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Injury risk curves (IRCs) represent the quantification of risk of adverse outcomes, such as
a bone fracture, quantified by a biomechanical metric such as force or deflection. From
a biomechanical perspective, they are crucial in crashworthiness studies to advance
human safety. In clinical settings, they can be used as an assistive tool to aid in the
decision-making process for surgical or conservative treatment. The estimation of risk
corresponding to a level of biomechanical metric is done using a regression technique,
such as a parametric survival regression model. As with any statistical procedure, error
measures are computed for the IRC, representing the quality of the estimated risk. For
example, confidence intervals (CIs) are recommended by the International Standards
Organization, and the normalized confidence interval width (NCIW) is computed based
on the width of the CI. This is a surrogate for the quality of the risk curve. A 95% CI
means that if the same experiment were hypothetically repeated 100 times, at least
95 of the computed CIs should contain the true risk curve. Such an interpretation is
problematic in most biomechanical contexts as rarely the same experiment is repeated.
The notion that a wider confidence interval implies a poorer quality risk curve can
be misleading. This article considers the evaluation of CIs and its implications in
biomechanical settings for safety engineering and clinical practice. Alternatives are
suggested for future studies.

Keywords: confidence intervals, injury risk curves, survival analysis, NCIS quality measures, resampling

INTRODUCTION

Certain civilian and military scenarios induce traumatic loadings to the human body (falls and
motor vehicle crashes in the former, and underbody blast from improvised explosive devices
in the latter), and they may lead to injuries. The loading vector and mechanism of injuries
may vary between scenarios. Despite the environmental differences between the two disciplines
(younger/healthier versus older and age-related and or diseased populations, vehicle design
differences, use of personal protective equipment (PPE) use such as helmets and body armor),
priorities for the treatment and prevention/mitigation of injuries remain the same.

Clinicians use diagnostic images of the injuries such as x-rays and computed tomography
for treatment: example, surgical options may depend on stability of the diseased/injured spine
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(Denis, 1983; Choi et al., 2019). Multiple segmented rib
fractures may indicate the need for more aggressive chest
injury treatment (Knopp et al., 1988; Cavanaugh et al., 1994;
Yoganandan et al., 2013b). The goal of safety engineers is to
reproduce field-observed injuries to develop standards for injury
prevention/mitigation and improve vehicle designs, and clinical
practice (FMVSS-208, 2001; FMVSS-214, 2008; Kutteruf et al.,
2018). In both disciplines it is important to re-create field-
observed injuries, understand their mechanisms, and determine
human tolerance via robust statistical analysis. The former two
are routinely accomplished via experiments with post-mortem
human surrogates (PMHS) models.

The development of injury risk curves (IRCs) is a critical
output from statistical analysis of PMHS data. The IRC
estimation using a statistical technique such as survival regression
is accompanied by estimation of confidence intervals (CIs)
(Petitjean et al., 2012, 2015; Yoganandan and Banerjee, 2018).
They are used to determine the normalized confidence interval
width (NICW) to determine the quality of the IRC (Yoganandan
et al., 2016a, 2017). In this article, the 95% CIs are used (Kuppa
et al., 2003; Yoganandan et al., 2015).

The focus of this article is the evaluation of CIs for its potential
use in safety engineering and medicine. It is appropriate to
note the technical meaning of the confidence parameter and
CI: CI means that if the same experiment that was used to
construct the estimate and CI were to be repeated 100 times under
the same underlying conditions, about 95 of those experiments
should yield CIs which contain the true unknown IRC (Efron
and Tibshirani, 1986). Impact biomechanical experiments are
rarely repeated under exact conditions and the true IRC is
always unknown. This poses challenges for statistical evaluation
of the CIs. The objective of this study is to present a new
methodology for evaluation of the CIs from an already generated
impact biomechanical dataset and examine the coverage at
different risk levels.

METHODS

Application Dataset
A widely used biomechanical dataset from side impact sled tests
was used in the study. There were 42 PMHS tests (Kuppa et al.,
2003). Each PMHS specimen was subjected to side impact loading
at different velocities, padding and rigid load wall conditions,
offsets, and supplemental restraint systems (with and without
side impact airbags). Each specimen was tested once. Injuries

Abbreviations: fdavg, Average full thorax deflection; hdavg, Average half thorax
deflection; ASA, Average Spine Acceleration; fvavg, Average velocity derived
from full thorax deflection; hvavg, Average velocity derived from half thorax
deflection; fvcavg, Average viscous criterion derived from full thorax deflection;
hvcavg, Average viscous criterion derived from half thorax deflection; CI,
confidence interval; IRC, injury risk curve; fdmax, Maximum full thoracic
deflection; hdmax, Maximum half thoracic deflection; fvmax, Maximum velocity
derived from full thorax deflection; hvmax, Maximum velocity derived from
half thorax deflection; fvc, Maximum viscous criterion derived from full thorax
deflection; hvc, Maximum viscous criterion derived from half thorax deflection;
NCIW, Normalized Confidence Interval Width; pel, Pelvic wall force; PMHS,
Post-Mortem Human Subjects; SRSWOR, Simple Random Sampling Without
Replacement; TTI, Thoracic Trauma Index.

included unilateral or bilateral rib fractures in isolation or in
combination with solid organ trauma. The presence and absence
of injury were graded using the Abbreviated Injury Scale, and
severities greater than 3 were classified as injurious (AIS, 1990).
Biomechanical metrics included data from different types of
sensors: accelerometers for the thoracic trauma index (TTI), peak
pelvic and Average Spine Accelerations (ASA), and forces for the
thoracic and pelvic regions from respective load cells (the reader
is referred to the Table shown in the Appendix B, page 209, from
the original publication).

Out of the 42 PMHS specimens, complete data were available
for 37 tests. The reduced set of 37 complete experiments included
18 specimens with injury and 19 specimens without injury. This
is termed as the evaluation dataset in this paper. The present
analysis was performed for all biomechanical metrics, and results
are reported for the 15 metrics that had the best Brier scores
among the set of 33 metrics, indicating that they had the strongest
association with injury outcome (Brier, 1950; Yoganandan and
Banerjee, 2018; DeVogel et al., 2019).

Overview of Coverage Estimation
A CI provides a plausible range of values for an unknown
parameter. A 95% CI indicates that the chance the interval
contains the true value of unknown parameter is 0.95. This means
that if the experiment is repeated 100 times, approximately 95
of the CIs contain the true value of the unknown parameter. In
the biomechanical context, it is not feasible to construct random
repeated experiments for evaluating confidence intervals and the
true IRC is unknown. Therefore, to evaluate the CIs, surrogate
experiments using constrained resampling were used.

Random Experiment Surrogates
The IRC computed using the evaluation dataset serves as the
surrogate for the true unknown risk curve. The size of the
evaluation subset is larger than what is typically observed for
biomechanical studies, that usually have sample sizes in the range
10 to 30. To evaluate the performance of CI, 10,000 resampled
subsets were created for each of the sample sizes, 10, 20, and
30. Each resampled subset represents an experimental surrogate
for which a CI is computed. An estimate of how much of the
surrogate IRC is contained within the CI interval was obtained
and then averaged over the 10,000 replications for each sample
size 10, 20, and 30. In effect, the 10,000 randomly sampled
subsets, consisting of 10 samples each, spanned all datapoints
from the evaluation dataset in a random order. The subsets
spanning all datapoints in the evaluation dataset was also true for
sample sizes 20 and 30.

Constrained Resampling Techniques
A resampled subset is constructed by drawing, without
replacement, a subsample of a given size from the evaluation
dataset. The simplest way of constructing such a sample is by
using simple random sampling without replacement (SRSWOR)
(Chaudhuri and Adhikary, 1989). There are several difficulties in
using a direct SRSWOR: it might lead to subsets of data being
chosen with only injury or only no-injury observations, or with
severe imbalance in favor of injury or no-injury observations.
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The imbalance could lead to non-convergence for some of the
statistical algorithms, such as parametric survival regression,
and/or lead to biased comparisons, since the application
dataset of choice has approximately equal numbers of injury
observations and no-injury observations (Kuppa et al., 2003).

CI Construction
The IRC is estimated by using a parametric survival regression
model. In general, this involves estimating the parameters of
regression model and constructing the CI for all risk levels.
To formalize notations, consider a biomechanical metric M, a
parametric distribution function F with parameters α and β.
The estimated risk for M can be represented as r̄ = F(M; ᾱ, β̄),
where ᾱ, β̄ are the estimated values of the parameters from the
data. Standard software packages can be used for performing
parametric survival analysis and computing a standard error
estimate r̄, denoted as se (r̄). A naïve way of constructing an
interval around the estimate [r̄ would be to use (r̄ ± critical
value∗ se [r̄]). However, since the likelihood function for the
risk r̄ estimation is not linear, the naïve interval would be
inaccurate. More efficient intervals are obtained by using the delta
method, where the interval is constructed on the linear scale and
exponentiated using the delta method approximation. Owing to
their superior statistical properties and their use in most recent
IRC estimation, delta method intervals were used in this study
(Yoganandan et al., 2014; Yoganandan and Banerjee, 2018).

Evaluation Measures
Lower and upper tails: Frequently, the surrogate risk curve based
on the evaluation set is not contained within the CI boundaries
computed from the resampled datasets at the tails. So, evaluations
of IRC containment within the CI boundaries were examined
over three regions: (a) the whole IRC (between risk levels 0 to
1); (b) the lower tail defined as the portion of the IRC below risk
level 0.33; and (c) the upper tail defined as the portion of the IRC
above the 0.66 risk level.

Proportion and average length of coverage: For each of the
three regions (overall curve, and lower and upper tails), the
following measures were calculated: (a) the proportion, defined
as the percent of times any portion of a region of interest from
an estimated CI contained the surrogate risk curve, and (b) the
average length, defined as the relative lengths of the region where
the surrogate risk curve fell inside the estimated CI.

RESULTS

The average number of times resampled CIs contain the surrogate
risk curve, for each of the metrics, and for each of the subset sizes
is shown in Tables 1, 2, respectively. Table 1 shows the average
length for the upper and lower tails and whole curve. Table 2
shows these data for the average proportion parameter.

For the sample size of 10, for the lower tail, the proportion
ranged from 65.11% (for the metric fdmax) to 82.58% (metric
TTI); while the average length ranged from 69.41% (fdmax) to
87.43% (for TTI). For the upper tail, the proportion ranged from

66.65% (fdmax) to 82.16% (fvcavg); while the average length
ranged from 71.05% (fvmax) to 90.49% (fdavg).

For the sample size of 20, for the lower tail, the proportion
ranged from 60.07% (fdmax) to 92.87% (fvc); while the average
length ranged from 63.45% (fdmax) to 94.81% (ASA). For the
upper tail, the proportion ranged from from 62.06% (fdmax) to
92.9% (fvc); while the average length ranged from 80.76% (fvmax)
to 94.7% (hvc).

For the sample size of 30, for the lower tail, the proportion
ranged from 80.04% (for metric fdavg) to 99.1% (fvc); while the
average length ranged from 80.29% (for metric fdmax) to 99.41%
(ASA). For the upper tail, the proportion ranged from 80.26%
(fdmax) to 99.21% (metric fvc); while the average length ranged
from 89.92% (fdmax) to 99.57% (fvc).

DISCUSSION

The present analysis used a representative dataset from a
large body of tests conducted in our laboratory (Kuppa
et al., 2003). While it was focused on skeletal injuries to
the thoracic rib cage, the same type of analysis can be
used for spine trauma. Spine trauma studies have developed
IRCs for injuries such as cervical and thoracolumbar fractures
(Yoganandan et al., 2013a,c, 2015, 2016b, 2018). It should
be noted that statistical significance does not always imply
or equate to clinical significance. For example, differences in
force between two types of injuries (wedge fracture without
instability or ligament laxity, versus wedge fracture with
instability) may not be statistically significant, while the latter
type of fracture often require surgical intervention (Maiman
and Yoganandan, 1991; Maiman et al., 2002). CIs in such cases
may need additional consideration. Clinically or scientifically
meaningful differences should be considered in conjunction with
confidence intervals.

Uncertainty Quantification
Uncertainty quantification is an essential part of any
statistical procedure. If IRCs are to be used as a predictive
tool for clinical decision making it would be important
to know the reliability of the estimates (Khor et al.,
2018). Similar perspectives hold true in the applications
of IRCs in biomechanical engineering for advancing
human safety. This article demonstrates that standard
CI construction as currently used, is deficient in the
representation of this uncertainty. Some alternatives are
suggested in subsection, “Alternative Methods for Interval
Construction.”

Coverage of an Interval
Typically, for any statistical method proposed or for a new
learning paradigm, researchers investigate the actual versus
the theoretical coverage using simulated data. With simulated
data, as the generation mechanism is completely known to
the experimenter beforehand, such coverage evaluations do not
require the construction of resampled datasets. However, in
the context of IRCs, constructing simulated datasets is difficult
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TABLE 1 | The average percentage of CI’s with any length containing the surrogate IRC, for the upper and lower tails and whole curve (all) for all three sample sizes IRC.

Metric Sample size Coverage Average length Coverage Average length Coverage Average length

ASA 10 all 89.09 lower 85.71 upper 85.01

fdavg 10 all 88.35 lower 82.03 upper 90.49

fdmax 10 all 80.05 lower 69.41 upper 84.20

fvavg 10 all 79.83 lower 75.24 upper 75.98

fvc 10 all 88.68 lower 85.47 upper 84.32

fvcavg 10 all 88.46 lower 84.68 upper 85.23

fvmax 10 all 74.43 lower 70.25 upper 71.05

hdavg 10 all 86.26 lower 78.64 upper 90.02

hdmax 10 all 83.10 lower 74.24 upper 84.92

hvavg 10 all 85.52 lower 80.96 upper 81.15

hvc 10 all 88.17 lower 84.61 upper 84.50

hvcavg 10 all 87.17 lower 83.22 upper 82.70

hvmax 10 all 82.33 lower 77.35 upper 78.15

pel 10 all 83.45 lower 79.44 upper 78.86

TTI 10 all 90.38 lower 87.44 upper 87.93

ASA 20 all 96.30 lower 94.81 upper 94.65

fdavg 20 all 84.87 lower 74.57 upper 88.49

fdmax 20 all 77.52 lower 63.45 upper 81.74

fvavg 20 all 89.07 lower 85.71 upper 86.70

fvc 20 all 96.01 lower 94.32 upper 94.56

fvcavg 20 all 95.76 lower 93.72 upper 94.58

fvmax 20 all 83.22 lower 79.65 upper 80.76

hdavg 20 all 88.41 lower 78.66 upper 91.80

hdmax 20 all 86.02 lower 75.79 upper 88.32

hvavg 20 all 94.12 lower 91.75 upper 91.98

hvc 20 all 96.08 lower 94.24 upper 94.77

hvcavg 20 all 95.70 lower 93.92 upper 94.08

hvmax 20 all 91.00 lower 87.71 upper 88.65

pel 20 all 92.88 lower 90.59 upper 90.49

TTI 20 all 95.69 lower 94.01 upper 93.98

ASA 30 all 99.61 lower 99.42 upper 99.42

fdavg 30 all 91.64 lower 83.14 upper 95.69

fdmax 30 all 87.57 lower 80.29 upper 89.92

fvavg 30 all 97.79 lower 96.77 upper 97.31

fvc 30 all 99.64 lower 99.39 upper 99.57

fvcavg 30 all 99.56 lower 99.24 upper 99.49

fvmax 30 all 94.63 lower 92.86 upper 93.92

hdavg 30 all 93.95 lower 86.88 upper 96.94

hdmax 30 all 92.14 lower 84.29 upper 94.87

hvavg 30 all 99.28 lower 98.89 upper 99.02

hvc 30 all 99.57 lower 99.30 upper 99.45

hvcavg 30 all 99.53 lower 99.19 upper 99.43

hvmax 30 all 98.65 lower 97.92 upper 98.33

pel 30 all 98.82 lower 98.25 upper 98.35

TTI 30 all 99.25 lower 98.92 upper 98.87

If the CI coverage were 95%, each of the numbers below should be approximately 95.

because they do not accurately mimic the exact variability
associated with biomechanical experimental data.

For confidence interval evaluations, surrogates have
been created using constrained SRSWOR subsets, to mimic
experiments with smaller sample sizes. However, these subsets
are not independent. With strict statistical interpretation, the
CI should be evaluated against independent experiments under

the same experimental conditions. However, it should be noted
that completely independent repeatable experiments may lead to
more varied IRCs, which in turn may lead to poorer coverage.

Quality Implications
One of the crucial uses of the CI in the IRC context is its use in the
estimation of the NCIW measures at different levels, as they serve
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TABLE 2 | The average percentage of CI’s with any proportion containing the surrogate IRC, for the upper and lower tails and whole curve (all) for all three sample
sizes IRC.

Metric Sample size Coverage Ave proportion Coverage Ave proportion Coverage Ave proportion

ASA 10 all 80.64 lower 81.96 upper 81.46

fdavg 10 all 76.08 lower 77.67 upper 80.04

fdmax 10 all 63.06 lower 65.11 upper 66.65

fvavg 10 all 74.31 lower 74.40 upper 74.58

fvc 10 all 80.55 lower 82.08 upper 81.77

fvcavg 10 all 80.85 lower 81.85 upper 82.16

fvmax 10 all 69.90 lower 69.92 upper 70.16

hdavg 10 all 74.03 lower 74.68 upper 79.13

hdmax 10 all 68.95 lower 70.37 upper 72.63

hvavg 10 all 78.16 lower 78.73 upper 78.50

hvc 10 all 79.69 lower 81.67 upper 81.22

hvcavg 10 all 78.58 lower 79.66 upper 79.42

hvmax 10 all 75.83 lower 76.06 upper 76.16

pel 10 all 76.88 lower 77.52 upper 77.06

TTI 10 all 79.10 lower 82.58 upper 81.95

ASA 20 all 92.04 lower 92.68 upper 92.34

fdavg 20 all 70.50 lower 70.74 upper 74.43

fdmax 20 all 59.72 lower 60.07 upper 62.06

fvavg 20 all 85.08 lower 85.09 upper 85.39

fvc 20 all 92.42 lower 92.87 upper 92.90

fvcavg 20 all 91.99 lower 92.35 upper 92.60

fvmax 20 all 79.47 lower 79.47 upper 79.79

hdavg 20 all 72.97 lower 73.67 upper 77.98

hdmax 20 all 71.18 lower 71.66 upper 74.55

hvavg 20 all 89.97 lower 90.20 upper 90.22

hvc 20 all 92.16 lower 92.64 upper 92.58

hvcavg 20 all 91.66 lower 92.13 upper 92.08

hvmax 20 all 86.86 lower 86.90 upper 87.07

pel 20 all 89.01 lower 89.26 upper 89.14

TTI 20 all 88.69 lower 90.51 upper 89.81

ASA 30 all 98.87 lower 98.95 upper 98.88

fdavg 30 all 80.02 lower 80.04 upper 83.24

fdmax 30 all 80.26 lower 80.26 upper 80.26

fvavg 30 all 96.54 lower 96.54 upper 96.65

fvc 30 all 99.06 lower 99.10 upper 99.21

fvcavg 30 all 98.96 lower 98.98 upper 99.10

fvmax 30 all 92.77 lower 92.77 upper 93.17

hdavg 30 all 84.17 lower 84.19 upper 88.06

hdmax 30 all 81.94 lower 81.95 upper 84.73

hvavg 30 all 98.52 lower 98.57 upper 98.55

hvc 30 all 98.84 lower 98.87 upper 98.93

hvcavg 30 all 98.78 lower 98.81 upper 98.86

hvmax 30 all 97.69 lower 97.69 upper 97.81

pel 30 all 97.79 lower 97.84 upper 97.82

TTI 30 all 97.50 lower 97.92 upper 97.55

If the CI coverage were 95%, each of the numbers below should be approximately 95.

as quality indicators for IRC’s, often governing the decision for
adopting an IRC (Petitjean et al., 2015). The present study raises
questions on the accuracy and validity of the CI, particularly for
lower (<0.33) and higher (>0.66) risk levels. Based on the results
of this study, alternative methods of quality measurements and
benchmarking ought to be considered for IRCs.

Alternative Methods for Interval
Construction
Several alternative modes of confidence interval construction
exist, as applied to the IRC context. Resampling tools which
were used for evaluation, could be used for non-parametric
confidence interval construction, even if the underlying risk
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curve estimation is from a parametric survival regression
(Efron and Tibshirani, 1986). However, these would be difficult
to implement in low sample size settings. Non-parametric
intervals have been known to be less efficient but more
flexible than parametric CI. Likelihood-based alternatives may
include Bayesian methods: a prior is constructed based on past
experiments and the standard parametric survival regression
likelihoods are used in conjunction with the priors to yield
Bayesian credible intervals (Ibrahim et al., 2001). One of the
major advantages of a Bayesian credible interval is that it can
be interpreted in probabilistic terms (Yoganandan et al., 2020).
A 95% Bayesian credible interval would be interpreted more
directly and simply as the interval such that the probability of
an estimate belonging to this interval is 95%, as opposed to
the repeated experiment interpretation of classical frequentist
confidence intervals (Ibrahim et al., 2001). The difficulty
with the Bayesian credible intervals is the sensitivity to the
prior. For low sample settings, the prior could have large
influence on the estimates (Martz, 2014). These approaches
should be considered in future studies as better scientific
representations of the biomechanical uncertainty for IRCs that
may be used in safety engineering and clinical practice for
standard of care.

Limitations and Strengths
The present study adopted a widely used experimental dataset to
meet the objectives of the study. The specific results shown in
Tables 1, 2 are, therefore, applicable to only the evaluation dataset
that consisted of 15 metrics from a limited set of 37 experiments.
However, the data set of 37 samples is relatively large for an
injury biomechanics data set. The underlying assumption was
that the 5 unused tests did not capture the 15 metrics that
were ultimately chosen for their strong association with injury
outcome. Furthermore, the parametric survival analysis treated
injury data as left censored, and this was because the timing of
the injuries was not known from the experiments. As uncensored
treatment adds certainty to the datapoint/observation, the IRCs
tended to shift rightwards, i.e., greater biomechanical metric
(e.g., force) associated with a specific injury risk. This may
change the uncertainty coverage; however, the SRSWOR can
still be used with the constraint of matching the ratio of
injury to non-injury datapoints. As each specimen was tested
once, data were right or left censored, depending on the non-
injury or injury status. In cases where repeated testing is
done resulting in non-injury and injury datapoints for the
same specimen, interval censoring should be used. It should
be noted that as the number of datapoints in the resampled
dataset approaches the evaluation dataset, the randomization

effect reduces. This may result in an overestimation of the
CI coverage. The present study showing that the CI coverage
is non-uniform across risk levels of IRCs is new to the
impact and injury biomechanics field. The strengths of the
study include the detailed evaluation of confidence intervals
which have not been adequately interrogated in this context
before. Another strength is that the current method does not
use simulated data.

Summary
Using a large impact biomechanics dataset, the SRSWOR method
was used to show that the proportion and average length of
coverage increase with sample size; however, most of the coverage
for both parameters were below 95%. In general, the coverage was
non-uniform across all risk levels. In addition, the performance
of the CI varied for different metrics, representing different
sensitivities of each metric for the injury outcome.
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