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Intelligent control strategies for active biomimetic prostheses could exploit the inter-joint

coordination of limbs in human gait in order to mimic the functioning of a biological

joint. A machine learning regression model could be employed to learn an input-output

relationship between the coordinated limb motion in human gait and predict the motion

of a particular limb/joint given the motion of other limbs/joints. Such a model could be

potentially used as a controller for an intelligent prosthesis which aims to restore the

functioning similar to an intact biological joint. For this, the model needs to be tailored for

each user by learning the gait pattern specific to the user. The challenge of training such

machine learning regression models in prosthetic control is that, the desired reference

output cannot be obtained from an amputee due to the missing limb. In this study,

we investigate the feasibility of using two different methods for training a random forest

algorithm using incomplete amputee-specific data to predict the ankle kinematics and

dynamics from hip, knee, and shank kinematics. First is an inter-subject approach which

learns a generalized input-output relationship from a group of able-bodied individuals

and then applies this generalized relationship to amputees. Second is a subject-specific

approach which maps the amputee’s inputs to a desired normative reference output

calculated from able-bodied individuals. The subject-specific model outperformed the

inter-subject model in predicting the ankle angle and moment in most cases and can be

potentially used for devising a control strategy for an intelligent biomimetic ankle.

Keywords: human gait, prediction, prosthetic control, intelligent biomimetics, random forest

1. INTRODUCTION

Lower limb amputation hinders the quality of life. The passive replacements of a missing limb
are incapable of restoring normal gait (Varol and Goldfarb, 2007; Windrich et al., 2016). Active
or intelligent biomimetic prostheses that are actuated using embedded motors can better support
natural gait by substituting the missing muscle function and providing adequate torque (Varol and
Goldfarb, 2007; Windrich et al., 2016). The central unit of such active prostheses is an intelligent
control strategy that interprets the user’s locomotive intention from the residual limb motion
(Villarreal et al., 2016; Bartlett and Goldfarb, 2017) and thereby actuate the prosthetic joints to
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enable the desired locomotion similar to that of able-bodied
individuals’. To define appropriate control strategy for such
active prostheses, the functioning of a biological joint during
human gait can be mimicked. A machine learning regression
model could be employed to learn an input-output relationship
between the coordinated limb motion in human gait (Boudali
et al., 2017) and predict the motion of a particular limb/joint
given the motion of other limbs/joints. Such a model could
be potentially used as a controller for an intelligent prosthesis
which aims to restore the functioning similar to an intact
biological joint.

The development of a control strategy for active prostheses
can be achieved in four stages: (1) selecting the control model,
(2) selecting model input features, (3) selecting model outputs,
and (4) establishing an input-output relationship.

The first stage is choosing the control model that translates
the user’s locomotive intention inferred from sensory input to
output commands for actuating the active prosthetic joints.
Existing control models can be broadly classified as discrete or
continuous. In the discrete approach, a gait cycle (or a stride)
is divided into discrete phases and inputs from external sensors
are used to recognize the intended gait phase of a particular
locomotion mode (Sup et al., 2008; Varol et al., 2010). For each
kinematic or kinetic variable (i.e., state) to be controlled, its
desirable value is specified by a finite-state controller, which
uses a lookup table that corresponds to the recognized gait
phase. A finer division of the gait cycle as well as an increase
in the number of locomotion modes or states to be controlled
result in an exponential increase in the number of parameters
to be tuned as well as look-up tables to be maintained (Lawson
et al., 2013; Tucker et al., 2015). On the other hand, in a
continuous approach, the prosthesis kinematics or kinetics (state)
is continuously varied depending on the sensor input. Machine
learning regression algorithms have recently received increased
attention as a continuous control model for active prostheses
(Eslamy and Schilling, 2018; Dey et al., 2019). Unlike the discrete
finite-state models, machine learning regressionmodels can learn
a continuous relationship between the sensor input and the
output control variables (prosthesis kinetics or kinematics) to
be predicted.

The second stage is choosing the input to the control model.
The input should reflect the user’s locomotive intention and
enable the model to learn a robust input-output relationship for
a given prosthesis user. Some of the feasible input choices are
residual limb kinematics (Holgate et al., 2009; Quintero et al.,
2016) or muscle activation (Au et al., 2005; Huang et al., 2011).

The third stage is choosing the outputs of the control
model. The choice of the outputs depends on what best
governs locomotion in specific scenarios [e.g., type of prosthesis,
kinematic and kinetic behaviors of the prosthetic joints, balance,
or efficiency of gait (Jezernik et al., 2003; Au et al., 2008; Eilenberg
et al., 2010; Tsukahara et al., 2011)].

The fourth stage is establishing an appropriate relationship
between the selected input features and outputs, such that the
control model can realize the desired locomotion. This stage
is particularly critical to ensure adequate prosthetic control
and is the main focus of our study. For a machine learning

regression model, the aforementioned input-output relationship
is established through training. The challenge of training the
machine learning regression models for active prosthesis control
is that the complete training data cannot be obtained from
amputees due to the missing limb. One way to address this
problem is by using an inter-subject approach that seeks a
generalized input-output relationship using locomotion data
from a group of able-bodied individuals (Ardestani et al., 2014)
and is applied to the prosthetic user. The advantage of the
inter-subject approach is that, once the generalized input-output
relationship is established, the model requires no training data
to be collected from the new individual. However, an obvious
disadvantage is that the prediction accuracy may suffer if the
input from a particular individual substantially deviates from
the training data due to inter-individual variations in gait (Hof,
1996; Stansfield et al., 2003; Senden et al., 2012; Wahid et al.,
2016; Allard et al., 2017). This is especially relevant for prosthetic
control, as amputees are more likely to exhibit gait abnormalities
(Winter and Sienko, 1988; Silverman et al., 2008). While some
studies suggest to account for the inter-individual variability
in gait by scaling the input features (Pinzone et al., 2016;
Allard et al., 2017), the parameters for scaling are typically
anthropometric and likely not effective in compensating for the
inherently different gait patterns across individuals.

Another way to address this could be a subject-specific
approach that identifies a unique input-output relationship based
on the experimental data from a particular individual (Dey
et al., 2019). However, a subject-specific approach cannot be
directly applied for amputees due to the absence of desired
reference outputs from the amputee her/himself. Hence, to
make the subject-specific model applicable for amputees, we
used a modified subject-specific approach to learn a relationship
between the amputee’s input and a normative reference output
calculated from a sample of able-bodied subjects’ walking trials
at a similar speed as that of the amputee. The main advantage of
this approach is that the input from a specific user need not be
similar to that of a group of able-bodied individuals to produce
the desired normative output values.

In this study, we assessed the feasibility of training a random
forest model with incomplete user-specific data for designing
a potential control strategy for an active biomimetic ankle
prosthesis. To achieve this, we compared the two types of models:
inter-subject and the subject-specific, to continuously predict
the ankle angles and moments within gait cycles based on
random forest regression (Breiman, 2001). We chose random
forest regression for devising the control model because it
possesses characteristics that make it more suitable than other
competing algorithms for controlling an active prosthesis. First,
random forest has demonstrated to give a more robust and
accurate prediction performance compared to other algorithms
like Gaussian process regression and support vector regression
(Hultquist et al., 2014). Unlike other machine learning models
(e.g., the distance-based models), where it is recommended that
the features be normalized to attain a high prediction accuracy
or a faster convergence (Hsu et al., 2003; Khah and Wu, 2019),
random forests do not require input feature normalization, which
makes it more suitable for real-time usage. Additionally, random
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forests can achieve high prediction accuracy being trained on
a small training set and with less training time as opposed to
many other machine learning algorithms (Douglas et al., 2011;
Biau, 2012; Biau and Scornet, 2016). As a result, only a minimal
amount of data might be required from the amputee for training
the prosthesis controller. Moreover, random forests are easily
parallelizable and hence suitable for dealing with a large amount
of training data in real-time (Biau and Scornet, 2016). This can
come to benefit when updating/learning the model online, to
continuously adapt to new training data over time, in order
to account for changes in locomotion speeds, patterns, or the
prosthetic setup. Lastly, random forests can quantify the relative
importance of input features in decision making, which can be
used for feature selection and dimensionality reduction.

The hip, knee, and shank kinematics were used as input to
the random forest models in this study. Since the potential utility
of the predictions of the models is for controlling a prosthetic
ankle joint, the ankle angle and ankle moment were chosen as
the output of our models. The performance of the inter-subject
and subject-specific models were evaluated based on how well
the trained models could generate the desired ankle angle and
moment for thirty able-bodied subjects walking at five different
speeds and two transtibial amputees (below-knee amputated)
walking at self-selected comfortable and fast walking speeds.
Additionally, a feature importance evaluation was performed
using random forests to determine the most important features
as input to the model in pursuit of reducing the input dimension
while maintaining accuracy.

2. METHODOLOGY

Random forest models were trained to predict the ankle angle
(θankle) and moment (τankle) using the ipsilateral hip flexion-
extension angle (θhip), knee flexion-extension angle (θknee),
shank segment orientation in the sagittal plane (θshank), and
their first derivatives (θ̇hip), (θ̇knee), (θ̇shank). The training was
performed using two different approaches: inter-subject and
subject-specific. Normative input and output data were obtained
from a publicly-available dataset (Fukuchi et al., 2018) while
input data from two unilateral transtibial amputees was obtained
experimentally. The experimental protocols were approved by
the local ethics committee of the University Medical Center
Göttingen, Göttingen, Germany (reference number: 26/3/18),
and the participants gave their written informed consent before
the experiment.

2.1. Subject Selection and Data Acquisition
Normative model inputs (θhip, θknee, and θshank) and outputs
(θankle and τankle) were obtained from a publicly-available
dataset (Fukuchi et al., 2018). The data was acquired using a
marker-based motion capture system with 12 cameras (Raptor-
4; Motion Analysis Corporation, Santa Rosa, CA, USA) and
an instrumented treadmill (FIT; Bertec, Columbus, OH, USA).
Twenty-two markers were placed on the pelvis, thigh, shank, and
foot (Leardini et al., 2007). Out of this dataset, we selected 30 able-
bodied volunteers’ data (age: 39.7±16.8 years, height: 167.5±11.6
cm, mass: 67.1 ± 11.5 kg, 14 females) at five different walking

speeds (1.04±0.12, 1.22±0.15, 1.4±0.17, 1.58±0.2, 1.77±0.21
m/s) with a single trial at each speed. Each trial included a single
gait cycle, which was defined by two consecutive heel contacts
and time-normalized to 101 samples.

We also acquired data for two male unilateral transtibial
amputees, both wearing energy-storage-and-return prostheses.
Amputee 1 was 62 years old, 100 kg heavy, 1.85 m tall, amputated
on the left, and wore a Pro-Flex prosthesis (Oessur, Iceland).
Amputee 2 was 37 years old, 91 kg heavy, 1.75 m tall, amputated
on the right, and wore a 1E95 Challenger prosthesis (Ottobock,
Germany). Each amputee performed multiple trials of level
ground walking at self-selected normal and fast speeds. Amputee
1 completed eight trials at both normal and fast walking speeds.
Amputee 2 completed six trials at normal walking speed and
four at fast walking speed. During each trial, three-dimensional
motion data were recorded at 200 Hz using a motion capture
system (Vicon Motion Systems, Ltd., UK) with retro-reflective
markers, twelve infrared cameras, and data acquisition software
(Nexus, Vicon Motion Systems, Ltd., UK). The markers were
placed over the bony landmarks of the pelvis, thigh, shank,
and foot. Compared to the marker set for the public dataset,
we placed additional non-anatomical markers on the thigh and
shank to ensure continuous tracking of these segments in a three-
dimensional space. For each trial, data from one gait cycle, which
was defined by two consecutive heel contacts on the amputated
side, was considered for further analysis. The recorded marker
trajectories were used to calculate θhip, θknee, and θshank on the
amputated side. This was done using open-source biomechanical
modeling software, OpenSim (Delp et al., 2007), and its generic
musculoskeletal model (Gait 2392). Using the Scaling function
of OpenSim and the marker trajectories from a separate static
trial, the general model was modified to generate a unique model
for each amputee. The unique models were used for the Inverse
Kinematics and Body Kinematics Analysis functions of OpenSim
to calculate θhip, θknee, and θshank within the gait cycle.

The data in the public dataset and the amputee data were both
acquired in similar experiments using an infrared-based motion
capture system, retro-reflective markers over bony landmarks
of the lower extremities, and force plates to record ground
reactions forces. For both the public dataset and our study,
the kinematic and kinetic variables used as input features and
model output were generated by performing inverse kinematics
and dynamics on the motion capture data with a biomechanical
model. Although the public dataset was generated for treadmill
walking, it has been shown that treadmill gait is qualitatively
and quantitatively similar to overground gait (Riley et al., 2007).
Thus, we consider our experimental data and the public database
chosen for our analyses to be comparable.

The able-bodied and amputee data were resampled to 200
samples per gait cycle, and their first derivatives, θ̇hip, θ̇knee, and
θ̇shank were computed as the numerical difference of angular
positions between consecutive samples. Although the trials were
resampled, the relative patterns of the kinematic and kinetic data
during different speeds were preserved. The data were low-pass
filtered using a Butterworth filter with a cut-off frequency of 6 Hz
to remove noise (Little et al., 2013; Schurr et al., 2017; Mo et al.,
2019).
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2.2. Random Forest Model
Random forest is a supervised ensemble learning model that
combines the predictions of multiple estimators called decision
trees (Quinlan, 1986; Breiman, 2001), facilitating better overall
performance. For regression, the prediction of a random forest
model is the average of the predictions of all the decision trees in
the ensemble.

In this study, a random forest regression model was trained
to map the given θhip, θknee, θshank, θ̇hip, θ̇knee, and θ̇shank to the
desired θankle and τankle. The working principle of a random forest
model can be summarized as follows:

1. Let b = 1..B be the number of random-forest estimators
(trees) to be constructed.

2. For each random-forest tree, Tb, a bootstrap sample, S, of size,
N, is chosen from the training data. In this study, N equaled
the number of data points in the training data.

3. Tb is constructed with S, by looping through the following
steps for each node (the point at which a split takes place) of
the tree until the maximum tree depth, dmax, is reached:

(a) l inputs are chosen from k input features in S, (l ≤ k).
In this study l = k was chosen. This practice was justified
empirically for regression problems in Geurts et al. (2006).

(b) The best split among the l input features is chosen and
the node is hence split into two child nodes. The best split
is determined by an impurity function that measures the
quality of a split. In this study, mean squared error was used
as a criterion for measuring the quality of a split.

To determine the best dmax and B, a grid search was performed
on the training data with a 3-fold cross validation. The
following parameter grid was used:

dmax ∈ {4, 6, 8, 10}

B ∈ {50, 100, 200, 500}
(1)

4. The ensemble of trees {T1..TB}, form the model. For
regression, prediction, f (r′), at a new point r′ is the average
of predictions of all the trees in the ensemble, i.e.,

f (r′) = 1/B
B∑

b=1

Tb(r
′) (2)

The accuracy of predictions by the model was quantified using
the coefficient of determination (R2) and root-mean-square error
(RMSE) between the predicted output and the desired output.

2.3. Input Feature Combinations
Various combinations of input features were used for the two
training approaches.

1. Inter-subject training:

(a) Kinematic input features: θhip, θknee, θshank, θ̇hip, θ̇knee,

and θ̇shank
(b) Kinematic + Anthropometric input features:

θhip, θknee, θshank, θ̇hip, θ̇knee, θ̇shank, height, mass, and age.

(c) Important input features: Three most important input
features for predicting θankle and τankle.

2. Subject-specific training:

(a) Kinematic input features : θhip, θknee, θshank, θ̇hip, θ̇knee,

and θ̇shank
(b) Important input features: Three most important input

features for predicting θankle and τankle.

The importance of a feature, l′, in Tb is calculated using the mean
decrease of impurity (MDI) (Breiman et al., 1984) as:

Imp(Tb, l
′) =

∑
j∈M(l′)MDI

∑
j∈M MDI

(3)

where M is the set of all nodes in a tree and M(l′) represents
the set of all nodes in a tree that are split based on l′. The
relative importance of input features was obtained by averaging
the feature importance for all the trees in the ensemble.

Imp(l′) =
1

B

B∑

b=1

Imp(Tb, l
′) (4)

2.4. Inter-subject Model
The training and validation procedures of an inter-subject model
on able-bodied and amputee subjects are shown in Figure 1.
The training data was obtained from a publicly-available dataset
(Fukuchi et al., 2018). The trained models were validated using
5-fold cross-validation: the inter-subject model was trained with
data from 24 out of the 30 able-bodied subjects, with the
remaining six subjects used for validation. For each subject in
the training data, trials at five different speeds were used to
generalize the model. For validation, we compared the inverse
kinematics and inverse dynamics derived θankle and τankle against
their predicted values.

The trained model was also tested by assessing its predictions
based on inputs from the two transtibial amputees. The
predictions from amputee inputs were compared against the
corresponding normative outputs, which were the median of
outputs from able-bodied subjects whose walking speeds were
within 0.1m/s of that of the amputee’s mean walking speed. The
normative outputs were generated from 24 out of the 30 able-
bodied subjects in the same manner as the aforementioned 5-
fold cross-validation. We have chosen the median for computing
the normative values as it is less affected by outlier gait patterns
than the mean value. The walking speed was estimated from the
speed of the pelvis in the walking direction. The test output was
obtained from the left and right legs of able-bodied subjects for
Amputees 1 and 2, respectively.

The training of an inter-subject model can be formalized as
learning a function finter−subject such that:

S⋃

s=1

T⋃

t=1

ys,t
able−bodied

= finter−subject(
S⋃

s=1

T⋃

t=1

Xs,t
able−bodied

) (5)
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FIGURE 1 | Block diagram of training and validation procedure of an inter-subject model on able-bodied and amputee subjects.

where ys,t
able−bodied

∈ R
N×2 are the predicted θankle and τankle in

a gait cycle (containing N observations) of t-th trial of the s-th
able-bodied subject, Xs,t

able−bodied
∈ R

N×m are the input features
of dimensionmwithin the gait cycle (containingN observations)
of the t-th trial of the s-th able-bodied subject and finter−subject is
a random forest based inter-subject model.

The error in predictions of an inter-subject model for the k-th
trial of a test subject is given by:

εksubject = finter−subject(X
k
subject)− yksubject (6)

where Xk
subject

∈ R
N×m are the input features of dimension

m and yk
subject

∈ R
N×2 are the desired θankle and τankle within

the gait cycle (containing N observations). For an amputee, the
normative value for his k-th trial can be calculated as

yksubject = yknormative = median(y
s,jk
able−bodied

), s = 1..S, (7)

where jk is the index of the trial of an able-bodied subject, s, where
themean pelvis velocity of the subject was within±0.1m/s of that
of amputee’s k-th trial.

2.5. Subject-Specific Model
The training and validation procedures of a subject-specific
model are illustrated in Figure 2. A subject-specific model was
trained separately for each of the 30 able-bodied subjects. For
each subject, the model was trained using data from trials at the
second and fourth speed levels and tested with data from trials

at the remaining three speeds. Since our goal was to predict the
ankle angle and moment over a wide range of walking speeds
using as little training data as possible, we chose the speeds at
a level lower and higher than self-selected comfortable speeds. By
doing so, we attempted to train the model with trajectories from
a minimal number of speeds which would best describe all the
speeds in the dataset. The training of a subject-specific model can
be formulated as learning a function, fsubject ,

T⋃

t=1

ytsubject = fsubject(
T⋃

t=1

Xt
subject) (8)

where Xt
subject

∈ R
N×m and yt

subject
∈ R

N×2. The prediction error

for the k-th trial is given by

εksubject = fsubject(X
k
subject)− yksubject (9)

For transtibial amputees, a model was trained to learn a
relationship between amputee’s input features during normal
speed walking and the normative θankle and τmoment of able-
bodied individuals. The relationship learned by a subject-
specific model trained for a transtibial amputee is given by
famputee : R

M×m → R
M×2 such that,

T⋃

t=1

ytnormative = famputee(
T⋃

t=1

Xt
amputee) (10)
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FIGURE 2 | Block diagram of training and validation procedures of subject-specific models for able-bodied and amputee subjects. For Amputee 1, L = 8, K = 5, and

P = 8. For Amputee 2, L = 6, K = 4, and P = 4.

where ytnormative is computed from able-bodied subjects, whose
speed was within 0.1 m/s of that of the amputee.

The trained model was then validated using a leave-K-out
cross-validation strategy, in which K gait cycles of normal speed
walking data were used for training and remaining L − K gait
cycles of normal and P gait cycles of fast speed walking data were

used for validation. For Amputee 1, L = 8,K = 5, and P = 8.
For Amputee 2, L = 6,K = 4, and P = 4. The error in prediction
for k-th trial of an amputee is given by.

εkamputee = famputee(X
k
amputee)− yknormative (11)
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2.6. Statistical Analyses
In order to compare the two training approaches as well as the
outcomes of the different feature combinations, we performed
statistical significance tests. To analyze the significant difference
between feature combinations, a Wilcoxon signed-rank test was
performed between each pair of feature combinations for both
the inter-subject and the subject-specific approaches averaged
across all speed levels for both able-bodied and amputee subjects.
To analyze the significant difference between the two training
approaches, we performed another Wilcoxon signed-rank test to
compare the accuracies for each feature combination for able-
bodied and amputee subjects averaged across all trials speed
levels. The significance level for both the tests was 0.05.

3. RESULTS

3.1. Input Features
Both amputees showed deviations in the temporal patterns of
the input features measured from their amputated sides during
normal walking trials. Amputee 1 showed reduced forward
rotation of the shank and reduced knee flexion, mainly at the
end of the stance phase and the beginning of the swing phase,
compared to normative data (Figure 3). The corresponding first
derivatives, θ̇shank and θ̇knee, showed reduced range compared
to the normative data. Conversely, the trajectories of the θhip
and its derivative aligned more closely with the corresponding
normative values. Amputee 2 also showed deviations from
normative data, but the magnitude of deviation appeared to be
smaller compared to Amputee 1 (Figure 4). Amputee 2 showed
reduced knee flexion and increased hip extension compared to
the normative data.

3.2. Inter Subject Model
3.2.1. Able-Bodied Test Subjects
It was observed that for the inter-subject model trained to learn
the input-output relationship using data from 24 able-bodied
subjects, three input features (out of six kinematic and three
anthropometric inputs), θshank, θ̇knee, and θ̇hip, were found to
be the most informative on both left and right sides (Figure 5).
The anthropometric inputs had little relative importance in the
model’s prediction of θankle and τankle.

In most cases, the six kinematic features and the three most
important features achieved similar prediction accuracies for
both θankle and τankle while the addition of anthropometric
features impaired prediction (Figure 6). The τankle predictions
generally showed higher accuracy than θankle predictions. For
θankle predictions, the mean R2 peaked at the medium speed
(mean R2 = 0.70 using the three important input features). A
similar trend was also observed for τankle prediction though not
to the same extent (mean R2 at medium speed = 0.80 using the
three important input features). Generally, the RMSE changed
inversely to the corresponding R2.

3.2.2. Amputee Test Subjects
The inter-subject models were used to predict the θankle and τankle
for the two transtibial amputees during normal and fast walking
speeds and predictions were compared against normative values

calculated from able-bodied subjects’ data at walking speeds
within ±0.1m/s as that of the amputee subject. The speed of
Amputee 1 was 1.34 ± 0.03 and 1.56 ± 0.02 m/s for normal and
fast walking, respectively. The corresponding values for Amputee
1’s able-bodied counterparts were 1.32 ± 0.05 and 1.55 ± 0.05
m/s. The speed of Amputee 2 was 1.2 ± 0.01 and 1.61 ± 0.05
m/s, and the corresponding values for Amputee 2’s able-bodied
counterparts were 1.22± 0.05 and 1.62± 0.05 m/s.

For both amputees, the prediction accuracies (Figure 7) were
slightly higher compared to that of the able-bodied individuals.
For Amputee 1, τankle predictions (R

2 = 0.93 for normal speed
walking and 0.91 for fast speed walking) were more accurate
compared to θankle (R2 = 0.70 for normal speed walking and
0.64 for fast speed walking) with the three most important
input features. Regardless of speed, using only the three most
important input features resulted in more accurate predictions
for both θankle and τankle compared to using all six kinematic
features. Similar to the predictions for able-bodied individuals
(Figure 6), inclusion of the anthropometric inputs generally
impaired prediction accuracy. For Amputee 2, both θankle and
τankle gave high accuracies for both normal and fast speed
walking (for normal speed, R2 = 0.86 for both θankle and
τankle and for fast walking were R2 = 0.90 for θankle and 0.92
for τankle). The trajectories of the θankle and τankle predicted
by the inter-subject model for the amputees deviated from
the normative trajectories at certain sections of the gait cycle
(Figure 8). For Amputee 1, the predicted trajectory of θankle
deviated substantially from the desired normative trajectory
during late stance and early swing at both speeds. The deviations
resulted in reduced peak plantarflexion during push-off. These
kinematic deviations were accompanied by slightly reduced
peak push-off plantarflexor moment and increased plantarflexor
moment during swing. For Amputee 2, predicted θankle closely
matched the normative trajectory compared to Amputee 1 for
both speeds. This was also evident from the high R2 score of
θankle prediction for Amputee 2 than for Amputee 1 (Figure 7).
The τankle predictions for Amputee 1 showed deviations from
the normative values during the mid-stance as well as during
the mid-swing phase for both speeds. The τankle predictions
for Amputee 2 also showed similar deviations from normative
values but of slightly higher amplitude than Amputee 1 during
normal speed.

3.3. Subject Specific Models
3.3.1. Able-Bodied Subjects
The random forest models trained individually for 30 able-
bodied subjects using subject-specific approach recorded θshank
as the most important feature on average across all subjects,
followed by θhip and θ̇hip (Figure 9). θ̇knee also had an average

importance comparable to θ̇hip. The importance of θ̇hip, which
was the highest for the inter-subject model (Figure 5), was
substantially reduced.

The subject-specific models substantially outperformed the
inter-subjectmodel in predicting θankle and τankle regardless of the
speed level (Figure 10). Mean R2 exceeded 0.90 for θankle and 0.94
for τankle across the tested speeds. The mean RMSE was below
2◦ and 0.11 Nm/kg for the θankle and τankle, respectively, across
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FIGURE 3 | Input patterns for one gait cycle (measured between two consecutive heel contact of the same leg) from Amputee 1 and the corresponding normative

data for normal speed walking. 0–60% represents the stance phase and 60–100% represent the swing phase of the gait. The normative values are computed from the

data of able-bodied subjects walking at a speed within 0.1 m/s as that of Amputee 1. Positive θshank indicates forward rotation, positive θknee indicates knee flexion,

and positive θhip indicates hip flexion, in the direction of motion, i.e., in the sagittal plane. The shaded regions are the median absolute deviation from the median.

the tested speeds. Similar to the inter-subject model trained for
different speed levels, the highest accuracy was obtained in the
mid-speed level. Both the kinematic and important input features
gave similar accuracy of predictions.

3.3.2. Amputee Subjects
For both the transtibial amputees, the three most important
input features were θshank, θhip, and θ̇knee which were also found
to be important for subject-specific models trained for able-
bodied subjects (Figure 9). However, θ̇hip which was found to
be important in able-bodied subjects were not important for the
transtibial amputees.

The subject-specific models trained for amputees gave very
high accuracy for both θankle and τankle predictions. For both
Kinematic and Important input features, mean R2 for θankle
for Amputee 1 was above 0.97 (mean RMSE ≤ 1◦) for normal
walking and above 0.94 (mean RMSE ≤ 1.7◦) for fast walking.
Mean R2 for τankle was above 0.98 (mean RMSE ≤ 0.05 Nm/kg)
for normal walking and above 0.95 (mean RMSE ≤ 0.09 Nm/kg)
for fast walking (Figure 11). For Amputee 2, mean R2 for θankle
was above 0.98 (mean RMSE ≤ 0.7◦) for normal walking and
above 0.95 (mean RMSE ≤ 1.3◦) for fast walking. Mean R2

for τankle was above 0.98 (mean RMSE ≤ 0.06 Nm/kg) for

normal walking and above 0.97 (mean RMSE ≤ 0.09 Nm/kg) for
fast walking.

At a comfortable speed, subject-specific models performed
slightly better with only the three most important input features
compared to using all six kinematic features whereas this trend
was reversed at fast speed. Regardless of the input features,
the predictions of θankle and τankle were more accurate at a
comfortable speed for both amputees. The temporal patterns of
θankle and τankle predicted by the subject-specific models followed
normative patterns very closely albeit a slight deviation of θankle
prediction during terminal stance and initial swing phase of fast
walking (Figure 12).

3.4. Statistical Comparisons
A statistical comparison between the different input feature
combinations showed that for the inter-subject model,
the R2 of θankle and τankle were significantly higher and
corresponding RMSE values significantly lower while
using either the Kinematic or Important input features
compared to using the Kinematic + Anthropometric input
features (Figure 13). There was no significant difference
in accuracy between the Kinematic and Important input
features for both inter-subject and subject-specific models.
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FIGURE 4 | Input patterns for one gait cycle (measured between two consecutive heel contact of the same leg) from Amputee 2 and the corresponding normative

data for normal speed walking. 0–60% represents the stance phase and 60–100% represent the swing phase of the gait. The normative values are computed from the

data of able-bodied subjects walking at a speed within 0.1 m/s as that of Amputee 2. Positive θshank indicates forward rotation, positive θknee indicates knee flexion,

and positive θhip indicates hip flexion, in the direction of motion, i.e., in the sagittal plane. The shaded regions are the median absolute deviation from the median.

FIGURE 5 | Feature importance for the inter-subject model to learn the input-output relationship for the left and right legs of able-bodied subjects walking at different

speeds. Error bars are the standard deviations obtained from cross-validation.

Statistical comparison between the inter-subject and subject-
specific training approaches showed that the subject-specific
model performed significantly better in predicting both
θankle and τankle using either the Kinematic or Important
input features.

4. DISCUSSION

In this study, we examined how the type of training affects
the performance of a random forest model when predicting
θankle and τankle for 30 able-bodied and two unilateral
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FIGURE 6 | R2 and RMSE for θankle and τankle predictions by the inter-subject model for different walking speeds averaged across able-bodied test subjects. Error

bars are the inter-individual standard deviation.

FIGURE 7 | Performance of inter-subject model for normal and fast walking datasets of Amputees 1 and 2. Error bars are the inter-trial standard deviation.

transtibial amputees from the residual limb kinematics during
walking. The random forest models were trained using
two different approaches: inter-subject and subject-specific.
The inter-subject approach seeks a generalized input-output
relationship for a group of individuals while the subject-specific
approach establishes a unique input-output relationship for each
individual. Since a purely subject-specific model is not possible
for the transtibial amputees due to unavailability of the desired
reference output (ankle angle and ankle moment), we proposed
a modified subject-specific model to map the residual limb
kinematics of the amputees to a desired normative trajectory
of ankle angle and moment derived from a group of able-
bodied individuals.

As expected, the inter-subject model exhibited several flaws
in its performance. The inaccuracy of the inter-subject model
may have been due to the deviation of amputee input
features from the able-bodied training data. Amputee 1 showed
substantial deviations in two of the three most important
input features: θshank and θ̇knee (Figure 3), while Amputee 2
showed less deviation for the three most important input

features (Figure 4), and this may have resulted in the relatively
inaccurate prediction of θankle for Amputee 1 (Figure 8). Also,
it was observed that the inclusion of the anthropometric
inputs generally impaired prediction accuracy, most probably
due to inconsistent relationships between the anthropometric
inputs and the predicted variables. This may have been
due to our dataset structure which contained only one trial
per walking speed for each subject. Therefore, the effect of
anthropometric inputs should be further investigated on a
dataset that contains more trials of the same speed levels
or in a dataset where inter-speed variation for each subject
is lower.

The subject-specific models performed significantly better
than the inter-subject model for both able-bodied individuals
and amputees. For both the able-bodied individuals and the
two amputees, high prediction accuracy was obtained for both
θankle and τankle for all the tested speed levels (Figures 10,
11). Using the kinematic input features or the important input
features gave comparable performance. This finding indicates
that subject-specific models may be more ideal for devising a
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FIGURE 8 | Inter-subject model predicted values of θankle and τankle for each gait cycle of normal-speed and fast-speed walking for all the cross-validation iterations for

Amputees 1 and 2 using only the three most important input features. One gait cycle was defined as the time between two consecutive heel contacts of the

amputated leg. 0–60% of gait percentage indicates stance phase and 60–100% of the gait percentage indicates swing phase. Positive angle indicates dorsiflexion,

and positive moment indicates plantarflexion. The normative θankle and τankle were calculated from able-bodied data used for training the inter-subject model. The

shaded area indicates one median absolute deviation from the median.

FIGURE 9 | Feature importance for the subject-specific models trained using data from two (out of five) speed trials of 30 able-bodied subjects and three normal

speed gait cycles of Amputee 1 and 2 (i.e., 6- and 4-fold cross-validation, respectively).

potential control strategy for an intelligent prosthesis than the
inter-subject models.

One of the most important results from our study is the
ability of the subject-specific model to generalize its learning
to different untrained walking speeds with high accuracy. For
a real-world implementation of a control scheme using the
proposed model, this is a very important characteristic. We
tested the speed generalization capability of the subject-specific

model for three untrained speeds for able-bodied subjects
and one untrained speed for each of the amputee subjects.
The results suggest that if the model is trained for a certain
speed, it can generalize this learning up to a speed difference
of 0.4 m/s.

It was also shown in our study that, using only the important
features selected by the random forest as input, it was possible
to obtain similar or higher accuracy of the predicted output
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FIGURE 10 | R2 and RMSE for θankle and τankle predicted by the subject-specific models for three tested speed levels averaged across 30 able-bodied subjects. Error

bars show inter-subject standard deviation.

FIGURE 11 | R2 values and RMSE for θankle and τankle predictions by subject-specific models for normal and fast walking datasets of Amputees 1 and 2. Error bars

show inter-trial standard deviation.

variables compared to using all the available input features.
Here, we also point out that our models did not have any
physiological basis. Therefore, the important features are not
necessarily the most important determinants of gait. Instead,
the important input features are those variables that most
effectively discerned the outputs for model learning. Specifically,
the important input features are used preferentially by random
forests to split at a given node and result in larger variance
reduction of the output values on the left and the right
nodes compared to other features. It can be interpreted that,
important features define an input-output relation with minimal
overlap in input values for different values of the output. The

features marked as the most important were different for inter-
subject and subject-specific models, which we assume is due
to the difference in the data variations in training approaches.
However, θshank remained important for both approaches. The
large standard deviations of feature importance for subject-
specific models trained for able-bodied subjects indicated large
inter-individual differences in relative feature importance. This
could be due to the inter-individual variations in gait patterns
of able-bodied subjects. More interestingly, the features which
were determined as important were consistent between the two
amputee subjects. Although the input features of the amputees
deviate from each other, this similarity may be partly due
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FIGURE 12 | θankle and τankle predicted by subject-specific models for normal-speed and fast-speed walking datasets of Amputees 1 and 2 using only the three most

important input features. One gait cycle was defined as the time between two consecutive heel contacts of the amputated leg. 0–60% of the gait percentage

represents the stance phase and 60–100% of the gait percentage represent the swing phase. Positive angle indicates dorsiflexion, and positive moment indicates

plantarflexion. The models were trained using three gait cycles of normal speed walking. The normative values were calculated from able-bodied subjects using trials

at speeds within 0.1 m/s as that of each amputee. The shaded area indicates one median absolute deviation from the median.

to the training approach we followed to map the amputee’s
input features to normative outputs. A limitation of the feature
importance calculation using random forest’s mean decrease in
impurity is that the correlated features are given similar but
reduced relative importance. However, this did not affect the
prediction performance of our models while using Important
input features, since the importance of these features summed
to at least 85%. Therefore, our results suggest that feature
selection could result in high accuracy while reducing the input
dimension thereby potentially increasing model efficiency for
real-time applications.

We have chosen a very heterogeneous dataset with respect to
subjects, trials, and speeds for inferring the able-bodied model
inputs and outputs. This was done to simulate a real-world
scenario to some extent, where the gait cycles across trials and
speeds might not be highly homogeneous. We may consider the
heterogeneity across subjects and speeds as simulating variations
that require the model to be robust. Thus, we have tested most
of our training and validation conditions in adverse and minimal
data conditions where we had only one trial per speed for each of
five speeds for thirty able-bodied subjects. We believe that much
better performance of the models could be achieved if a more
homogeneous dataset or a dataset with more trials from the same
speed level would be considered. Also, our models were based
on pattern recognition. Therefore, the actual or the physical
meaning of the predictor input variables were not necessary as

long as the relative patterns were preserved. For example, the first
derivatives were calculated as the numerical difference between
the consecutive angular positions without time normalization.

The performance of the subject specific training approach was
comparable to other state-of-the-art machine learning regression
algorithms used in previous studies for gait variable predictions.
For example, Eslamy and Schilling (2018) reported an R2

score above 0.92 using Gaussian process regression for ankle
kinematic prediction for the trained speed levels. Ardestani et al.
(2014) used a wavelet neural network for prediction for lower
extremity moments during walking and obtained a correlation
coefficient, ρ > 0.94, and NRMSE < 10%. Dey et al. (2019)
reported R2 values of 0.98 for θankle and 0.97 for τankle using
support vector regression for level ground walking at self-selected
normal speeds. However, the difference in selection of input
features, difference in datasets, amount of data used, and different
performance quantification measures makes a direct comparison
with other studies difficult. Nevertheless, none of these studies
have attempted prediction of gait variables for amputee subjects
where the impaired gait patterns and incomplete user specific
training data poses challenges for using the machine learning
regression algorithms for active prosthesis control. We believe
that our study is a necessary initial step in this direction.

The proposed random forest approach could be potentially
used to devise a high-level control strategy for active ankle
prostheses which could predict the ankle angles or moments
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FIGURE 13 | Statistical comparison between the R2 and RMSE values averaged across trails and speed levels of two amputees and 30 able-bodied subjects. A

Wilcoxon signed-rank test was performed between each of the feature combinations for both inter-subject and subject-specific approaches and also between the

inter-subject and subject-specific approaches for kinematic and important input features (no star: p > 0.05, ∗p < 0.01, ∗∗p < 1e−5, ∗∗∗p < 1e−6).

continuously during level-ground walking at varying speeds.
A low-level controller could take the output of the high-level
controller as input and directly generate the required moments
(for torque control) or angles (for position control) or both (for
a composite torque-position control during stance and swing
phase, respectively). The input features used in this study could
be obtained using wearable sensors like goniometers or IMUs
which measure joint or limb rotations in real-time. Since the
inputs are required only from the ipsilateral side, the non-
prosthetic side does not need to be instrumented.

There were a few limitations to our study. First, the data used
in our study was acquired from motion capture experiments.
However, for real-life locomotive conditions, the data need to

be acquired using wearable sensors which may contain artifacts
that were not taken into consideration here. Second, the subject
specific models for amputees were trained with data acquired
while the amputees walked with a passive prosthesis. Therefore,
adaptability of the model to changes in the prosthetic set-up
constitutes a crucial part of future studies. Using the predicted
angles/moments for controlling the active prosthesis might also
in turn alter the input patterns to some extent. Thus, imparting
robustness to the control model remains another focus of our
future study. This might call for an iterative online training of
the model to adapt to new training inputs to enhance model
efficiency. Furthermore, future studies should also focus on
evaluating the proposed subject-specificmodel on a larger pool of
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amputee subjects and on different locomotionmodes. Finally, the
proposed approach should be validated on online experiments to
control an active prosthesis.

5. CONCLUSION

We investigated the feasibility of two different approaches—
subject-specific and inter-subject—for training a random forest
model using incomplete amputee-specific training data for
predicting the ankle angle and ankle moment during level-
ground walking. We found that a random forest subject-specific
model predicted the required normative ankle motion with
up to three times lower errors than an inter-subject model
and could generalize its learning to different speeds up to a
difference of 0.4 m/s from the speed which it was trained. These
results are promising and suggest that the proposed random-
forest based model could be used to device a robust control
strategy for an intelligent prosthetic ankle, which can adapt to
its specific user at varying speeds and produce the required
ankle angle or moment similar to an able-bodied walking gait.
The general approach could also be useful in other fields with
incomplete training data, e.g., other human-computer interfaces
like upper limb prosthetics, assistive robotics, e.g., cyborg and
bionic technologies.
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