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The infrapatellar fat pad (IFP) has until recently been viewed as a densely vascular and
innervated intracapsular/extrasynovial tissue with biomechanical roles in the anterior
compartment of the knee. Over the last decade, secondary to the proposition that
the IFP and synovium function as a single unit, its recognized tight molecular crosstalk
with emerging roles in the pathophysiology of joint disease, and the characterization of
immune-related resident cells with varying phenotypes (e.g., pro and anti-inflammatory
macrophages), this structural complex has gained increasing attention as a potential
therapeutic target in patients with various knee pathologies including osteoarthritis
(KOA). Furthermore, the description of the presence of mesenchymal stem/stromal cells
(MSC) as perivascular cells within the IFP (IFP-MSC), exhibiting immunomodulatory, anti-
fibrotic and neutralizing activities over key local mediators, has promoted the IFP as
an alternative source of MSC for cell-based therapy protocols. These complementary
concepts have supported the growing notion of immune and inflammatory events
participating in the pathogenesis of KOA, with the IFP/synovium complex engaging
not only in amplifying local pathological responses, but also as a reservoir of potential
therapeutic cell-based products. Consequently, the aim of this review is to outline the
latest discoveries related with the IFP/synovium complex as both an active participant
during KOA initiation and progression thus emerging as a potential target, and a source
of therapeutic IFP-MSCs. Finally, we discuss how these notions may help the design of
novel treatments for KOA through modulation of local cellular and molecular cascades
that ultimately lead to joint destruction.
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INTRODUCTION

The infrapatellar fat pad (IFP), also known as Hoffa’s fat pad,
is a cylinder-like piece of adipose tissue that sits posterior to
the patella and fills the anterior knee compartment (Dragoo
et al., 2012). Though the function of the IFP has not yet
been fully defined, studies have shown that the IFP plays an
important biomechanical role within the knee (Bohnsack et al.,
2004; Gallagher et al., 2005). In addition, recent evidence has
shown that the IFP in concert with the synovium participates in
the pathogenesis and progression of various pathologies within
the knee joint such as osteoarthritis (KOA) (Benito et al.,
2005; Scanzello and Goldring, 2012; Sokolove and Lepus, 2013;
Lieberthal et al., 2015; Felson et al., 2016; Favero et al., 2017;
Mathiessen and Conaghan, 2017), given that these structures
serve as sites of immune cell infiltration and origin of pro-
inflammatory (e.g., IFNγ, TNFα and IL1β) and articular cartilage
degradative (e.g., MMPs) molecules (Bondeson et al., 2010;
Kalaitzoglou et al., 2017; Li et al., 2017). On the other hand,
they may be related with repair attempts after injury, due to
the presence of mesenchymal stem/stromal cells (MSCs) within
both the IFP (IFP-MSC) (Garcia et al., 2016a; Tangchitphisut
et al., 2016; Kouroupis et al., 2019a) and the synovium (sMSC)
(Mizuno et al., 2018; To et al., 2019) exhibiting disease-modifying
capacities (Caplan and Correa, 2011; Stagg and Galipeau, 2013;
Uccelli and de Rosbo, 2015; Galipeau et al., 2016). Consequently,
the IFP and synovium engage not only in amplifying local
pathological responses, but also act as a reservoir of disease-
modifying cellular products, promoting them as potential novel
targets in joint disease (Attur et al., 2010).

IFP-MSCs have generated increased interest in recent
literature due to their easy accessibility compared to other
stem cell sources such as bone marrow and adipose tissue
(AT), while displaying similar multipotency, growth potential,
and immunomodulatory abilities (Sun et al., 2018). Their
relative ease of isolation compared to bone marrow aspiration
(thus removing the potential surgical complications seen
with aspiration) have made them a popular resource for
experimentation and regenerative medicine (Vilalta et al., 2008;
Mizuno et al., 2012; Siciliano et al., 2016). However, because
of its relatively newfound MSC population, current literature
has re-focused on updating the knowledge of IFP anatomy,
function, and most importantly its cellular composition beyond
MSC. This has not only led to extensive investment in
the IFP’s potential for regenerative medicine in Orthopedics,
but also the role the IFP may play in certain pathological
processes including KOA. For example, more established
theories believe that the IFP communicates with the joint
via the synovium and may play a role in cartilage and/or
bone regeneration via the secretion of adipose tissue derived
growth factors (Jiang et al., 2019). However, a shift in
our understanding of the IFP anatomy and pathophysiology
demonstrates not only that the IFP and the synovium
constitute one structural and functional unit (Macchi et al.,
2018), but that IFP-MSCs can regulate resident immune cell
infiltration and resident macrophages thus acting as local
immunomodulatory players.

Therefore, the goal of this review is to outline the latest
developments of the IFP/synovium complex as a tissue that
actively participates in joint homeostasis and disease, while
harboring cellular elements that can be harnessed for therapeutic
cell-based therapy protocols. In addition, updates regarding
recent discoveries in anatomy, cellular composition, function,
isolation and harvest, imaging, role in certain pathologies of
the knee (most importantly modulation of inflammation in the
joint), current therapeutic uses, and future perspectives and goals
for IFP use will be discussed.

STRUCTURE AND FUNCTION OF THE
IPF/SYNOVIUM COMPLEX

Anatomy
The IFP is located deep to the patella and occupies the space
between the patellar tendon, femoral condyle, and tibial plateau.
It attaches to the lower border of the patella, the intercondylar
notch within the femur via the ligamentum mucosum, the
periosteum of the tibia, and the anterior horn of both menisci
(Gallagher et al., 2005). Of note, recent study of IFP anatomy has
demonstrated previously undiscovered attachments to the deep
quadriceps muscle, which may assist with IFP motion during
walking (Woodley et al., 2012).

Although the IFP is intracapsular, it remains extrasynovial
despite its constant contact with the synovium (Clockaerts
et al., 2010). Increasing evidence has demonstrated that the
IFP develops as an outgrowth of the synovial tissue with
regard to structure and functionality, which suggests extensive
communication between the IFP and the synovium and joint
capsule (Figure 1) (Ioan-Facsinay and Kloppenburg, 2013).
Furthermore, Macchi et al. (2018) have concluded that the
IFP and the synovium should be viewed as one anatomo-
functional unit rather than two distinct structures that simply

FIGURE 1 | Demonstration of the extensive molecular cross-talk and
important cellular components between the IFP and the synovium within the
joint capsule which are responsible for inflammation/fibrosis.
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communicate with one another. The authors justified this
definition because recent anatomical studies demonstrated the
insertion of infrapatellar and medial synovial plicae directly onto
the IFP, which suggests that the IFP may not be extrasynovial, but
rather an extension of the synovium outside of the joint capsule
(Macchi et al., 2018). Nevertheless, the intimate relationship
between the synovium and IFP appears highly important in the
release of growth factors and cytokines that help to regulate the
molecular environment within the joint.

The extensive anastomotic vascular network near the IFP
involves a combination of the superior and inferior geniculate
arteries, the latter which passes through the IFP before supplying
the patella. This matrix helps support and promote IFP-MSC
proliferation, especially during injury and inflammation. It has
also been hypothesized that this network is sufficient to protect
the IFP during extensive surgical or arthroscopic procedures
that lead to significant manipulation of the structure itself
(Kohn et al., 1995).

Innervation to the IFP is just as extensive as its vasculature
and typically traverses the same course across the entire
tissue. Previous studies have confirmed that posterior articular
branches from the tibial, saphenous, recurrent peroneal, and
common peroneal nerve provide most of the innervation,
however Gardner et al. recently described branches arising from
the saphenous and obturator nerves as well (Freeman and
Wyke, 1967; Kennedy et al., 1982). This collective peripheral
sensory nociceptive innervation pattern (dense in parts of
the IFP and synovium) is mediated by nerve fibers equipped
with the neurotransmitter Substance P which runs separately
but in parallel to sympathetic fibers and it is implicated
in knee pain transmission. Additionally, within the IFP
tyrosine hydroxylase (TH)-positive sympathetic fibers modulate
nociception/pain signaling in sympathetic neurons, through
interacting with Substance P-positive fibers (Dragoo et al., 2012;
Brumovsky, 2016).

Cellular Composition and Molecular
Mediators
Infrapatellar Fat Pad
The most prevalent cell is the adipocyte, which is not only
responsible for the IFP’s metabolism, but also endocrine and
paracrine functions within the knee joint (Coelho et al., 2013; do
Amaral et al., 2017). Importantly, adipose cells secrete cytokines,
interferons, adipokines, and growth factors, all of which exerting
local signaling effects on articular cartilage and synovial cells
(Clockaerts et al., 2010).

As shown in Figure 1, other important cellular components
of the IFP include fibroblasts, responsible for the production of
extracellular matrix, and in less quantities resident monocytes,
mast cells, lymphocytes, and perhaps most importantly
macrophages (de Lange-Brokaar et al., 2012; Belluzzi et al., 2019;
Kouroupis et al., 2019a). Barboza et al. (2017) have demonstrated
that macrophages not only permanently reside within the IFP,
but lie without phenotypic polarization as either classical M1 or
alternative M2 variants until conditions promote their activation
and subsequent conversion, such as inflammation.

Resident IFP macrophages are activated by a variety of
interleukins and interferons secreted from other resident and
infiltrating immune cells and adipose cells within the IFP.
When converted to M1 macrophages, the IFP begins secreting
vast amounts of pro-inflammatory cytokines, catabolic factors,
and adipokines, and with prolonged periods of time, the IFP
can also release pro-fibrotic mediators such as CTGF that
may contribute to KOA progression (Figure 2) (Clockaerts
et al., 2010). This occurs due to tight molecular crosstalk
between synovial, IFP, and systemic inflammatory mediators.
Consequently, these macrophages are now the target of
studies assessing their release of pro-inflammatory molecular
mediators (Kouroupis et al., 2019a). On the other hand, also
shown in Figure 2, alternatively differentiated M2 macrophages
exert anti-inflammatory effects, serving as counterbalance to
their M1 cohorts by suppressing their proliferation and
inflammatory signaling.

Finally, the IFP harbors a population of MSC (IFP-MSC),
which will be discussed in detail later (see section “Synovium-
Derived MSC”) as a potential therapeutic tool for cell-based
therapy protocols.

Synovium
Within the intimal synovial lining reside predominantly two
synovial cell types: type A (Macrophage-Like synoviocytes –
MLS) and type B (Fibroblast-Like-Synoviocytes – FLS) (Tu et al.,
2018). The type B synoviocytes, thought to be descendants
of cells of mesodermal origin, are far more abundant and
display typical fibroblast markers such as surface marker
Thy-1 (CD90) and integrins like ICAM1 while secreting
specialized matrix constituents including hyaluronan and Type
IV and V collagens (Roelofs et al., 2017; Tu et al., 2018).
Thus, it can be argued that type B synoviocytes more so
than type A counterparts are responsible for maintenance of
synovial homeostasis.

Type B synoviocytes are subject to cytokine and growth
factor regulation, which can dictate a pro or anti-inflammatory
state depending on which factors are expressed in the
surrounding synovial environment (Orr et al., 2017). In
a chronic inflammatory state, these cells primarily act in
a pro-inflammatory role. For example, in patients with
rheumatoid arthritis, fibroblasts have been shown to respond
to and secrete a combination of TNF-alpha, IL-1, IL-6, and
granulocyte-macrophage colony-stimulating factor (GM-CSF),
while expressing a multitude of toll-like receptors in order to
amplify T-Cell response to TLR activation (Ospelt, 2017). In
regard to patients with OA, type B synoviocytes are particularly
sensitive to TLR-2, TLR-3, and TLR-4 ligands due to the active
expression of CD14, a co-receptor for TLRs (Nair et al., 2012).
Type B synoviocytes also secrete a multitude of chemoattractants,
including CCL2, CCL5, CCL8, CXCL5, and CXCL10, designed
to attract monocytes and macrophages, both resident and
peripheral in nature (Bartok and Firestein, 2010). Finally, upon
stimulation of TLR-3, these synoviocytes produce large quantities
of IL6, B-Cell Activating Factor and proliferation-inducing ligand
(Mata-Essayag et al., 2001), promoting the maturation, survival,
and antibody production by B cells (Bombardieri et al., 2011).
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FIGURE 2 | Schematic showing the intricate balance between M1 and M2 macrophages within the IFP and synovium. Differentiated M2 macrophages exhibit
anti-inflammatory effects and preserve the health of the joint, whereas an imbalance favoring M1 macrophages promotes the IFP’s secretion of pro-inflammatory
cytokines and catabolic factors that are seen within an inflamed/fibrotic knee.

These findings suggest that type B synoviocytes, though non-
immune in nature, play a key role in autoimmune and OA disease
development due to their inflammatory properties.

Type B synoviocytes can also produce a wide variety of
anti-inflammatory factors such as TGF-beta, Type 1 interferons,
VEG-F, indoleamine 2,3-dioxygenase (IDO enzyme), and certain
prostaglandins, though some of these factors depending on
concentration and exposure time may also be pro-inflammatory
(Tu et al., 2018). However, the ability to harness the anti-
inflammatory properties of these cells remains unknown. The
recent proposition that type B synoviocytes may also contain
multiple subtypes within the synovial lining which determine
their secretory properties provides a future avenue for studies
attempting to fully elucidate the role of these cells in arthritis
development or modulation (Frank-Bertoncelj et al., 2017).

On the other hand, type A synoviocytes are far less known
due to the limited number of these cells in vivo and their
poor proliferative potential in vitro. They constitute resident
macrophages, derived from both embryonic hematopoietic
precursors and from bone marrow, although their definitive
origin is still elusive (Tu et al., 2018). These resident macrophages
need to be discriminated from monocytes/macrophages that
extravasate into the synovium from peripheral circulation after
injury or in disease. Nevertheless, it has been established that they
have pro-inflammatory tendencies while exhibiting an intimate
crosstalk with type B synoviocytes, especially in disease (Tu
et al., 2018, 2019). Type A synoviocytes secrete soluble CD14,

IL-1β, and TNFα, further potentiating the pro-inflammatory
properties of type B synoviocytes and CD4 T helper cells. They
also induce monocyte/macrophage-derived osteoclast activity
via RANK-L secretion resulting in enhanced bone resorption
(Yoshitomi, 2019). It is interesting to note given the above pro-
inflammatory properties that the presence and activity levels of
these tissue-resident macrophages significantly correlates with
advanced stages of OA and poorer clinical outcome scores
(Kriegova et al., 2018; Gomez-Aristizabal et al., 2019).

Similar to the IFP, the synovium contains a small population
of cells compatible with MSC (sMSC), which will be discussed in
detail in section “MSC-Induced Immunomodulation: Focus on
Macrophage Polarization.”

IFP/Synovium Molecular Interactions
Beyond the proximity the IFP and synovium share, there are
molecular interactions between both components that support
their view as a single anatomical and functional unit. For instance,
both IFP and adjacent synovium experience similar structural
effects in KOA, including increased inflammatory infiltration,
vascularization, and thickness (Favero et al., 2017). The IFP has
been shown to release prostaglandin F2a (PGF2α), IL-6, IL-8, and
TNFα, inducing a profibrotic effect on the synovial membrane
(Bastiaansen-Jenniskens et al., 2013; Eymard et al., 2014).
Specifically, Bastiaansen-Jenniskens et al. (2013) cultured human
fibroblast -like synoviocytes (type B) obtained from OA patients
in conditioned medium derived from IFP tissue with and without
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inhibitors of TGFβ/activin receptor-like kinase 5 or PGF2α for
4 days in vitro. IFP derived conditioned medium not only
increased the migration and proliferation of synoviocytes but also
resulted in profibrotic changes including Collagen production
and PLOD2 gene expression upregulation. Collagen production
in synoviocytes was directly associated with secreted PGF2α

levels in IFP derived conditioned medium. On the other hand, as
the IFP is mainly composed of adipocytes, it results as a major
source of various adipocyte-derived inflammatory mediators
including lipids. Previous studies indicated that IFP-derived
adipocytes, via secreted lipids, are able to modulate infiltrating
macrophages and CD4+ T cells into the OA synovium (Ioan-
Facsinay et al., 2013; Klein-Wieringa et al., 2013). In adipocyte-
derived conditioned medium obtained from IFP, Ioan-Facsinay
et al. (2013) identified free fatty acids that enhance CD4+ T cell
proliferation and their capacity to produce IFN-γ. Additionally,
free fatty acids secreted from IFP adipocytes can reduce the
secretion of IL-12p40 cytokine by macrophages (Klein-Wieringa
et al., 2013). According to previous studies (reviewed in Cooper
and Khader, 2007), IL-12p40 is a chemoattractant molecule for
macrophages, and which promotes inflammation and fibrosis.
Furthermore, Mustonen et al. (2019) identified distinct fatty
acid signature for IFP in OA and rheumatoid arthritis (RA)
patients. Compared to RA, OA patients have higher total n-6,
20:4n-6 and 22:6n-3 polyunsaturated fatty acids (PUFA), and
higher product/precursor ratios of n-3 PUFA. In general, n-
6 PUFA such as 20:4n-6 (arachidonic acid) are precursors to
pro-inflammatory mediators, whereas n-3 PUFA such as 22:6n-
3 (docosahexaenoic acid) have anti-inflammatory/anti-catabolic
effects (Brouwers et al., 2015). Overall, the major alterations
in OA and RA joints compared to control healthy knees are
an increase in monounsaturated fatty acids and a simultaneous
decrease in n-6 PUFA, effects that should be further investigated
in future studies (Mustonen et al., 2019).

Just as IFP influences synovium, Clements et al. (2009)
demonstrated that extensive synovial proliferation and fibrosis
led to marked loss of adipocytes within the IFP. Specifically,
synovium secretion of pro-inflammatory cytokine IL-1β has been
associated with catabolic effects in initiation and progression of
OA. A previous study showed that exposure of IFP explants from
OA patients to IL-1β in vitro result in secretion of large amounts
of pro-inflammatory cytokines such as PTGS2, IL-1β, MCP-1,
and IL-6. These effects can be partially ameliorated by a PPARα

agonist (Clockaerts et al., 2012). Thus, recent literature has not
only demonstrated extensive communication between both the
IFP and synovium, but that this communication can accelerate
development and progression of KOA, as elaborated below.

IFP IN THE PATHOGENESIS OF KNEE
OA – POTENTIAL NEW TARGET FOR
THERAPY

With the cellular composition of the IFP better elucidated and
the occurrence of immune and inflammatory events within the
IFP, its role in the pathophysiology of KOA is becoming the
focus of multiple studies. For instance, Heilmeier et al. (2019)

demonstrated that following ACL acute injury the IFP rapidly
releases inflammatory cytokines that promote a sustained
inflammatory response lasting for months. Consequently, various
theories have emerged explaining the IFP’s role in the regulation
of local inflammatory cascades including adipocytes, and more
recently resident macrophages as key targets (in the development
of post-traumatic OA). We next explore the strengths and
limitations of each prevailing theory.

IFP-Derived Adipocytes and Obesity
Accelerate KOA Development
As previously discussed, adipocytes are capable of secreting
certain molecular markers and products capable of initiating
a local inflammatory response. Given that obesity represents a
chronic inflammatory state, many studies have focused on the
role of adipocytes as contributors for accelerated development of
KOA (Balistreri et al., 2010; Bravo et al., 2019; Jiang et al., 2019).
Consistent with this theory, the discovery of IL-1β and other
pro-inflammatory cytokine production, together with matrix
metalloprotease expression within KOA cartilage by adipocytes,
suggests that the IFP may be intimately linked to KOA
(Clockaerts et al., 2010; de Boer et al., 2012; Beekhuizen et al.,
2013). Furthermore, leptin and adiponectin have been shown
to be primarily secreted by IFP adipocytes into synovial fluid,
with a key role influencing cartilage and synovial metabolism
(Dumond et al., 2003; Toussirot et al., 2007). Therefore, the
association of leptin to obesity and inflammation led to the
belief that obesity itself plays a role in inducing IFP adipocyte
inflammatory propagation and accelerated KOA progression
(Ioan-Facsinay and Kloppenburg, 2013). Leptin has been shown
to promote production of articular cartilage proteoglycans and
collagen while stimulating insulin-like growth factor-1 and
other growth factors that subsequently enhance chondrocyte
proliferation (Bao et al., 2010, 2014). Lipid-mediated lipoxin
A4, which can prevent cartilage degeneration in the knee, is
also secreted by IFP adipocytes (Bastiaansen-Jenniskens et al.,
2012; Gierman et al., 2013). Leptin facilitates the activation
of immune cells, particularly M1 macrophages, via interferon
release and nitric oxide production (Matarese et al., 2007).
Moreover, recent literature suggests that obese patients with OA
have either no difference in the number of M1 macrophages
within the IFP, or may even have an increased number of
M2 macrophages, compared to that of lean patients (de Jong
et al., 2017). Lastly, even with M1 macrophages present within
the IFP, the classic M1 macrophage mediated inflammation
that usually occurs in abdominal adipose tissue as seen with
obesity cannot be recapitulated, suggesting that IFP adipocytes
are subject to distinct spatial-temporal metabolic regulation
(Barboza et al., 2017).

An alternative mechanism by which obesity may affect
the IFP during the progression of KOA is through altered
joint mechanics. Ballegaard et al. (2014) have shown that
obese patients with KOA demonstrated significantly increased
inflammatory signaling within the IFP measured by contrast-
enhanced perfusion variables on MRI. Cowan et al. (2015) also
demonstrated that patients with patellofemoral OA have a greater
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IFP volume on MRI compared to healthy knees. Because the
IFP resides in a tight anatomical space, the authors suggested
that increased IFP volume was an inducer of inflammation,
leading to secretion of synovial inflammatory factors (Clements
et al., 2009). Therefore, in this alternate hypothesis, adipocyte
induced inflammation within the joint may be due to factors
other than obesity (King et al., 2013). However, OA also occurs
in non-weight bearing joints such as the hand, suggesting
that the metabolic effects of obesity may play a greater role
than altered joint mechanics (Losina et al., 2011; Yusuf, 2012;
Bliddal et al., 2014).

Overall, though there is an established link between
obesity and KOA, the explanation that the IFP propagates
KOA development because of its primarily adipocyte-based
composition remains controversial. Because the IFP has a distinct
environment compared to abdominal adipose tissue, the role of
this specific adipocyte population in KOA remains unclear and
warrants continued investigation, as obesity related features seen
in visceral adipose tissue are not present within the IFP of KOA
patients (de Jong et al., 2017).

Role of IFP/Synovium Resident
Macrophages
Adipocytes are not the only cellular component with potential to
induce or enhance inflammation locally. The IFP and synovium
are populated by macrophages, historically viewed as cells
that maintain tissue homeostasis with crucial roles in early
and late phases of response to injury, while more recently
associated with various pathologies (Caspar-Bauguil et al., 2005;
Mathis, 2013; Ginhoux and Jung, 2014). Macrophages have
distinct origins resulting in significant heterogeneity, beyond
the known M1 (classical pro-inflammatory) and M2 (alternative
anti-inflammatory) polarization phenotypes (Ginhoux and Jung,
2014; Paul et al., 2015; Wu et al., 2020). A special population of
tissue resident macrophages derive from embryonic precursors,
exhibit self-renewal, and replenish after injury independently
from circulating bone marrow-derived Ly6CHigh monocytes
(Ly6CHigh is a murine marker with no current human ortholog
identified) (Davies et al., 2011; Gentek et al., 2014; Ginhoux
and Guilliams, 2016; Zhao et al., 2018). IFP and synovium show
such resident populations with comparable immune cell profiles
(Klein-Wieringa et al., 2016), also susceptible to polarize to M1
or M2 phenotypes depending on the status of the joint (Barboza
et al., 2017; Sun et al., 2017; Tu et al., 2018; Wu et al., 2020).

Resident M1 pro-inflammatory macrophages are theorized
to be an important driver of the host low grade chronic
inflammatory state (Mathis, 2013; Kandahari et al., 2015).
In fact, patients with KOA show a propensity for the
M1 classical phenotype within the IFP/synovium complex,
resulting in cytokine, interferon, and TNF-alpha secretion (Klein-
Wieringa et al., 2011; Wu et al., 2020). Recent evidence
suggests that activation of the mammalian target of rapamycin
(Kuptniratsaikul et al., 2009) pathway also plays a role in M1
macrophage polarization and progression of KOA in animal
models (Fernandes et al., 2020). Nevertheless, the existence of
resident macrophages within the IFP exhibiting an M1 phenotype

independent of the presence of local inflammation confirms their
potential participation as initiators of KOA (Wu et al., 2020).
Thus, the propagation of KOA is not reliant solely on immune
cell extravasation, but rather on resident cells from within the
IFP/synovium complex, though the precise turning point that
leads to KOA still remains unknown.

Immune Infiltration to the IFP/Synovium
The aforementioned molecular markers that induce pro-
inflammatory states do so in part by promoting extravasation
of circulating immune cells into the IFP and synovium.
The secretion of related prostaglandins, as well as IL-6
and IL-8 promote the extravasation of immune cells by
attracting lymphocytes to the endothelium promoting their
migration into the surrounding IFP and synovium (Schnoor
et al., 2016). Substance P, a product of nociceptive nerve
fibers that transmits pain signals while also modulates local
inflammatory processes (i.e., neurogenic inflammation),
has also been shown to induce vasodilation of peripheral
vessels, thus promoting the extravasation of immune
cells from peripheral circulation into surrounding tissue
(Clockaerts et al., 2010).

Apinun et al. (2016) described the presence of peripheral
CD8 T cells, macrophages, B cells, and mast cells within the
IFP of patients with OA undergoing TKA. According to the
authors, the infiltration of these cells trended with disease severity
(patients with severe radiographic KOA had more CD8 T cell
infiltration than patients with mild KOA), thereby leading the
authors to conclude that the infiltration of circulating immune
cells to the IFP and synovium contribute to disease progression
and severity. In addition, Klein-Wieringa et al. (2016) showed
that peripheral CD4 T cells also infiltrate the IFP and synovium in
a severely osteoarthritic population, and their presence correlated
with pain scores (R = 0.53, p < 0.01, N = 76 patients). Thus,
pro-inflammatory cells within the IFP and synovium not only
promote localized inflammation with resident immune cells, but
also promote extravasation of circulating ones potentiating the
inflammatory process that are associated with poorer clinical and
radiographic outcomes.

Clinical Correlation: Imaging to Assess
IFP Changes During OA Progression
The IFP is best visualized on non-contrast magnetic resonance
imaging (MRI) in the sagittal plane and intensity of signal
alterations have recently been correlated with anterior knee
pain and cartilage loss by Han et al. (OR 1.23, p < 0.05,
N = 374), supporting the link between changes in IFP and KOA
development (Hill et al., 2007; Roemer et al., 2009; Han et al.,
2016). Though non-contrast enhanced MRI is the gold standard,
contrast-enhanced MRI imaging has recently been employed to
show correlations between histological synovial infiltrate and
hyperplasia and KOA progression (R = 0.63, p < 0.001, N = 30)
(Loeuille et al., 2011). Crema et al. (2013) have shown that
peri-patellar synovial thickness on non-contrast-enhanced MRI
images could be the culprit for KOA related pain and not the
changes in signal alterations within the IFP itself.
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Interestingly, the size of the IFP may play an important role
in KOA risk and symptom development and intensity. Pan et al.
(2015) demonstrated that decreased IFP volume in older women
compared to men was significantly associated with increased
total knee pain, pain at rest and during movement, and cartilage
damage. However, the authors also found that total IFP maximal
area appears to have a protective role for knee symptoms in
older adult females, but not men. IFP signal intensity was later
linked to size of IFP by Han et al. (2016), which provides support
for continued use of non-contrast enhanced MRI as the gold
standard. Recently, Fontanella et al. (2019) reported changes in
the morphometry (i.e., reduced volume, depth, and femoral and
tibial arc lengths) and increase of the MRI hypointense signal
in the IFP from patients with moderate and end-stage KOA
compared to healthy controls. Despite contrasting results from
various groups, the description of morphological changes in the
IFP by MRI warrants continued investigation into how imaging
may play a future in predicting KOA risk or progression.

IFP/SYNOVIUM AS A SOURCE OF MSC
FOR CELL THERAPY

IFP-MSC
In 1996 a pioneering study by Maekawa et al. (1996) firstly
described a type of fibroblastic cells possessing ‘stem cell-like’
characteristics in synovial tissue near the IFP. Those cells reside
mostly in the perivascular space surrounding vessels of small
caliber and involved in the fibronectin and laminin production.
Recent studies have isolated and phenotypically characterized
IFP-MSC positive for CD9, CD10, CD13, CD29, CD44, CD49e,
CD59, CD73, CD90, CD105, CD106, CD146, CD166, NG2,
and CXCR4 markers, while negative for CD34, CD56, CD200,
CD271, 3G5, LepR and STRO-1 markers (Wickham et al., 2003;
Khan et al., 2008; Garcia et al., 2016a; Hindle et al., 2017;
Kouroupis et al., 2019a). IFP-MSC characteristically have low
or no HLA-DR expression, yet a total absent expression of co-
stimulatory molecules CD40, CD80, and CD86 (Garcia et al.,
2016a; Kouroupis et al., 2020). In a recent study, Hindle et al.
identified two distinct IFP-MSC subpopulations within the IFP,
characterized as pericytes (CD31−CD45−CD34−CD146+) and
adventitial cells (CD31−CD45−CD34+CD146−), representing
3.8 and 21.2% of the IFP stromal vascular fraction, respectively
(Hindle et al., 2017).

In general, IFP-MSC have comparable proliferative potential
to other MSC types (Dragoo et al., 2003; Jurgens et al., 2009).
In comparative studies, IFP-MSC were reported to possess
similar growth kinetics to bone marrow-derived MSC (BM-MSC)
(English et al., 2007) and higher proliferation to donor-matched
synovial fluid-MSC (Garcia et al., 2016a). However, in order
to generate clinically relevant cell numbers, IFP-MSC growth
rate can be accelerated by various in vitro culturing conditions
such as human platelet lysate (hPL) or chemically-reinforced
(Ch-R) media expansion, serum and growth factor (TGF-β and
FGF-2) stimulation and hypoxia exposure (Marsano et al., 2007;
Khan et al., 2008; Buckley and Kelly, 2012; Liu et al., 2012;
O’HEireamhoin et al., 2013). Importantly, our group recently

showed that hPL and Ch-R formulations can effectively replace
FBS to expand IFP-MSC, enhancing phenotypic and functional
attributes (Kouroupis et al., 2020).

IFP-MSC multipotentiality toward chondrogenic, osteogenic,
and adipogenic lineages has been demonstrated by previous
studies (reviewed in Sun et al., 2018). However, there is evidence
showing that MSC differentiation capacity is strongly related
to the tissue of origin. Therefore, due to the intra-articular
localization of IFP tissue, and their anatomical proximity to
articular cartilage, it is not surprising that IFP-MSCs exhibit
strong chondrogenic differentiation capacity both in vitro and
in vivo (Dragoo et al., 2003; Khan et al., 2008; Lee et al.,
2008; Jurgens et al., 2009; Buckley et al., 2010; Almeida
et al., 2014, 2015, 2016; Liu et al., 2014; Ye et al., 2014).
Specifically, in vitro IFP-MSC show stronger chondrogenic
differentiation capacity than adipose- derived-, BM-, and UC-
MSC (Ding et al., 2015). Others however report that they
possess at least comparable chondrogenic capacity to BM-
MSC (English et al., 2007) but inferior to native chondrocytes
and perivascular IFP-MSC (Marsano et al., 2007; Vinardell
et al., 2011; Garcia et al., 2016b; Hindle et al., 2017). On this
basis, studies have shown that heterogenous IFP-MSC selection
for specific subpopulations may result in further enhanced
chondrogenic differentiation capacity. Moreover, perivascular
IFP-MSC (CD31−CD45−CD34−CD146+) generate significantly
more extracellular matrix than heterogenous “crude” IFP-
MSC cultures (Hindle et al., 2017). Also, others reported the
positive correlation of CD49c expression of donor-matched
chondrocytes, BM-MSC, FP-MSC, and synovial fluid MSC with
their chondrogenic capacities in vitro (R = 0.2, p < 0.018,
N = 5 samples) (Garcia et al., 2016b). In in vivo settings, freshly
isolated uncultured CD44+ IFP-MSC seeded into a TGF-β3
ECM-derived scaffold and subcutaneously implanted in nude
mice, are capable of producing a cartilage-like tissue rich of
sGAG and Collagen type II (Almeida et al., 2015). Therefore,
the selection of specific IFP-MSC subpopulations may result in
improved in vivo chondrogenesis.

Given their high proliferation rate and superior chondrogenic
differentiation capacity, IFP-MSC may be considered a suitable
candidate cell to engineer cartilaginous constructs to resurface
focal defects or even an entire OA joint (Liu et al., 2014; Ye
et al., 2014; Prabhakar et al., 2016). In that regard, Liu et al.
(2014) showed that IFP-MSC obtained from both healthy and OA
individuals and cultured on PLLA fiber membranes for 6 weeks
can generate robust, flexible cartilage-like grafts of clinically
relevant dimensions (≥2 cm in diameter). Of note, the authors
did note that donor age variability may affect the robustness of
the cultured IFP-MSCs, supporting the idea that the outcome
of future IFP-MSC treatments may be substantially different in
certain patient populations.

However, the main limitation of MSC-based cartilage
constructs is that they progress in differentiation reaching
an ultimate hypertrophic phenotype and finally undergoing
endochondral ossification in vivo (Farrell et al., 2009, 2011;
Scotti et al., 2013; Correa et al., 2015; Feng et al., 2018). To
overcome this limitation, co-culture of IFP-MSC with articular
chondrocytes in hybrid structures result in a phenotypically
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stable layer of articular cartilage with reduced mineralization
upon implantation in nude mice for 8 weeks (Mesallati et al.,
2015). The same group demonstrated that self-assembled IFP-
MSC on top of articular cartilage agarose gels result in higher
accumulation of sGAG and therefore strongly enhance the
development of articular cartilage constructs (Mesallati et al.,
2017). Although, articular cartilage tissue engineering is a
promising approach, a significant barrier is the generation
of constructs with clinically relevant dimensions and in a
time/cost efficient manner ready-to-use for in vivo implantation,
especially for large compromised surfaces such as in OA.
In more simplified approaches, IFP-MSC are directly injected
intra-articularly solely or embedded in hydrogel-based delivery
systems with and without growth factors. Toghraie et al. (2011)
showed that a single dose of intra-articularly injected IFP-
MSC result in decreased cartilage degeneration, osteophyte
formation, and subchondral sclerosis 20 weeks later in a rabbit
OA model. Recently, Muttigi et al. (2018) directly injected IFP-
MSC embedded in matrillin-3 (an essential ECM component
of cartilage) and 2% hyaluronic acid in an osteochondral
defect rat model, with the reasoning that Matrilin-3 alone
enhances Collagen II and aggrecan expression in chondrocytes
while downregulating matrix degrading enzymes such as matrix
metalloproteinase-13 (MMP-13). According to the authors,
Matrillin-3, when is co-delivered with IFP-MSC, indeed resulted
in greatly enhanced Collagen type II and aggrecan productions,
whereas the regenerated defect site possesses similarities
with native cartilage (thickness, chondrocyte clustering, and
hyaline-like morphology). Overall, IFP-MSC due to their
advantageous intra-articular anatomical localization and ease
for harvesting along with their enhanced chondrogenic capacity
may be an attractive approach for addressing articular cartilage
degeneration in OA.

Our group recently reported that intra-articularly injected
CD10-rich IFP-MSC reverted induced synovitis and IFP fibrosis
in rats which are seen in early OA (Kouroupis et al., 2020).
Interestingly, the degree of in vivo efficacy is associated with the
degree of expression of CD10 and degradation of Substance P,
a local mediator of transmitting pain signals and regulator of
neurogenic inflammation.

Synovium-Derived MSC
Located within the synovial intima and sub-intima lie distinct
MSC populations similar to IFP-MSC, with an origin still debated
(Li et al., 2019; Sivasubramaniyan et al., 2019). Though not
populous within the tissue, these cells maintain high proliferative
capacity and can differentiate into osteoblasts, adipocytes, and
chondrocytes in vitro (Ferro et al., 2019). The origin of synovium-
derived MSC (sMSC) in the synovial lining is still not fully
defined, with groups supporting the notion of MSC infiltrating
from resident vasculature or even from the neighboring bone
marrow. However, two recently reports strongly support the
hypothesis of the embryonic origin of synovium at the joint
interzone, by showing that single or double positive Prg4-lineage
and Gdf5-lineage cells, and associated sMSC as contributors to
tissue homeostasis and repair in adult life (Decker et al., 2017;
Roelofs et al., 2017).

Besides a similar overall immunophenotype of sMSC
compared with other MSC (De Bari et al., 2001; Sakaguchi et al.,
2005; Hermida-Gomez et al., 2011), CD271, a highly expressed
markers in freshly isolated BM-SMC, is absent in healthy sMSC
(Karystinou et al., 2009), yet expressed in cells isolated from OA
patients (Hermida-Gomez et al., 2011). A topographic analysis
of synovium and a full phenotypic description of sMSC are
presented in our previous review (Kouroupis et al., 2019b).
According to reports, sMSC show a greater proliferation rate and
stronger chondrogenic capacity than BM- and adipose-derived
MSC whereas they exhibit a reduced hypertrophic differentiation
potential (Kubosch et al., 2018).

Previous studies have demonstrated that sMSC and IFP-
MSC show comparable chondrogenic differentiation capacity
(Mochizuki et al., 2006). In a comparative study of three different
MSC types, Mochizuki et al. indicated that sMSC and IFP-MSC
have similar chondrogenic capacity between older and younger
donors but higher compared to donor-matched subcutaneous
fat-derived MSC (Mochizuki et al., 2006). However, Vinardell
et al. (2012) reported that when sMSC and IFP-MSC are
embedded in agarose hydrogel constructs and chondrogenic
induced for 49 days in vitro, sMSC accumulate higher levels of
sGAG and Collagen than IFP-MSC. Similarly, to IFP-MSC, sMSC
expansion in hPL medium result in increased proliferation rate
but lower chondrogenic capacity compared to sMSC grown in the
presence of FBS (Nimura et al., 2008).

In preclinical settings, Koizumi et al. (2016) isolated sMSC
from both OA and RA patients and assessed their cartilage
repair capacity using a scaffold-free tissue engineering approach.
Interestingly, 8 weeks post-implantation both OA or RA sMSC-
treated groups showed hyaline cartilage-like repair and in
general higher histological scores compared to the untreated
rats. In addition, various studies using animal sMSC (rabbit-,
murine-, equine-, porcine-harvested synovium) showed that
sMSC groups are superior to control groups in treating full
thickness chondral lesions (To et al., 2019). Therefore, sMSC
show good reparative capacity of chondral lesions and no adverse
effects after implantation in vivo.

MSC-Induced Immunomodulation: Focus
on Macrophage Polarization
During early phases of OA, both IFP and synovium become
infiltrated by immune cells, including T cells, B cells,
monocytes/macrophages, and mast cells (Pelletier et al., 2001;
Sokolove and Lepus, 2013; Ioan-Facsinay and Kloppenburg,
2017; Kalaitzoglou et al., 2017). These infiltrates complement
the local resident cells, especially macrophages, which as seen
in Figure 3 polarize into a pro-inflammatory classical M1
phenotype (discussed above in section “Role of IFP/Synovium
Resident Macrophages”). MSC exerts immunomodulatory
effects, simultaneously influencing multiple immune cells
through different mechanisms including cell-cell contact, soluble
factors, and released extracellular vesicles (e.g., exosomes). The
specific effects of MSC on T cells, B cells and other immune cells
have been reviewed extensively elsewhere (Djouad et al., 2005;
Hagmann et al., 2013). Herein, we emphasize on the current
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FIGURE 3 | Macrophages within the IFP can polarize into M1 (pro-inflammatory) or M2 (anti-inflammatory, tissue repair) variants. Both variants are associated with a
multitude of unique surface markers with varying levels of expression that allow for proper identification.

knowledge regarding the interactions with macrophages given
their pivotal role in the initiation and progression of the disease
as source of inflammatory and degradative mediators.

Numerous studies have explored macrophages as potential
therapeutic targets, including their pharmacological depletion
from synovium and IFP and manipulation of their phenotype
[reviewed in Fernandes et al. (2020) and Wu et al. (2020)]. Initial
evidence suggests that polarization of macrophages back to an
alternative anti-inflammatory M2 phenotype can be induced.
M2 macrophages represent the other extreme in terms of
functionality, as they play a major role in local tissue repair by
secreting low levels of anti-inflammatory cytokines such as IL-
10 at a much more accelerated rate compared to unpolarized
“naïve” resident macrophages (Figure 3) (Zeyda et al., 2007;
Fernandes et al., 2020). In fact, it has been proposed that MSC can
indeed promote M2 macrophage polarization in vitro (Harrell
et al., 2019). Furthermore, our group recently reported the
switch of IFP macrophages from an M1 to an M2 phenotype
in vivo, after a single intra-articular injection of a subset of BM-
MSC (CD146+) in rats with induced synovitis and IFP fibrosis
(Bowles et al., 2020).

The effects of IFP-MSC in macrophage polarization are
far less defined. Nevertheless, it has been described that
Substance P within IFP actively participates in immune responses
and inflammatory cascades (i.e., neurogenic inflammation),
enhancing the migration of monocytes to sites of inflammation

(Mashaghi et al., 2016; Spitsin et al., 2017; Suvas, 2017).
Relatedly, our group recently reported that upon exposure
to a pro-inflammatory environment (Kouroupis et al., 2019a)
and when manufactured under regulatory-compliant conditions
(Kouroupis et al., 2020), IFP-MSC become enriched for
CD10/neprilysin, an ectopeptidase that efficiently degrades
Substance P both in vitro and in vivo. The resulting CD10-rich
IFP-MSC exhibit an innate ability to selectively migrate to areas
of active synovitis, reverse inflammation and fibrosis of synovium
and IFP. Interestingly, these effects are directly related with the
level of positivity for CD10 (Kouroupis et al., 2020). Furthermore,
Substance P has been reported to induce the differentiation of
pro-inflammatory macrophages into a special phagocytic M2
phenotype (M2SP), different from previously reported M2a and
M2c subphenotypes (Lim et al., 2017).

Efforts to Translate Pre-clinical Findings
Into Clinical Protocols
MSC-based therapy to treat OA has received attention based on
promising pre-clinical reports. Various cell sources have been
successfully used in early-phase clinical trials, including bone
marrow (Orozco et al., 2014; Vega et al., 2015; Soler et al.,
2016), umbilical cord (Matas et al., 2019), and adipose-derived
stromal vascular fraction (Garza et al., 2020). A recent systematic
review summarizing available studies testing intra-articular MSC
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therapy for OA and chondral defects concluded that the therapy
is safe with clinical and in some cases imaging improvement
(McIntyre et al., 2018). Synovial and IFP-derived MSC are
starting to be explored clinically, yet only initial data is available.

In a pioneering case control study, a mean of 1.89
million (range, 1.2–2.3 × 106) IFP-MSC with platelet-
rich plasma (PRP) were intra-articularly injected in OA
patients after arthroscopic debridement, and controlled
against debridement + PRP alone (Koh and Choi, 2012).
Patients were followed for up to 12–18 months, reporting
no adverse effects and a significant improvement in Patient
Reported Outcome Measurements (PROMs) including Lysholm
score, visual analog scale (VAS), and Tegner activity were
noted in the study group compared with control cohorts.
However, Koh et al. (2013) did note some limitations,
namely that the control group was significantly different
in terms of baseline radiographic and chondral lesion
severity, as well as the small sample size with a focus on
severe KOA patients.

The same team then in a 24–26-month follow-up study
demonstrated that the significant decrease of the Western
Ontario and McMaster Universities Osteoarthritis Index
(WOMAC) is directly related to the amount of injected IFP-MSC
(Koh et al., 2013). The authors also found that study patients
demonstrated significantly improved cartilage whole-organ MRI
scores that correlated strongly with decreased pain and improved
function (R = −0.588 and −0.0536 respectively, p < 0.05,
N = 18). Collectively, these initial results indicate the positive
effect of intra-articularly injected IFP-MSC in reducing pain and
improving knee function in OA patients, when compared with
arthroscopic debridement and PRP alone. However, in addition
to the various limitations acknowledged by the authors, the
study population only included older patients with severe KOA,
thus warranting further clinical investigation to determine the
efficacy of the procedure as well as it’s applicability to a broader
clinical population.

Similarly, sMSC yielded encouraging results in treating
symptomatic chondral lesions in patients. Sekiya et al. (2015)
expanded sMSC with autologous human serum and intra-
articularly injected them to treat femoral condyle chondral
lesions in 10 patients. For an average follow-up of 52 months,
histologic analyses indicated hyaline and fibrous cartilage
formation paralleled by improved Lysholm scores (Sekiya
et al., 2015). In another study, autologous sMSC scaffold-
free constructs were implanted in five patients to treat 1.5–
3.0 cm2 chondral lesions (Shimomura et al., 2018). Forty-eight
weeks post-implantation all patients achieved defect filling with
tissue integration whereas histological analysis indicated strong
cartilaginous tissue formation in all patients, with few spindle-
shaped fibroblast-like cells localized only at the new-formed
cartilage superficial zone. No adverse effects and significantly
clinical improvements were reported at a 24-month follow-up.

These preliminary clinical studies indicated for both IFP-
MSC and sMSC the overall significant improvement in cartilage
repair without any complications for the patients treated.
Nevertheless, the small number of patients involved and the
potential confounding effect of parallel products (e.g., PRP)

requires the design of prospective randomized, controlled trials
to establish efficacy beyond the established safety.

FUTURE PERSPECTIVES

The involvement of immune and inflammatory events within
the synovium and IFP during early KOA has led to changes in
our thinking of the disease and potential treatment approaches.
Furthermore, the identification of resident and infiltrating
macrophages as key modulators of those events presents
a novel therapeutic target in the treatment of KOA. The
ability of locally delivered IFP-MSCs to regulate synovial/IFP
inflammation and fibrosis then becomes a promising therapeutic
alternative to mitigate disease progression of the disease.
Nevertheless, more information is required to solidly connect
MSC local effects, macrophage phenotypic polarization and
inflammation/fibrosis control with a durable effect limiting
KOA progression.

Moreover, one critical aspect to understanding the impact of
macrophages in the IFP is to dissect the molecular, cellular, and
genetic identities of the heterogeneous tissue. Critically, over the
past decade, numerous technologies allowing single-cell RNA
sequencing (scRNA-seq) have emerged to provide unprecedented
ability to examine gene expression profiles at the single cell level
(Svensson et al., 2018). In general, these techniques allow the
deconvolution of a heterogeneous tissue into specific cell types
and an examination of their abundance. Furthermore, subtle
differences between cells of similar lineages can be distinguished
on the basis of just a few gene expression changes. Finally, there
is the ability to compare cellular profiles and gene expression
across samples, conditions, or groups of individuals. While efforts
are currently underway to dissect the cellular complexity of
tissues throughout the body including articular cartilage during
OA progression (Regev et al., 2017; Ji et al., 2019), the IFP is
noticeably absent from these efforts. To our knowledge, there
is no existing high throughput single cell expression profile of
the IFP, either in its nascent state or following injury or in
chronic disease. Given its role in the immune responses to these
conditions, this remains a topic of importance moving forward in
characterizing its importance.

Mechanistically, Substance P targeting and degradation
by CD10-rich MSC could become a mechanism to disrupt
the sustained chronic inflammation within the IFP and the
transmission of nociception signals from the knee to the central
nervous system. As such, the reduction of Substance P+ nerve
fibers within IFP may possibly be related to control of KOA’s most
prevalent clinical presentation, joint pain.

Finally, an emerging approach results from the description
of extracellular vesicles (e.g., exosomes) released by MSC, and
their involvement in the therapeutic activities of the cells.
For instance, our previous reports indicate comparable effects
between cells and their supernatant in terms of their ability to
degrade Substance P. These observations may support the idea
of a “cell-free” product that may recapitulate the therapeutic
effects of their parental cells, with manufacturing advantages
as previously described (Pachler et al., 2017; Rohde et al., 2019;
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Witwer et al., 2019). In fact, the potential use of exosome-
based cell-free products has already sparked multiple pre-
clinical studies assessing potential clinical translation of cell-
free products with encouraging results (Kordelas et al., 2014;
Mendicino et al., 2014; Karnieli et al., 2017; Hu et al., 2019; Cai
et al., 2020; Jiang et al., 2020; Meng and Qiu, 2020).

CONCLUSION

The knowledge accrued over the last decade regarding the IFP
has led to important discoveries that elucidate its role beyond
that of a vascular tissue with a biomechanical role in the
anterior compartment of the knee. The proposition of the IFP
and the synovium functioning as a single unit and the now
recognized tight molecular crosstalk between both structures has
been shown to promote resident immune cells, immune cell
infiltration, and the subsequent production of articular cartilage
degradative molecules associated with the propagation of various
knee pathologies such as KOA. On the other hand, the presence
of IFP-MSC and sMSC suggest that the IFP and synovium act as
a reservoir of therapeutic cellular products engaged with repair
after exposure to inflammation and subsequent injury. These

MSC have also been shown to modulate macrophage phenotypic
polarization in favoring immunomodulatory conditions.

The ability of local MSC to regulate synovial/IFP inflammation
and fibrosis poses a promising therapeutic target to mitigate
disease progression. Therefore, the IFP presents an important
target for limiting joint disease progression. More information is
required to better understand the connection between the local
MSC population and macrophage phenotypic polarization as it
relates to controlling the propagation of inflammation/fibrosis
and subsequent progression of KOA.
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