement (GNSS) noise for the
Kalman filter. IMU velocity: velocity obtained by strapdown integration of IMU signals, vGNSS(t): GNSS velocity, vR (t): radar velocity, vest(t): estimated velocity by
GNSS-IMU fusion.

FIGURE 4 | Validation of estimated velocity, (A) RMS error of the estimated velocity and GNSS velocity w.r.t. the radar speed. (B) RMS error of the predicted sprint
duration from the proposed algorithm and the radar speed with the photocell duration as reference. (C) Bland–Altman plot for the maximum estimated velocity with
the maximum radar speed as reference. Here, L.O.A. are the limits of agreement and M.D. is the mean difference.
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TABLE 1 | Median (IQR) values of the RMS error for vGNSS, vest, Trad and Test for all three sprint distances.

Sprint distance, m % error for vGNSS % error for vest % error for Trad % error for Test

30 5.6 (4.9 to 12.0) 6.2 (5.2 to 7.2) 3.3 (1.8 to 4.5) 0.1 (−1.7 to 1.9)

40 10.2 (5.1 to 11.4) 8.1 (6.1 to 11.4) −0.8 (−2.0 to 0.2) −4.5 (−9.8 to 0.1)

60 6.1 (4.7 to 8.5) 6.5 (5.4 to 7.9) −2.1 (−3.4 to −0.2) −6.3 (−12.8 to −2.4)

RMS error was calculated on the basis of Eqs 9 and 11.

FIGURE 5 | Bland–Altman plots with the values calculated from radar speed as reference, where L.O.A. are the limits of agreement and M.D. is the mean difference.
The values here are obtained using the second-order exponential fit, (A) Maximum theoretical velocity v0 (m/s). (B) Maximum theoretical horizontal force per unit
mass f0 (N/kg). (C) Maximum theoretical horizontal power pmax per unit mass (W/kg).

Validity of Exponential Fitting
A qualitative presentation of the different types of
exponential fits can be seen in Figure 6A, for the first order(
vmdl_max,1, vmdl_end,1

)
and second order

(
vmdl,2

)
exponential fits.

For both vest and vR, the second order fit has the lowest RMS
error (Figures 6B,C) and lower median and IQR than both first
order fits (Table 2). vmdl_end,1 fit has similar median error values
as vmdl_max,1 fit for 30 and 40 m sprints, while it has considerably
higher median and IQR for the 60 m sprint (Table 2).

Force-velocity (F-V) and power-velocity (P-V) obtained from
the second-order (order 2) exponential are shown in Figure 7,
respectively. These profiles were created from the best trial of the
nine selected athletes for the 60 m sprint and sorted from the
lowest to the highest finish times.

DISCUSSION

Validity of the Proposed Method
The proposed sensor-fusion algorithm can compute an accurate
velocity profile with respect to the radar; it can compensate
for and improve upon the accuracy of the individual IMU and
GNSS velocities, as seen in Figure 3B. When vGNSS is relatively
accurate, the algorithm output (vest) closely resembles the vGNSS
profile (Figure 3C). This is underlined by the percentage error
for the velocity (Figure 4A); the median RMS error values for
the vest are only slightly lower than those for vGNSS, whereas
the standard deviation is considerably less. Thus, the velocity

estimation algorithm based on GNSS and IMU fusion is robust
in terms of accuracy and precision, despite the inaccuracies in
the GNSS velocity. None of the previous works on estimation
of sprint mechanics (Samozino et al., 2016; Stanton et al.,
2016; Gurchiek et al., 2018; Setuain et al., 2018) conducted a
validation of the instantaneous velocity or the overall profile
with respect to a speed radar. Stanton et al. (2016) validated
the mean velocity over an entire sprint, while (Gurchiek et al.,
2018) validated the mean velocity over 10 m intervals. This
method is the first one to provide validated instantaneous
analysis of the sprint velocity profile over multiple distances,
and thus it is not possible to compare our results with the
state-of-the-art.

The median error for sprint duration (Test) increased from
0.1 to −6.3% for 30 to 60 m distances, respectively, clearly
showing an overestimation. This is a result of the minor
underestimation of velocity caused by the residual drift in the
IMU strapdown integration and the inaccuracies of the GNSS
velocity. While the work by Setuain et al. (2018) used photocells
for drift estimation, only the research from Stanton et al. (2016)
considered a validation with respect to the photocell data. The
mean error reported in the latter case (2.6%) for 10 m sprint
was higher than the median (IQR) error presented here i.e.,
0.1 (−1.7 to 1.9) (Table 1) for a 30 m sprint. Furthermore, it
was validated solely for 10 m sprints and the algorithm was
focused only on the calculation of the mean velocity. The median
error and IQR for estimated sprint duration (Test) is higher
than the one obtained from the speed radar (TR), except for
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FIGURE 6 | (A) Three methods for exponential fit. (B) RMS error for exponential fit(s) on radar speed (vR). (C) RMS error for exponential fit(s) on estimated velocity
(vest).

TABLE 2 | Median (IQR) values for the RMS error in the three types of exponential fits, for all three sprint distances.

Sprint dist., m vmdl_max,1 vmdl_end,1 vmdl,2

Fit on vR Fit on vest Fit on vR Fit on vest Fit on vR Fit on vest

30 0.53 (0.47 to 0.65) 0.49 (0.36 to 0.74) 0.51 (0.41 to 0.64) 0.61 (0.48 to 0.68) 0.34 (0.33 to 0.36) 0.34 (0.30 to 0.46)

40 0.52 (0.46 to 0.55) 0.53 (0.32 to 0.71) 0.51 (0.41 to 0.55) 0.50 (0.36 to 0.70) 0.34 (0.31 to 0.37) 0.40 (0.26 to 0.50)

60 0.64 (0.54 to 0.72) 0.51 (0.43 to 0.69) 1.16 (0.55 to 1.52) 0.47 (0.40 to 0.87) 0.33 (0.31 to 0.38) 0.35 (0.27 to 0.44)

RMS error was calculated on the basis of Eq. 10. The second order fit (vmdl,2) presents the lowest median (IQR) for both vest and vR.

30 m sprint where the median error is lower (Table 1). Thus,
the algorithm is less robust than the radar. This might be
the result of the assumption of purely sagittal plane motion,
which can be violated to different degrees by the different
magnitude of mediolateral motion resulting from the varied
running techniques of the sprinters.

Comparison of the estimated maximum velocity to that from
the radar (Figure 4C) showed a bias of −0.12 m/s, which
is in agreement with the slight underestimation of velocity
discussed in the preceding paragraph and lower than the 0.20 m/s
value reported in Gurchiek et al. (2018). Despite this bias, the
estimated maximum velocity showed a “strong” agreement with
the measured one, indicated by the magnitude of the Lin’s
concordance correlation coefficient (ccc) being 0.76 (p < 0.05).
In comparison, (Setuain et al., 2018) compared the estimated
maximum velocity with the measured one, obtaining a ccc
value of 0.81 (p < 0.05). However, the maximum velocity
in this work was estimated indirectly through a linear force-
velocity relationship based on the first order exponential fit
model (Eq. 4) for both, the IMU and the reference force
plate data. For the vmax, the limits of agreement (L.O.A.) for
the Bland–Altman plot ranged from −1.20 to 0.89 m/s, this
range being smaller than one (−1.25 to 1.64 m/s) presented
in Gurchiek et al. (2018). L.O.A for the v0 parameter varied
from −1.01 to 0.67 m/s, which is similar in extent to one
(−0.7 to 1.3 m/s) showed in Samozino et al. (2016). The f0 and
pmax magnitudes were computed in terms of per unit mass and

hence the L.O.A cannot be directly compared to the ones from
(Samozino et al., 2016).

Exponential Fitting and Athlete Profiles
Use of a first order exponential fit (Samozino et al., 2016;
Setuain et al., 2018) is the dominant method of estimating the
sprint velocity profile and subsequently the force (F)-power
(P)-velocity (V) relationships. In this work, we compared the
accuracy of this first order exponential (Eq. 1) and a second
order exponential (Eq. 6) in approximating the velocity profile
produced by our algorithms and by the reference radar system.
Figure 6A showed the second order fit to better approximate the
velocity profile, while the first order fits led to an underestimation
of the velocity. For all sprint distances, the median RMS error
for second order exponential was consistently less than that for
the first order exponentials; this was true for both fits based
on vR or vest . The error values are different across athletes and
different sprint distances, emphasizing the idea that the velocity
profile does not necessarily present first order exponential
behavior. While the first order fit is suitable to represent a
maximal effort during sprint competitions (Samozino et al.,
2016), the athletes may not necessarily undertake a maximal
effort during training sessions. Thus, a second order exponential
can offer a truer representation of the sprinter’s velocity profile
across different contexts. However, estimating the three variables
(a, τ1, τ2) in Eq. 6 is an optimization problem, leading to a
higher computational cost than solving the Eq. 1 for a single
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FIGURE 7 | (A) Horizontal force (per unit mass) – velocity profile for the respective best 60 m performance of nine athletes. (B) Power (per unit mass) – velocity
profile, based on second order exponential fit, for the respective best 60 m performance of nine athletes.

variable τ. In case of real-time processing, this added complexity
could be detrimental.

Use of a first order exponential leads to linear F-V and
parabolic P-V profiles, which have been investigated previously
(Morin and Samozino, 2016) for their potential to predict
risk of injury and to plan training goals. The second-order
exponential leads to more accurate albeit non-linear F-V and
non-parabolic P-V profiles, as seen in Figure 7. As expected,
the area under the curve for both profiles is higher for
athletes with lower finish times and vice-versa. For the top
two athletes (6.93 and 7.05 s), the F-V profile (Figure 6B)
shows an interesting contrast, one (6.93 s) of them starts
with a higher acceleration, has a stronger reduction in the
same, and yet the athlete continues to accelerate throughout
the 60 m. Whereas the second (7.05 s) athlete starts with a
lower acceleration but has a slower reduction in its magnitude.
Such differences, when observed over multiple trials, can help
in identifying the strengths and the areas of improvement
for athletes. Whether the increased accuracy resulting from
the second order exponential improves the analysis of athletes
is a potentially important practical research question for
sports scientists.

Limitations and Future Work
The two main limitation of the proposed algorithm arise
primarily out of the gradient descent (Madgwick et al., 2011)
procedure used for converting the IMU acceleration from
the sensor frame to the global frame. First, this procedure
necessitates the use of magnetometer for reliable estimation of
the acceleration in the lateral direction. We assume that the
motion occurs purely in the sagittal plane, thus negating the
necessity of using lateral acceleration and simplifying the process
model in the Kalman filter to a one-dimensional linear model.
This assumption holds because of the approximate straight-line
motion of the sprinter; it also forms the basis of radar-based

velocity measurement. Thus, the proposed algorithm is valid
for straight-line sprints and not for curve sprinting or sprints
with direction changes. Second, the gradient descent uses a
static period to determine the orientation with respect to gravity
and thus the algorithm is sensitive to the selected starting
point of the sprint. Thus, absence of a static period before
the start of the sprint can lead to unreliable conversion of the
acceleration to the global frame. To ensure the availability of
this static period, we visualize the raw GNSS velocity plot and
manually select the starting point for the segmentation of the
sprint data. However, an automated segmentation procedure,
possibly based on the GNSS velocity, can allow for a more
robust and repeatable segmentation, and subsequently enable
a more accurate estimation of sprint velocity. Automated
segmentation can also simplify the analysis when a battery
of tests, such as the agility T-test (Pauole et al., 2000), the
sprint test, and the bleep test (Bangsbo and Krustrup, 2001),
are performed together. This is typically the case for pre-
season testing in team sports such as soccer, rugby, hockey,
etc. The limited sample size of this study constitutes the
last limitation. However, this study is aimed strictly toward
the technical validation of the proposed algorithm and we
attempted to overcome this limitation by conducting multiple
trials per participant. While this study was mainly focused on
the algorithm development and validation, there is definitely a
potential for a follow-up study with different groups of sprinters
of varied skills to test the discriminatory power of the results
from the algorithm.

CONCLUSION

The goal of our study was accurate estimation of the sprint
velocity profile using a back-worn GNSS-IMU sensor and its
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validation with the reference system i.e., a Doppler speed radar.
To overcome the individual limitations of the GNSS and IMU
sensors, we utilized a sensor-fusion approach based on Kalman
filter to fuse the GNSS velocity and the IMU acceleration signals.
We achieved velocity profile estimation with a median error
ranging from 6.14 to 8.11% respect to the radar speed profile,
for sprint distances varying from 30 to 60 m. Additionally,
we showed an improved approximation of the velocity profile
using a second order exponential model, thus raising doubts
over the dominant approach of using a first order exponential
model. Further studies should investigate the advantage of
utilizing second order exponential model in athlete training and
monitoring. To extend this work in future, we may automate
the segmentation procedure and use the IMU signals to analyse
the gait temporal parameters. By pursuing this path, we hope to
augment the potential of sprint test used in training to assess
injury risk of athlete and improve their performance.
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APPENDIX

Sensitivity Analysis
We conducted a sensitivity analysis to examine the change in the percentage RMS error with a corresponding change in the threshold
(section “Velocity and Duration Estimation Algorithm”) used to detect the start of the sprint. We tested the algorithm for a range of
thresholds around the chosen value of 0.3 m/s (Figure 7), increasing in steps of 0.05 m/s, from 0.2 to 0.4 m/s. For the 30 m sprint, the
algorithm showed around 1% change in RMS error at thresholds lower than the chosen one but no almost no change for threshold
higher than 0.3 m/s. For 40 and 60 m sprints, the RMS error resulting from the algorithm presented almost negligible sensitivity
to the threshold.

FIGURE A1 | Change in the percentage of RMS error from its value at the chosen threshold of 0.3 m/s. The RMS error is slightly sensitive to the threshold for the
30 m sprint, especially when the threshold is below 0.3 m/s. For other distances, the error is almost insensitive to the threshold.
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