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Antioxidant proteins play important roles in preventing free radical oxidation from
damaging cells and DNA. They have become ideal candidates of disease prevention
and treatment. Therefore, it is urgent to identify antioxidants from natural compounds.
Since experimental methods are still cost ineffective, a series of computational methods
have been proposed to identify antioxidant proteins. However, the performance of the
current methods are still not satisfactory. In this study, a support vector machine based
method, called Vote9, was proposed to identify antioxidants, in which the sequences
were encoded by using the features generated from 9 optimal individual models. Results
from jackknife test demonstrated that Vote9 is comparable with the best one of the
existing predictors for this task. We hope that Vote9 will become a useful tool or at least
can play a complementary role to the existing methods for identifying antioxidants.

Keywords: antioxidant, reduced amino acid composition, g-gap dipeptide composition, feature selection, support
vector machine

INTRODUCTION

Reactive oxygen species (ROS) are composed of oxygen free radicals and nitrogen free radicals.
Free radicals contain unpaired electron molecules or atoms, which are generally unstable and
highly reactive. They can trigger lipid peroxidation during metabolism, which leads to DNA strand
breaks, and even oxidize biofilms and almost all molecules in tissues indiscriminately. Fortunately,
organisms have evolved effective strategies to detect and prevent molecular oxygen metabolites
(Finkel and Holbrook, 2000; Mccord, 2000; Klaus and Heribert, 2004; Li et al., 2015). This is
called the antioxidant system of organisms, which can effectively resist the damages caused by ROS
(Agus et al., 2011).

Owing to their important roles in the antioxidant system, natural antioxidants have received
more and more attentions (Yigit et al., 2014). Antioxidant proteins can neutralize free radicals,
thereby blocking cell damage or death caused by free radicals. The consumption of antioxidants
can be used to reduce the oxidative stress caused by excessive ROS, and reduce the damage to the
organism (Yang et al., 2017). Antioxidants have also been applied to prevent diseases such as heart
disease, cancer, cardiovascular disease (Gey, 1990; Dreher and Junod, 1996; Diaz et al., 1997). Its
unique role in anti-aging was also reported (Ames et al., 1993).
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Accordingly, many proteins extracted from rapeseed, ginkgo
and other plant seeds are used as natural antioxidants (Nichole
et al., 2008; Huang et al., 2009). Some micronutrients such as
vitamin C and vitamin E (Lobo et al., 2010) are also considered
as antioxidant molecules. However, our body cannot synthesize
these nutrients, so we need to ingest them from the diet.
Therefore, it has become an urgent task to identify proteins with
antioxidant activity from natural compounds.

Although identifying antioxidant proteins through
biochemical experiments is an objective and accurate method,
they are still labor intensive and expensive. With the massive
production of protein sequences, a series of computational
methods have been proposed to identify antioxidant proteins.
For the first time, Enrique et al. (2013) proposed a random forest
model for predicting antioxidant proteins based on star map
topological index and achieved satisfactory results. However,
their model was trained based on a dataset including redundant
sequences that might lead to overestimation problems (Chou,
2011). In 2013, Feng et al. (2013) constructed a high quality
dataset with the sequence similarity less than 60%. Based on
this dataset, they developed a Naive Bayes method by using the
optimal dipeptides and obtained an average accuracy of 66.88%.
Based on this dataset, a series of methods have been proposed
in recent years. In 2016, Feng et al. (2016) proposed a support
vector machine based method, called AodPred, which identifies
antioxidant by using the optimal 3-gap dipeptide features and
improves the prediction accuracy to 74.79%. Later on, Lei et al.
(2018) developed a computational model called SeqSVM by
using support vector machine and obtained an overall accuracy
of 89.46%. More recently, Meng et al. (2019) proposed another
support vector machine model called AOPs-SVM by integrating
multiple kinds of features and obtained an overall accuracy of
94.2%. However, the sensitivity of AOPs-SVM is only 68%.

The above results indicate that the prediction accuracy still
needs to be improved. Therefore, in this study, based on the
optimal dipeptide composition and the reduced amino acid
composition (Chen D. et al., 2012; Chen W. et al., 2012; Feng
et al., 2016; Lv et al., 2019), a new model was constructed.
The results show that the performance of the proposed method
for identifying antioxidant proteins is better than or at least
comparable to existing methods.

MATERIALS AND METHODS

Training Set and Test Set
The dataset used in the present work is the same as the one used
by Feng et al. (2013, 2017),which includes 253 antioxidant protein
sequences and 1552 non-antioxidant protein sequences with the
sequence identity less than 60%. The dataset is expressed as:

S = S+ ∪ S− (1)

where “S” stands for benchmark dataset, “S+” is the positive
dataset and contains 253 antioxidant protein sequences, and “S−”
is the negative dataset and contains 1552 non-antioxidant protein

sequences. The longest and shortest peptides in the dataset are
1463 and 11 amino acids, respectively.

In the following analysis, the dataset S was divided into two
parts. One of them is the training set ST and includes 80% of the
sequences in S, and the remaining 20% sequences form the testing
set SE, which are expressed as following,

ST = S∗+0.8 ∪ S∗−0.8 (2)

SE = S− ST (3)

Independent Dataset
To objectively evaluate the proposed method and compare with
its counterpart, an independent dataset was built in the present
work. By searching the Universal Protein Resource (Uniprot)
with the keywords “antioxidant” and “reviewed,” and setting the
date from March 1, 2014 to March 31, 2020, we obtained 22
antioxidant protein sequences that are independent from the
sequences in the dataset S.

Support Vector Machine
Support Vector Machine (SVM) is a method for effectively
identifying data according to supervised learning method, which
is widely used in bioinformatics and other fields (Feng et al.,
2016; Liao et al., 2018; Wang et al., 2019; Liu and Chen, 2020).
If the samples are linearly separated, the basic idea of the SVM
algorithm is to solve the separation hyperplane that can correctly
divide the training dataset and have the largest geometric interval;
when the samples are nonlinearly separated, SVM maps the low-
dimensional data to the high-dimensional data by the kernel
function space. In this work, the LIBSVM package downloaded
from https://www.csie.ntu.edu.tw/~cjlin/libsvm/ was used to
perform the prediction. The best regularization parameter C
and kernel width parameter g were determined by using the
grid search method.

Sequence Representation
g-gap Dipeptide Composition
The g-gap dipeptide composition was proposed to describe the
long-range correlation between two amino acid residues and has
been proved to be effective in the field of protein recognition
(Ding et al., 2013; Lin et al., 2013; Tan et al., 2019). Accordingly,
in the present work, the g-gap dipeptide composition was
used to encode the sequences in both benchmark dataset and
independent test dataset.

The g-gap dipeptide composition is expressed as following,

F = [f g1 f g2 ...f gi ...f g400]
T (4)

f gi =
ngi

L− g − 1
(5)

where f g
i represents the frequency of the i-th (i = 1, 2,..., 400)

dipeptide with g-gap interval in the protein sequence, and T
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FIGURE 1 | The flowchart of building the proposed method. The samples in the training dataset were firstly encoded by using reduced amino acid compositions and
the optimal g-gap dipeptide compositions, respectively. Accordingly, 15 SVM models based on these different kinds of features was built. After validating the
combinational performance of these models on the test dataset, 9 of the 15 SVM models were selected out as the optimal models. Finally, the SVM outs of these 9
models were used as the new features and used as the inputs of the SVM for building the proposed model.

FIGURE 2 | The IFS curves of different g-gap dipeptides (g = 0, 1, 2,..., 9). The optimal number of features and the accuracy based on the optimal features were
shown in the right of the figure.

represents the transposition of the vector. ng
i represents the

number of the i-th g-gap dipeptide. In the present work, g is an
integer in the range of [0, 9]. For example, g = 0 represents the

correlation between two adjacent amino acid residues, and g = 1
represents the correlation of two amino acid residues separated
by one residue, and so forth.
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FIGURE 3 | (A) The performance of the 15 models for identifying antioxidants. OP (5) stands for the method of optimizing amino acid residues to divide 20 amino
acid letters into 5 categories, and then uses LIBSVM to establish a classification model. Using the method of g-gap dipeptide (Feng et al., 2016), we selected the
best feature subset of protein sequence steps g = 0, 1... 7 to construct a g0, g1... g7 classification model. Vote9 is a comprehensive classification model that used
the prediction results of the above classification models as feature vectors. (B) Comparison between Vote9 and single classification model.

Reduced Amino Acid Composition
With the aim of including structural information, the reduced
amino acid composition (RAAC) was applied to encode proteins
(Feng et al., 2016). Compared with the classical amino acid
composition, the RAACs can reduce protein complexity and
eliminate part of the redundant signals without losing sequence
information intact (Wang and Wang, 1999; Liu et al., 2018). In
order to obtain the RAAC from the sequences, Zuo et al. (2017)
established the online webserver and database (Zheng et al., 2019)
that can be used to calculate RAAC.

In term of RAAC, based on amino acid sequence and structure
information, the 20 natural amino acids can be aggregated
into a smaller number of representative amino acid residues
(Thomas and Dill, 1996; Mirny and Shakhnovich, 1999; Solis
and Rackovsky, 2000). According to the different optimization
procedures (Op) for protein sequences proposed by Etchebest
et al. (2007), there are 5 different cluster files for the 20 natural
amino acids, i.e., Op(5), Op(8), Op(9), Op(11)and Op(13), which
are formulated as below:

Op (i) =

Op (5) : {G; IVFYW; ALMEQRK; P; NDHSTC}
Op (8) : {G; IV; FYW; ALM; EQRK; P; ND; HSTC}
Op (9) : {G; IV; FYW; ALM; EQRK; P; ND; HS; TC}
Op (11) :{G; IV; FYW; A; LM; EQRK; P; ND; HS;}
T; C}
Op (13) :{G; IV; FYW; A; L; M; E; QRK; P; ND;
HS; T; C}

(6)

where i indicates the different cluster profiles (i = 5, 8, 9,
11, 13), and the letters between the two semicolons belong to
the same cluster.

Accordingly, a sequence can be encoded based on the reduced
amino acid composition. As indicated in Eq. 6, for the n-peptide

FIGURE 4 | Comparison of Vote9 with existing methods.

composition with various cluster profiles, the components and
dimensions of the feature vector will be different.

9 = [91, 92, · · · , 9�]
T (7)

where � is the dimension of the vector, and is based on the
selected n and cluster profiles. For example, for the dipeptide
composition with the cluster profile of Op(5), the � will be 25.
In the current work, our initial tests demonstrate that the optimal
n for different cluster profiles is as following,

� =



53 = 125 for Op(5) cluster
82 = 64 for Op(8) cluster
92 = 81 for Op(9) cluster
112 = 121 for Op(11) cluster
132 = 169 for Op(13) cluster

(8)

Performance Evaluation
There are usually three methods for evaluating the performance
of computational models, namely independent dataset test, k-fold
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cross-validation test, and jackknife test (Wei et al., 2017; Chen
et al., 2019; Manavalan et al., 2019a,b; Yang et al., 2019; Hasan
et al., 2020; Lv et al., 2020). Among the three evaluation methods,
the most rigorous and least random jackknife test was used to
evaluate the proposed method.

The sensitivity (Sn), specificity (Sp), accuracy (Acc) and
Mathew’s correlation coefficient (MCC) was selected as the
evaluation metrics that are defined as following,

Sn =
TP

TP + FN
(9)

Sp =
TN

TN + FP
(10)

Acc =
TP + TN

TP + FN + TN + FP
(11)

MCC =
TN∗TP − FP∗FN

√
(TP + FP)∗(FN + TN)∗(TP + FN)∗(TN + FP)

(12)
where TP, FP, FN, and TN represent true positive, false positive,
false negative and true negative, respectively.

Feature Selection
The principle of analysis of variance (ANOVA) is to measure the
characteristic variance by calculating the ratio (F-value) between
the characteristics of the groups and the internal characteristics
of the groups (Lin and Ding, 2011; Basith et al., 2019). The
larger the F-value, the greater the probability that each sample
comes from a different population. In order to exclude redundant
features and enhance the robustness of the proposed model, the
ANOVA that widely used in computational proteomics (Ding
et al., 2013; Lin et al., 2013; Basith et al., 2020) combined with
the incremental feature selection (IFS) strategy was used to select
the optimal features.

Flowchart of the Method
By following the above procedure, we proposed a new
computational method for identifying antioxidants. The
flowchart of how to build it was shown in Figure 1.

RESULTS AND DISCUSSION

Prediction Performance
In order to obtain the optimal features, for a given kind of g-gap
dipeptide composition, the 400 g-gap dipeptide compositions
were ranked based on their F-scores. Each of the 400 dipeptide
compositions were added one by one from higher to lower
rank. This procedure was repeated 400 times, and for each
time a SVM model was built. The accuracies of these models
were then used to plot the IFS curve. Accordingly, the 10
IFS curves for g = 0 to 9 were obtained (Figure 2), where
the abscissa is the number of features and the ordinate
is the corresponding accuracy. In each curve, the optimal
number of features were obtained when the curve reaches
its peak. The optimal number of features and the accuracy
based on the optimal features were shown in the right of
Figure 2. Accordingly, 10 models were obtained based on g-gap
dipeptide compositions.

Based on the reduced amino acid composition, another
five models were built for identifying antioxidants. Their
predictive performances together with that of the 10 models
based on g-gap dipeptide composition were indicated in
Figure 3A.

According to the prediction results of the 15 models, we
removed 6 models with the sensitivity less than 20%. Therefore,
9 models were left and were combined to build the final model
in the following analysis. To do so, the out of the nine SVM
based models (1 or −1) were further used as the input of
the SVM. Therefore, each sequence will be re-encoded by a 9-
dimension vector with the element of 1 or −1. The model thus
obtained is called Vote9. In the jackknife test, Vote9 obtained
an accuracy of 0.94 with the sensitivity of 0.65, specificity of 0.99
and MCC of 0.74.

Comparison With Single Model
In order to demonstrate the better performance of Vote9, we
compared its performance with that of the single model for
identifying antioxidants in the test dataset. The result is shown
in Figure 3B. It was found that the sensitivity, specificity and
accuracy of Vote9 are all significantly better than those of any

TABLE 1 | Comparative results of different methods for identifying antioxidants in independent dataset.

Sample Aops-SVM Aodpred Vote9 Sample Aops-SVM Aodpred Vote9

P9WQB7 Y Y N P9WIS6 Y N N

P9WHH9 Y N N P9WQB6 Y Y N

P9WIS7 Y N Y P9WID9 Y Y N

P9WG35 Y Y N O17433 Y Y N

P9WGE9 Y Y N P9WIE0 Y N N

P9WQB5 Y Y N P9WID8 Y Y N

P9WIE3 Y Y N P9WGE8 Y Y N

P0CU34 Y Y N C0HK70 Y Y N

Q5ACV9 N N N P9WQB4 Y Y N

P9WHH8 Y N Y P9WG34 Y Y N

P9WIE1 Y N Y P9WIE2 Y Y N
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single model, demonstrating that it’s necessary to built the model
by combining the optimal single models.

Comparison With Existing Methods
In this section, we compared the performance of Vote9 with the
performance of other existing methods (Aops-SVM, AodPred,
and SeqSVM) that all trained based on the same dataset. Their
performances were shown in Figure 4.

It was found that the accuracy of Vote9 is better than that
of AodPred and SeqSVM, and is comparable with that of Aops-
SVM. Although the sensitivity of Vote9 is lower than that of
Aops-SVM and AodPred, its specificity is higher than that of the
other three methods (Aops-SVM, AodPred, and SeqSVM). This
result indicate that Vote9 might also become a useful tool for
identifying antioxidants.

In order to objectively evaluate the performance of different
methods for identifying antioxidants, a comparison was
performed based on the independent dataset. Since some of the
previous methods didn’t provide publicly available tool or doesn’t
work properly, the comparison was also performed among Vote9,
Aops-SVM, and AodPred. Their performances for identifying
antioxidants in independent dataset were reported in Table 1. As
shown in Table 1, we found that Aops-SVM performs the best,
and Vote9 and AodPred can be used as complementary tools.

Conclusion
The role of antioxidant proteins in neutralizing free
radicals and preventing the damage of free radicals to

cells is well known. Unfortunately, there are very few
molecules with antioxidant properties in nature. Therefore,
in order to accelerate researches on antioxidant proteins,
there is an urgent need to develop effective methods for
identifying them.

In the present work, we proposed a new method, called
Vote9, in which the sequences were encoded by using the
features generated from 9 optimal individual models. Results
from jackknife test demonstrated that Vote9 is comparable
with the best of the existing predictors for this task. The
results of independent dataset test demonstrate that Vote9 can
play a complementary role to the existing methods in this
area. We hope that Vote9 will become a useful method for
identifying antioxidants.
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