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The 22 genetically encoded amino acids (AAs) present in proteins (the 20 standard AAs
together with selenocysteine and pyrrolysine), are commonly referred as proteinogenic
AAs in the literature due to their appearance in ribosome-synthetized polypeptides.
Beyond the borders of this key set of compounds, the rest of AAs are generally named
imprecisely as non-proteinogenic AAs, even when they can also appear in polypeptide
chains as a result of post-transductional machinery. Besides their importance as
metabolites in life, many of D-α- and L-α-“non-canonical” amino acids (NcAAs) are
of interest in the biotechnological and biomedical fields. They have found numerous
applications in the discovery of new medicines and antibiotics, drug synthesis,
cosmetic, and nutritional compounds, or in the improvement of protein and peptide
pharmaceuticals. In addition to the numerous studies dealing with the asymmetric
synthesis of NcAAs, many different enzymatic pathways have been reported in the
literature allowing for the biosynthesis of NcAAs. Due to the huge heterogeneity of
this group of molecules, this review is devoted to provide an overview on different
established multienzymatic cascades for the production of non-canonical D-α- and
L-α-AAs, supplying neophyte and experienced professionals in this field with different
illustrative examples in the literature. Whereas the discovery of new or newly designed
enzymes is of great interest, dusting off previous enzymatic methodologies by a “back
and to the future” strategy might accelerate the implementation of new or improved
multienzymatic cascades.

Keywords: amino acid, non-canonical, enzyme, cascade, industrial process, proteinogenic, biotechnology

INTRODUCTION

Chemically, an amino acid (AA) is any molecule containing a carboxylic acid and an amino group.
This family of compounds is hugely heterogeneous, and includes any linear or cyclic molecule
containing both substituents. The amino moiety can be situated at the α-, β-, γ-, δ-, etc. position
with respect to the carbonyl group of the acid. AAs can be further functionalized with other
substituents, additionally heterogenizing this family of compounds. Nonetheless, the L-isomer of
α-AAs occupies a central role in biosciences, since these molecules were evolutionarily chosen
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to become the building blocks of one of the macromolecular
scaffolds sustaining life. The 22 genetically encoded AAs present
in proteins (the 20 standard AAs together with selenocysteine
and pyrrolysine) are commonly referred as proteinogenic amino
acids (PAAs). On the other hand, the IUPAC recommended the
terminology “common amino acids” for genetically-encoded AAs
and other AAs with known biological functions, such as L-DOPA
(IUPAC, and IUb, 1984). By the end of the seventies, more
than 140 natural AAs and AA-derivatives had been proposed in
natural proteins (Uy and Wold, 1977; Hunt, 1985); more than
900 NcAAs have been suggested in plants (Yamane et al., 2010).
Thousands of synthetic NcAAs not occurring naturally have
been chemically synthesized by different approaches (Xue et al.,
2018). In this sense, the “proteinogenic” or “non-proteinogenic”
classification of AAs can result imprecise, as non-coded AAs
are also commonly found in significant quantities in proteins,
such as hydroxylysine and hydroxyproline. Several D-α-AAs
are also widely described in peptides and proteins (Martínez-
Rodríguez et al., 2010c; Grishin et al., 2020), and the emerging
role of its metabolism in the innate defense has been recently
suggested (Sasabe and Suzuki, 2018). On the other hand, AAs not
included in the above-mentioned group have also been referred
to as non-protein, non-natural, unnatural, non-canonical, non-
proteinogenic or unusual, among other terminologies (Hunt,
1985; Fan et al., 2015; Blaskovich, 2016; Agostini et al., 2017;
Baumann et al., 2017). We will refer to them as “non-canonical
amino acids” (NcAAs).

The occurrence and biological activity of NcAAs in vivo
is hugely diverse, and some of their properties have been
reflected in different papers (Wagner and Musso, 1983; Hunt,
1985; Nunn et al., 2010; Yamane et al., 2010; Walsh et al.,
2013; Blaskovich, 2016; Zou et al., 2018; Narancic et al.,
2019; Hedges and Ryan, 2020). Broadly, several NcAAs are
utilized as intermediates in primary metabolic pathways (e.g.,
homoserine, ornithine, citrulline,. . .). Free NcAAs also possess
antimicrobial, antiproliferative, anti-inflammatory, or other
biologically relevant activity (Martínez-Rodríguez et al., 2010c;
Blaskovich, 2016). They serve as building blocks for many
different small bioactive peptide scaffolds (Walsh et al., 2013),
including hormones (Martínez-Rodríguez et al., 2010c), or
confer specific structural properties to proteins (i.e., collagen or
insulin). The activity of many NcAAs have been proposed not
directly related with the physiology of the organism itself, but
with its relationship with other organisms in its environment,
suggesting physiological (toxic), deterrent (pheromonal) or other
modifying roles external to the responsible species (Hunt, 1985).
Microorganisms are a clear example on how evolution has taken
advantage of using NcAAs over competing organisms (Nunn
et al., 2010), and microbial antibiotics have been widely described
(Martínez-Rodríguez et al., 2010c; Walsh et al., 2013; Blaskovich,
2016). Many of the isolated NcAAs or peptide-containing NcAAs
also serve as plant-defense against predators, pathogens or other
organisms competing for the same resources (Yamane et al.,
2010; Rodgers, 2014). Furthermore, some NcAAs have also been
shown to be toxic for humans and domestic animals (Bell, 2003;
Nunn et al., 2010; Rodgers, 2014), and have been suggested as
potentially linked to neurodegenerative diseases (Rodgers, 2014).

Biomedical and Biotechnological
Applications of NcAAs
Enantiopure NcAAs are of considerable economic importance
because of their broad industrial applications (Patel, 2013;
Narancic et al., 2019). The global AA market increased from 0.7
million tons in 1985 to 9.3 Million Tons in 2019, and is expected
to reach a volume of 11.9 million tons in 2025 (Ikeda and Takeno,
2013; IMARC group, 2019). A “Compound Annual Growth Rate”
(CAGR) of 5.6% is expected from 2015 to 2022 (Sánchez et al.,
2018). Amino acid global sales reached $20 billion in 2014 and
are predicted to exceed $35 billion by 2022 (Yan and Wang,
2019). Besides the advances focused on the million-ton scale bulk
PAAs L-glutamate and L-lysine, the Industry continues widening
its interest toward other specialty NcAAs (Wendisch, 2020), and
there is strong commercial interest in developing new amino
acid applications (Sánchez et al., 2018). In fact, some NcAAs
have proven key for the production of many of the 200 top-
grossing pharmaceuticals (Boville et al., 2018b). Some examples
are sitagliptin (Merck, $5.91 billion), pregabalin (Pfizer, $4.62
billion) or glecaprevir (AbbVie, $3.44 billion) (Belk, 2018).

From the biotechnological and biomedical point of view,
NcAAs have found applications as a significant expansion of
the building-block repertoire and/or as organocatalysts (Agirre
et al., 2019), also in the manufacture of a wide range of
pharmaceuticals (Patel, 2013; Narancic et al., 2019), or as
linear and cyclic peptides (Blaskovich, 2016; Martin et al.,
2018). Some of the commercial applications directly rely on
the natural properties of peptide-containing NcAAs, such
as several antibiotics. Norine, an online database, contains
updated and important information on different NcAAs present
in non-ribosomal peptides (Flissi et al., 2020). Besides the
direct commercial applications of NcAAs or derived NcAA-
compounds, they have also been used into structure-activity
relationships (SAR) peptides (Blaskovich, 2016); incorporation
of NcAAs into protein and peptides using ribosomes is an
increasing field with many possibilities (Martin et al., 2018).
In vivo incorporation of NcAAs into antimicrobial peptides is
also an enlarging field of study due to the potential discovery of
novel antibiotics to broaden the human pharmacological barriers
toward microbes. Genetic engineering methodologies allow gene
libraries of 101–108 variants and thus, random incorporation
of NcAAs in their sequence; sampling can thus be carried out
by high throughput approaches, greatly shortening the time
needed for new antimicrobial development (Baumann et al.,
2017). Among them, the possibility to engineer proteins to
incorporate site-specifically different NcAAs has had a major
impact the development of this field (Agostini et al., 2017;
Zhao et al., 2020). This technology has removed the constraints
imposed by nature on the use of the 22-genetically encoded AAs,
allowing to insert new properties and/or improved functionalities
on protein scaffolds. Some examples are improvements in
enzyme catalytic efficiency, chemical and/or thermal stability,
substrate scope, enantio- and stereoselectivity or inhibition. Also,

1ω-TAs are also valuable for the synthesis of chiral amines to their broad substrate
spectrum, and do not necessarily precise the presence of the carboxylate group in
the reactant.
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bioorthogonal functionalization, spectroscopic probes, photo-
cross-linking, metal-chelating or post-translational modification-
mimicking has been reported (Agostini et al., 2017; Almhjell and
Mills, 2018; Rezhdo et al., 2019; Zhao et al., 2020). Thus, the
huge advances on the standardization of methodologies for the
production of enzymes incorportating NcAAs (Smolskaya and
Andreev, 2019; Hammerling et al., 2020) are also boosting the
application and economic significance of NcAAs.

Among the numerous L-α-NcAAs with biomedical
interest (Table 1), L-homophenylalanine is a precursor for
the preparation of valuable angiotensin-converting enzyme
(ACE) and renin inhibitors (e.g., enalapril, lisinopril, quinapril,
ramipril, trandolapril or benazepril, among others; Ahmad
et al., 2009). L-α-aminobutyric acid (L-ABA, homoalanine)
is a building block for the synthesis of important drugs such
as ethambutol (antituberculosis drug), or levetiracetam and
brivaracetam (antiepileptic drugs; Zhu et al., 2011). L-DOPA
(levodopa) and several derivatives -including carbidopa- are
among the most useful drugs for Parkinson’s disease treatment
(Min et al., 2015; Gupta et al., 2019). L-5-hydroxytryptophan
therapeutic effects include treatment of depression, chronic
headache and insomnia (Hara and Kino, 2013). L- and D-
biarylalanine-containing compounds have found different
applications (e.g., dipeptidyl peptidase 4-, botulinum toxin- or
amyloid-β-peptide aggregation- inhibitors; Ahmed et al., 2015).
On the other hand, D-para-hydroxyphenylglycine (D-pHPG)
and D-phenylglycine (D-PheGly) are utilized in the semi-
synthesis of many different antibiotics (Martínez-Rodríguez
et al., 2010c and references therein) (Table 2). Among these
antibiotics, amoxicillin, cephalexin and ampicillin are included
in the World Health Organization’s list of essential medicines.
D-Phenylalanine is used in the preparation of nateglinide, a
drug for the treatment of type 2 diabetes (Bettini et al., 2020).
D-valine is used in the synthesis of tau-fluvalinate, a pyrethroid
pesticide (Chen et al., 2016). D-amino acid mixtures have been
shown to trigger biofilm disassembly in some bacterial species,
promoting antibiotic sensitivity (Kolodkin-Gal et al., 2010; Dawe
et al., 2017). As highlighted by the Nobel Prize Frances Arnold,
important Protein Engineering efforts are also been paid to
develop new ‘NcAA synthases’ for efficient, environmentally
friendly production of valuable NcAAs (Almhjell et al., 2018).
Nonetheless, many different enzymatic approaches have already
been described in the past for NcAA production, which might
give us some lessons from the past; these are interesting starting
points for improvement, allowing new designs utilizing the
immense enzymatic knowledge gained by the development of
Green Chemistry.

MULTIENZYMATIC CASCADES FOR THE
PRODUCTION OF NcAAs

NcAAs chemical synthesis continues receiving at present huge
attention in the literature due to the relevance of these
compounds (Xue et al., 2018; Mei et al., 2020; Zou et al.,
2020). On the other hand, the search for sustainable processes
to decrease the environmental impact of industrial processes

(Wenda et al., 2011; Sheldon and Brady, 2018) is probably
the main reason boosting the development of multienzymatic
cascade (MEC) reactions. The unprecedented development in
bioinformatics, metagenomics and de novo design coupled
with protein engineering (i.e., directed evolution and high-
throughput screening) during the last decade have resulted in
a massive diversification on the enzymes available for synthetic
Chemistry and Biology (Devine et al., 2018). These advances
have accelerated the arrival of the “Fourth Wave of Biocatalysis”
(Bornscheuer, 2018) or the so-called “Golden Age of Biocatalysis”
(Devine et al., 2018); combinations of enzymes -whether in
cascade reactions or via metabolic engineering- brings together
many beneficial features which might convert this strategy
as the ‘first choice’ to advance in the biotransformation field
(Bornscheuer, 2018). The huge research efforts in this field are
reflected by different reviews from the last decade on general
operational and functional aspects on different MECs, some of
them also including disseminated information on AA production
using chemoenzymatic and multienzymatic systems (Lopez-
Gallego and Schmidt-Dannert, 2010; Hall and Bommarius, 2011;
Ricca et al., 2011; Oroz-Guinea and García-Junceda, 2013; France
et al., 2017; Quin et al., 2017; Devine et al., 2018; Schrittwieser
et al., 2018; Sperl and Sieber, 2018; Wu and Li, 2018; Cutlan
et al., 2019; Hwang and Lee, 2019; Giannakopoulou et al., 2020).
The interest on MECs in biotransformation and biomedical
engineering is thus clear, being an attractive alternative for
the production of biofuels, pharmaceuticals and fine chemicals
(Hwang and Lee, 2019). A short summary of different MECs
developed for the production of NcAAs during the last decades
can be consulted in Table 3.

The plausible combinations of MEC are huge and their
operational aspects have been reviewed in detail in the last
lustrum. Firstly, MEC can be developed using purified proteins,
whole cells or cell-free extracts. The spatial organization of MECs
have also received special attention, since it affects important
operational parameters such as substrate/product diffusion, the
availability of cofactors or the probable interference or inhibition
of cofactors among the different enzymes used in the reactions
(Quin et al., 2017; Bugada et al., 2018). In this sense, many diverse
multienzyme arrangements have been proposed, such as fusion
proteins (e.g., including a peptide linker), nucleic acid-based
or protein-based scaffolds, co-immobilization, Vesicle-based
or protein-based encapsulation, or even repurposed cellular
organelles (Bugada et al., 2018; Hwang and Lee, 2019). Also,
different recent reviews have described different approaches and
materials suitable for MEC immobilization (Zdarta et al., 2018;
Hwang and Lee, 2019; Ren et al., 2019; Romero-Fernández and
Paradisi, 2019). Since many MECs rely on the regeneration of
cofactors for continuous operation, its selection is also important;
several regeneration systems have been studied from the middle
of 20th century, and different alternatives are available, such as
formate dehydrogenase (FDH), glucose dehydrogenase (GDH)
or NADH Oxidase (NOX) among many others (De Wildeman
et al., 2007; Hall and Bommarius, 2011; Tassano and Hall, 2019).
This complex scenario makes difficult to efficiently categorize
MECs, but the reader is referred to the seminal work by Kroutil’s
group to envision different parameters which can be used for
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TABLE 1 | Some examples of free L-α-NcAAs or L-α-NcAA-containing compounds.

Compound Other names and utilization References

L-2-Aminobutyric acid L-ABA, homoalanine. Key chiral intermediate for the
synthesis of important drugs, such as levetiracetam
or brivaracetam (antiepileptic drugs) and
ethambutol (antituberculosis drug)

Zhu et al., 2011; Silva et al., 2019

L-Homophenylalanine Precursor for the preparation of ACE and renin
inhibitors(e.g., enalapril, lisinopril, quinapril, ramipril,
trandolapril and benazepril)

Ahmad et al., 2009

L-Norvaline Building block in the chemical synthesis of
Perindopril, an antihypertensive drug (ACE inhibitor)

Park and Shin, 2015

L-Norleucine Cost-effective residue-specific labeling of proteins Anderhuber et al., 2016

L-tert-Leucine Building block for HIV protease inhibitors and matrix
metalloprotease inhibitors (MMPIs); organocatalysts

Xue et al., 2018; Agirre et al., 2019

Levodopa and derivatives L-DOPA. In combination with carbidopa, used in
Parkinson’s disease treatment since the 1960s.
Etilevodopa, Melevodopa (more soluble L-DOPA
prodrugs). Droxidopa (treatment of
Parkinson/orthostatic hypotension)

Gupta et al., 2019

L-2-Chlorophenylglycine Chiral synthon for the chemical synthesis of
Clopidogrel, an antiplatelet agent used in the
prevention and treatment of thrombosis

Saeed et al., 2017

L-Phosphinothricin Glufosinate. Active ingredient of many commercial
herbicides

Bartsch et al., 1996

L-Citruline Pharmaconutrient Eberhardt et al., 2014

L-Ornithine Widely used to improve human health and reported
to have beneficial effects on the liver and the heart

Wu et al., 2020

L-neo-Pentylglycine Valuable synthons for organic synthesis Gröger et al., 2006

L-Allysine ethylene acetal Building block used for an production of
Omapatrilat (antihypertensive drug)

Patel, 2001

Trans-4-Hydroxy-L-proline Chiral synthon for the chemical synthesis for
pharmaceuticals such as antiphlogistics,
carbapenems and ACE- inhibitors

Shibasaki et al., 2000

L-3-Hydroxyadamantyl-glycine Essential component of a type-2 diabetes drug
(saxagliptin)

Patel, 2013

L-6-Hydroxynorleucine A chiral intermediate required in the synthesis of
omapatrilat (Vanlev), an antihypertensive drug

Patel, 2001

Ergothioneine Antioxidant with therapeutic potential Halliwell et al., 2018

L-Propargylglycine Irreversible inhibitor of the enzyme cystathionine
γ-lyase

Asimakopoulou et al., 2013; Weiser et al., 2015

β-(1-Azulenyl)-L-alanine Spectroscopic probe for investigating protein
dynamics and protein–protein interactions

Watkins et al., 2020

L-theanine Taste-enhancing properties and probable health
benefits, approved as GRAS ingredient by the FDA.

Mu et al., 2015, 2019; Yang et al., 2020

18F- and 11C -labeled NcAAs Preclinical and clinical tumor PET/CT imaging Sun et al., 2018

α-Vinylic AAs L-Vinylglycine, useful for the study of
PLP-dependent enzymes

Berkowitz et al., 2006

L-Cys derivatives L-ethionine, S-phenyl-L-cysteine, potential
applicability as an antiretroviral/protease inhibitor for
HIV

Xu et al., 2019; Yu et al., 2019

L-pHFG and derivatives Found in several peptidic natural products including
the vancomycin group of antibiotics (e.g.,
vancomycin, chloroeremomycin, and complestatin)
as well as other antimicrobial compounds such as
ramoplanin

Al Toma et al., 2015

Fluorinated amino acids Different applications in medicinal chemistry (e.g.,
amino acid decarboxylase inhibitors, bioisosteres,
building block for different drugs, . . .)

Mei et al., 2020

L-Phe derivatives (p- ethynyl-, p- azido-,
p-propargyloxy, p-O-pentynyl-)

Incorporation into proteins for electron
paramagnetic resonance spectroscopy

Widder et al., 2019

(Continued)
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TABLE 1 | Continued

Compound Other names and utilization References

p-and m-methoxy-L-Phe Key intermediates for the synthesis of tamsulosin
and HIV protease inhibitors, respectively.

Tork et al., 2019

p-Iodo-L-Phe Site-specific incorporation into proteins for structure
determination

Xie et al., 2004

p-Nitro-L-Phe Building block for the synthesis of Melphalan, an
anticancer drug

Ashnagar et al., 2007; Rosini et al., 2017

p-Fluoro-L-Phe Building block for the synthesis of Melflufen
(melphalan flufenamide), an anticancer drug

Cotton et al., 2019

p-Bromo-L-Phe Intermediate in the production of several
biarylalanines

Khorsand et al., 2017

m-(trifluoromethyl)-L-Phe Integrated in kinesin KIFC1 inhibitors Tork et al., 2019

Site-specifically incorporated reporter NcAAs Allow examining local environments in peptides and
proteins in solution (e.g., 4-cyano-L-phenylalanine,
acridonylalanine, . . .)

Hostetler et al., 2018; Kearney et al., 2018

L-p-Boronophenylalanine Boron neutron capture therapy (BNCT), a cancer
therapy

Nakao et al., 1996

5′-Hydroxy-L-tryptophan Different therapeutic effects (depression, chronic
headache, and insomnia)

Hara and Kino, 2013

L-β-(thieno[3,2-b]pyrrolyl)-alanine Substitution of Trp in proteins in the E. coli
proteome for functional studies

Agostini et al., 2017

Substituted-L-arylalanines Dipeptidyl peptidase 4 inhibitors, α4β7 integrin
inhibitors, viral 3C-protease inhibitors and
endothelin-converting enzyme inhibitors

Ahmed et al., 2015

Substituted L-pyridylalanines Found in anticoagulants, dipeptidyl peptidase 1
inhibitors, leukocyte adhesion inhibitors, azaindoline
anticancer agents, antidiabetics, or as structures for
organocatalysts

Ahmed et al., 2016

L-Tryptophan analogs Starting materials for chemical syntheses as well as
probes for chemical biology. e.g., 4-Nitro-Trp,
biosynthetic and chemical precursor to thaxtomin
A, potentially useful agrochemical and a chemical
precursor to the tumor-promoter indolactam VA;
4-cyano-tryptophan, fluorophore for imaging
studies in vitro and in vivo; β-Alkyl Tryptophan
Analogs, frequent components of useful natural
products, biochemical probes, and therapeutics

Herger et al., 2016; Romney et al., 2017; Boville
et al., 2018a,b; Dick et al., 2019

Metal-chelating NcAAs for metalloprotein
engineering

e.g., (2,2′-bipyridyn-5-yl)alanine and
2-amino-3-(8-hydroxyquinolin-3-yl)propanoic acid

Almhjell and Mills, 2018

Further NcAAs can be consulted in Blaskovich (2016), Zou et al. (2018), Narancic et al. (2019), and Hedges and Ryan (2020).

classification of biocatalytic artificial cascades (e.g., number of
steps/catalysts, chronology, topology, types of catalysts used;
Schrittwieser et al., 2018).

Hydantoinase Process
The “Hydantoinase Process” is a cheap and environment-friendly
enzymatic cascade for the potential production of virtually
any enantiopure α-AA. This process is known for more than
four decades, and received its name from the ability of D-
hydantoinases (dihydropyrimidinase, E.C. 3.5.2.2) to hydrolyze a
wide spectrum of D,L-5-monosubstituted hydantoins. The latter
compound was converted till the corresponding N-carbamoyl-
D-α-AA, which could be afterward hydrolyzed chemically to the
corresponding D-α-AA. D-hydantoinase was afterward coupled
with a stereospecific D-carbamoylase (E.C. 3.5.1.77) to obtain
the corresponding D-α-AA starting from a racemic mixture of
5-monosubstituted hydantoins (Figure 1A), taking advantage

of the spontaneous racemization of these substrates under
certain conditions (see below; Grifantini et al., 1998; Slomka
et al., 2017). Its principal application was the production
of D-pHPG and D-PheGly (precursors of Ampicillin and
Amoxicillin, Table 2), but it has been applied industrially for
the production of different enantiopure AAs by DSM, Evonik,
Kanegafuchi or Recordati (Bommarius et al., 1998; Wilms
et al., 2001; Wenda et al., 2011). Despite its relevance, DKRs
accomplished through this process were initially limited to
5-monosubstituted hydantoins for which a fast spontaneous
racemization was favored since racemization of most hydantoins
is usually a very slow process; chemical racemization is
highly dependent on the pH, temperature and other factors
(such as bulkiness) of the substituent in the 5-position of
these precursors (Pietzsch and Syldatk, 2002). This enzymatic
tandem was enhanced to increase its substrate scope, allowing
the production of additional D-α-AAs by inclusion of a
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TABLE 2 | Some examples of D-α-AAs and D-α-AA-containing compounds.

Compound Other names and utilization References

D-Ala or D-Ser Treatment of neuropsychiatric disorders Tsai et al., 2006

D-Met Preventing/reducing oral mucositis induced by radiation and chemotherapy for
head and neck cancer

Hamstra et al., 2018

D-Phe Modulator of L-phenylalanine-mediated amyloid formation, proposed as a
therapeutic molecule in phenylketonuria. Used to obtain nateglinide for the
treatment of type 2 diabetes; also used as analgesic and anti-stress agent

Singh et al., 2014; Bettini et al., 2020

D-Val Precursor of different compounds. Fluvalinate (tau-fluvalinate) pyrethroid
pesticide; it also forms part of D-penicillamine, actinomycin D, fungisporin and
valinomycin (pharmaceutical drugs in clinical. Actinomycin D is employed
clinically as chemotherapeutics for the treatment of highly malignant tumors

Chen et al., 2016

D-Lys Reduction of renal uptake of radioactivity during scintigraphy and PRRT Bernard et al., 1997

Different free D-α-AAs or their mixtures Biofilm disassembly (e.g., D-leucine, D-methionine, D-tyrosine, and
D-tryptophan at nanomolar concentration)

Kolodkin-Gal et al., 2010; Dawe et al.,
2017

β-Chloro-D-Ala Antibiotic, acts sinergically with D-cycloserine David, 2001

Poly-D-Lys Multi-compartment microfluidic device with covalently bound poly-D-Lysine
greatly improved the differentiation and maturation of stem cell-derived neurons

Kamande et al., 2019

D-Cys Generation of luminescent substrates for firefly luciferase (Luciferin and
derivatives)

Godinat et al., 2014

D-Cyclohexylalanine Chiral intermediate for the synthesis of thrombin inhibitor Inogatran, although
lower effectivity than heparin

Patel, 2013

D-pHPG Chiral intermediate for the synthesis of different antibiotics: Amoxicillin
Cefadroxil, Cefatrizine, Cefprozil, Cefoperazone, Cefpiramide

Martínez-Rodríguez et al., 2010c

D-PG Chiral intermediate for the synthesis of different antibiotics: Ampicillin,
Cephalexin, Cefaclor, Pivampicillin, Piperacillin, Bacampicillin

Martínez-Rodríguez et al., 2010c

D-PG derivatives e.g., 4-Fluoro-D-PG (chiral building block for potent h5-HT1D receptor agonist
and HCV NS5B polymerase inhibitors), 4-Chloro-D-PG (key chiral synthon for a
macrocyclic Hedgehog pathway inhibitor and a potent morpholinone MDM2
inhibitor)

Zhou et al., 2017

D-Ala Building block of pharmaceutical drugs and synthesis of Alitame (artificial
sweetener)

Kim and Shin, 2001; Han and Shin,
2018

D-Trp Synthesis of Tadalafil (Cialis) for the treatment of male erectile dysfunction Gouda, 2017

D-Ser/O-methyl-D-Ser Building block of (R)-lacosamide (Vimpat), an antiepileptic drug Aratikatla and Bhattacharya, 2020

D-tert-Leu Synthesis of antitumor, anti-inflammatory, and antiviral agents. Cheng et al., 2018

D-2-ABA Synthesis of antibiotics, angiotensin-converting enzyme 2 inhibitors,
brain-permeable polo-like kinase-2 (Plk-2) inhibitors, matrix metalloproteinase
inhibitors and antiproliferatives

Chen et al., 2017

D-Fluoroalanine Inhibition of bacterial alanine racemase Mei et al., 2020

D-Ala/D-Leu Neuroprotective and neuroregenerative potential Liska et al., 2018

D-Trp-containing peptides (with
additional D-α-AAs)

Immunosuppressors (e.g., Thymodepressin R©) and other hemosuppressive
Thymodepressin R© analogs

Deigin et al., 2020

D-Homophenylalanine Building block for the synthesis of highly potent factor XA inhibitors Stürzebecher et al., 2007

D-Phe derivatives (D-arylalanines) Building blocks in the synthesis of many pharmaceuticals, including antibiotics,
antidiabetics and chemotherapeutic agents

Walton et al., 2017; Zhu et al., 2019

D-(2,4,5-trifluoro)-Phe Key precursor of the antidiabetic sitagliptin Parmeggiani et al., 2019a

D-(5,5,5-trifluoro)-Norvaline Intermediate of avagacestat (BMS-708163), a potent inhibitor of γ-secretase Hanson et al., 2013

D-m-(trifluoromethyl)-Phe Key chiral intermediate for (R)-PFI-2, a potent inhibitor for SETD 7, involved in
multiple cancer-cancer related

Tork et al., 2019

D-p-methyl-Phe Incorporated into Pin1 inhibitors, anti-inflammatory formyl peptide receptor 1
antagonist

Tork et al., 2019

Substituted-D-arylalanines Synthesis of biarylalanines through chemoenzymatic reaction (botulinum toxin
inhibitors, amyloid-β-peptide aggregation inhibitors, kinesin-14 motor protein
KIFC1 inhibitors or and reverse cholesterol transport facilitators

Ahmed et al., 2015

Substituted D-Trp derivatives Building blocks for mitragynine, or inhibitors of breast cancer resistance protein
or necrostatins

Parmeggiani et al., 2019b

(R)-2-amino-3-(7-methyl-1H-indazol-5-
yl)-propanoic acid

Key intermediate for the synthesis of antagonists of calcitonin gene-related
peptide receptors, potentially useful for migraine and other maladies

Patel, 2018

Further information can be consulted in Martínez-Rodríguez et al. (2010c); Grishin et al. (2020), and Pollegioni et al. (2020).

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 6 August 2020 | Volume 8 | Article 887

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00887 August 7, 2020 Time: 19:4 # 7

Martínez-Rodríguez et al. Multienzymatic Cascades for α-Amino Acid Production

TABLE 3 | Summary of different MECs for the production of NcAAs described in the literature.

Multienzymatic cascade MEC example to L-NcAA MEC example to D-NcAA

Hydantoinase Process DHYD + HR + NSAR + LCAR DHYD + HR + DCAR

Amidohydrolase Process L-NxAH + NSAR D-NxAH + NSAR

Amidase Process L-AMID + ACLR D-AMID + ACLR

Amino acid oxidase-based MECs DAAO/catalase + L-TA + TPL TrpS + LAAO

Amino acid dehydrogenase-based MECs DAAO/catalase + LAADH + CRS LAAO/catalase + DAADH + CRS

Ammonia lyase-based MECs PAL + DAOO PAL + LAAD

Transaminase-based MECs D-TA + L-PheDH + CRS LAAD + D-TA

Lipase-containing MECs Lipase + protease —

Tyrosine phenol lyase-containing MECs TD + TGDH + TPL —

Tryptophan synthase-containing MECs D-threonine aldolase + TrpS + AR —

Amino acid ester racemase/esterase system ACLR-homolog with AAER activity + esterase —

An illustrative example is shown, but there are other possible combinations. It is advisable that the reader consults the specific example in the corresponding section
to determine whether (i) isolated, enantiopure and/or enantioenriched AAs are obtained, and (ii) the MEC is a general method suitable for the production of different
NcAAs or specific NcAAs. Additional steps might also be necessary, such as separation of other compounds produced in the reactions, or chemical steps to convert the
systems into chemoenzymatic DKR methods. DHYD, D-hydantoinase; HR, hydantoin racemase; NSAR, N-succinyl-amino acid racemase; DCAR, D-carbamoylase; LCAR,
L-carbamoylase; L-NxAH, L-N-Substituted amidohydrolase (e.g., L-acylase, LCAR or L-succinylase); D-NxAH, D-N-Substituted amidohydrolase (e.g., D-acylase, DCAR,
or D-succinylase); L-AMID, L-amidase (e.g., L-proline amidase or L-amidase); ACLR, α-amino ε-caprolactam racemase; D-AMID, D-amidase (e.g., D-aminopeptidase);
DAAO, D-amino acid oxidase; L-TA, L-enantioselective transaminase; LAADH, L-amino acid dehydrogenase (e.g., LeuDH, GluDH); CRS, cofactor recycling system; LAAO,
L-amino acid oxidase; TrpS, tryptophan synthase; DAADH, D-amino acid dehydrogenase; PAL, phenylalanine ammonia lyase; LAAD, L-amino acid deaminase; D-TA, D-
enantioselective transaminase; L-PheDH, L-phenylalanine dehydrogenase; TD, toluene dioxygenase; TGDH, toluene cis-glycerol de-hydrogenase; TPL, tyrosine phenol
lyase; AR, alanine racemase; AAER, amino acid ester racemase.

third enzyme together the original hydantoinase/carbamoylase,
namely hydantoin racemase (E.C. 5.1.99.5, Martínez-Rodríguez
et al., 2004). This third enzyme allowed extending the use of
the hydantoinase/carbamoylase tandem to 5-monosubstituted
hydantoin substrates for which chemical racemization is not
favored (Wilms et al., 2001; Martínez-Rodríguez et al., 2002;
Martínez-Gómez et al., 2007). Total conversion and 100%
enantiopure D- or L-α-AAs can thus be obtained when a HR
racemases the remaining non-hydrolyzed 5-monosubstituted
hydantoin (Figure 1A).

As most hydantoinases exhibit clear D-enantioselectivity
(Martínez-Rodríguez et al., 2010a), this MEC has been
mainly applied for the production of enantiopure D-α-AAs
(Figure 1A, dashed line). Different D-α-AAs were produced
using whole cells of recombinant polycistronic systems
containing D-hydantoinase, D-carbamoylase and hydantoin
racemases from Agrobacterium species (Figure 1B). 0.3 M
D,L-5-(2-methylthioethyl)hydantoin (52.3 g·L−1) was totally
converted after 6 h till D-Met using this approach (0.25 g of
cells·mL−1, pH 8; Martínez-Gómez et al., 2007). On the other
hand, hydantoinases usually present a “residual” L-activity that
can be coupled to an L-stereospecific carbamoylase (Figure 1A,
full line) (E.C.3.1.5.87) (Wilms et al., 2001; May et al., 2002; Kao
et al., 2008); protein engineering allowed obtaining a preferential
L-hydantoinase activity toward L-5-methyl-thio-ethyl hydantoin,
highly enhancing the production of L-methionine (May et al.,
2000). Recombinant E. coli cells coexpressing thermostable
hydantoinase (dihydropyrimidinase) from Brevibacillus agri and
L-carbamoylase from Bacillus kaustophilus allowed conversion
yields of 98% starting from enantiopure L-substrate at pH 7.0
(Figure 1C, Kao et al., 2008). Using racemic substrate, 43%
conversion was achieved, since the D-carbamoyl-derivative
accumulates in the reaction and the chemical racemization of

this substrate is not favored. On the other hand, the system could
be reused at least 8 times without noticeable loss of activity (Kao
et al., 2008).

This D-hydantoinase/L-carbamoylase system was further
expanded by coupling with an N-succinyl-amino acid racemase
(NSAR, E.C.3.1.5.87), since the latter enzyme allows the
racemization of the D-N-carbamoyl-α-AA produced by
hydantoinase. Thus, in situ conversion producing L-N-
carbamoyl-α-AA in the reaction medium occurs, which can
be further hydrolyzed by L-carbamoylase to the corresponding
L-α-AA (Figure 1D). However, this system still depends on
the L-residual enantioselective activity of D-hydantoinase for
those substrates whose chemical racemization is not favored.
Different reports on the hydantoinase/NSAR/L-carbamoylase
system have been reported (Bommarius et al., 2002; Lo et al.,
2009). Engineered dihydropyrimidinase from Brevibacillus agri
(L159V mutant), Bacillus kaustophilus L-carbamoylase and
Deinococcus radiodurans NSAR were purified, and allowed the
production of L-homophenylalanine (90% yield, 5 h, Lo et al.,
2009). This L-enantiospecific MEC system has further been
expanded by inclusion of a hydantoin racemase, speeding up the
process by racemization of the remaining L-5-monosubstituted
hydantoin for substrates whose chemical racemization is not
favored (Rodríguez-Alonso et al., 2015, 2016, 2017; Figure 1D).
Using purified and immobilized enzymes, the proposed “double-
racemase Hydantoinase Process” was efficiently applied for
the synthesis of different NcAAs (L-norvaline, L-norleucine,
L-ABA, L-homophenylalanine). The immobilized system
could be reused 15 times, retaining 80% of the initial activity
(Rodríguez-Alonso et al., 2017).

Thus, enantiopure D-or L-α-AAs can be obtained by
different combinations of hydantoinases (Altenbuchner et al.,
2001), carbamoylases (Martínez-Rodríguez et al., 2010b), NSARs
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FIGURE 1 | The Hydantoinase Process. (A) General scheme on the different possibilities for the Hydantoinase Process. The “D-system” appears contained in the
dashed line, whereas the “L-system” is remarked by a full line. Inclusion of an NSAR enzyme highly improves the “L-system.” HR*: hydantoin racemase (or chemical
racemization when favored); DHyd, D-activity of hydantoinase; DCar, D-carbamoylase; LHyd, L-activity of hydantoinase; LCar, L-carbamoylase; NSAR,
N-carbamoyl-racemase promiscuous activity of N-succinyl-racemase (Martínez-Rodríguez et al., 2010b, 2020). D-AA, D-α-amino acid. D-NCA,
N-D-carbamoyl-α-amino acid. D-5H, D-5-monosubstituted hydantoin. L-AA, L-α-amino acid. L-NCA, N-L-carbamoyl-α-amino acid. L-5H, L-5-monosubstituted
hydantoin. (B) Conversion of different racemic 5-monsubstituted hydantoins till the corresponding enantiopure D-α-AA using the Hydantoinase Process (D-system).
Recombinant E. coli cells containing two different recombinant polycistronic systems using Agrobacterium enzymes were used. HR*: hydantoin racemase (or
chemical racemization when favored); DHyd, D-activity of hydantoinase; DCar, D-carbamoylase (Martínez-Gómez et al., 2007). (C) Bioconversion of
L-homophenylanine hydantoin derivative using recombinant E. coli cells. Coexpression of hydantoinase from Brevibacillus agri (Hyd) and L-carbamoylase (LCar) from
B. kaustophilus was carried out. Hyd from Brevibacillus agri is highly D-enantioselective, but possess residual L-activity for this specific substrate (Kao et al., 2008).
(D) “Double-racemase Hydantoinase Process” for the production of enantiopure L-α-AAs. Different combinations of purified and immobilized D-hydantoinase (DHyd)
and hydantoin racemase (HR) from Agrobacterium species, N-succinyl-amino acid racemase (NSAR) from Geobacillus kaustophilus and L-carbamoylase (LCar) from
Geobacillus stearothermopillus allowed the production of different enantiopure NcAAs; L-Met and L-Val were also efficiently produced with this system
(Rodríguez-Alonso et al., 2015, 2016, 2017).
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(Martínez-Rodríguez et al., 2020), and hydantoin racemases
(Martínez-Rodríguez et al., 2004). This process has also
been expanded for the production of enantio-enriched β-AAs
(Martínez-Gómez et al., 2012; Rudat et al., 2012).

Amidohydrolase Process
The original Industrially used “Acylase Process” (Degussa, now
Evonik) consisted of a KR of N-acetyl-α-AA using L- (E.C.
3.5.1.4) or D-stereospecific acylases (E.C. 3.5.1.81)2. Coupling of
an NSAR with an stereospecific acylase produces a bienzymatic
DKR system allowing the production of different enantiopure
L- or D-α-AAs starting from inexpensive N-acetyl-α-AAs
(Figure 2A; May et al., 2002; Hsu et al., 2006; Baxter et al., 2012).
Based on this process, and taking advantage of (i) the substrate
promiscuity of NSAR enzymes toward different N-substituted-
α-AAs (NxAs), (ii) the existence of different enantioselective
or stereospecific amidohydrolases (NxAH) under E.C. 3.5.1
enzyme group, and (iii) the substrate promiscuity shown by these
enzymes (e.g., D- and L-carbamoylases, Martínez-Rodríguez
et al., 2010b), coupling of an NSAR with a stereospecific
NxAH allows the production of D- or L-α-AAs starting from
many different substrates (e.g., N-succinyl-, N-acetyl-, N-
carbamoyl-, N-chloroacetyl-, N-butyryl-, N-propyl-, N-benzoyl,
or N-formyl-AAs; Martínez-Rodríguez et al., 2020 and references
therein). Thus, the “Amidohydrolase Process” is a more general
nomenclature which encompasses the use of a promiscuous
and stereospecific D- or L-amidohydrolase together an NSAR
enzyme, generating different NSAR/NxAH tandems. Different
DKR MECs for production of enantiopure D- or L-α-AAs
arise from these combinations, allowing the use of different
NxAs, as a result of the broad substrate promiscuity of NSARs
and NxAHs (Figure 2A). So far, different NSAR/Acylase,
NSAR/carbamoylase or NSAR/succinylase tandems have been
used or proposed (Martínez-Rodríguez et al., 2020 and references
therein; Figures 2B–F). Metal requirement/compatibility of these
MECs needs to be studied in order to assess optimal conditions
of the different MECs. Furthermore, since all these enzymes
have shown broad substrate promiscuity, proper selection of the
substrate of NSAR/NxAH tandems can enhance conversion rates
(Soriano-Maldonado et al., 2014a,b).

An E. coli whole cell system comprising a NSAR/L-
acylase from Deinococcus radiodurans was used to produce
L-homophenylalanine with a 99.9% yield and over 99%
e.e. (in 1 h), with a productivity of 10 mmol·L−1

·h−1

(Figure 2B, Hsu et al., 2007). Engineered NSAR (G291D/F323Y
mutant) from Amycolatopsis sp., together with D-acylase
(Chirotech Technology Ltd) allowed conversion of N-acetyl-
D,L-allylglycine (50 g·L−1) into D-allylglycine in 18 h
with a 98% conversion (Figure 2C, Baxter et al., 2012).
Whole cell systems containing NSAR and L-succinylase
from Geobacillus kaustophilus were successfully applied
for the synthesis of L-4-bromophenylalanine, L-3-
fluorophenylalanine, L-2-naphthylalanine, L-2-indanylglycine,
and L-6-heptenylglycine (conversion over 98%, >99.9% e.e.)

2A historical perspective on this process can be consulted in Martínez-Rodríguez
et al. (2020).

(Figure 2D, Masutoshi et al., 2016). An NSAR/D-succinylase
system has also been reported (Sumida et al., 2016, 2018).
However, the enantiomeric excess of D-Trp and D-Phe produced
by the biocatalysts was lower than 95%; the authors suggested
that D-succinylase from Cupriavidus sp. is enantioselective and
also recognize the L-isomer, concluding that this system needs
still development for improving the enantioselective character of
D-succinylase (Figure 2E). Purified and immobilized NSAR from
Geobacillus kaustophilus and L-carbamoylase from Geobacillus
stearothermophilus were applied for the DKR of different racemic
N-carbamoyl- and N-formyl-α-AAs (Figure 2F; Soriano-
Maldonado et al., 2014a,b). Unexpectedly, N-formyl-substrates
were recognized more efficiently than N-carbamoyl-α-AAs. Total
conversion till 15 mM of L-ABA, L-norleucine, L-norvaline, or
L-homophenylalanine was achieved in less than 2 h (Soriano-
Maldonado et al., 2014a). A preparative scale reaction was
also conducted; 0.5 M of racemic N-formyl-aminobutyric acid
could be converted in 85 h (at low enzyme concentrations;
2.0 µM L-carbamoylase and 12.0 µM NSAR, CoCl2 0.25 mM).
A productivity of 16 mmol L-norleucine L−1

·h−1 (yield > 99%;
e.e. 99.5%), with no inhibition at high substrate or product
concentrations using immobilized NSAR/L-carbamoylase
(Soriano-Maldonado et al., 2014b).

The Amidohydrolase Process is an example of the expansion
possibilities of well-stablished MECs (Martínez-Rodríguez
et al., 2020). As way of example, oxyfunctionalized AAs
[L-methionine-(S)-sulfoxide and different γ-hydroxy-AAs]
were obtained by using a NSAR/L-acylase tandem coupled
with the stereoselective isoleucine dioxygenase from Bacillus
thuringiensis (Supplementary Figure S1, Enoki et al., 2016).
L-methionine-(S)-sulfoxide with 97% yield and 95% d.e. was
produced starting from racemic N-acetyl-Met. Hydroxylation
of AAs is one of the numerous theoretical MEC expansion
possibilities for the production of oxo-functionalized AAs
(Hibi et al., 2012; Smirnov et al., 2012; Busto et al., 2014;
Peters and Buller, 2019).

Amidase Process
As for the Amidohydrolase Process, the “Amidase Process”
was initially conceived as a KR process taking advantage
of stereoselective D-aminopeptidases (EC 3.4.11.19) or the
enantioselective L-amidase activity of different enzymes (such
as L-proline amidase or L-amidase from the formamidase
family (Sonke et al., 2005). Racemic α-AA-amide substrate can
thus be deracemized into enantiopure or enantioenriched D-
(or L-α-AAs) and the corresponding non-hydrolyzed amide,
using D- (or L-) stereospecific “amidases” (Figure 3A). Since
the non-hydrolyzed amide can be chemically racemized,
100% conversion can be obtained using a chemoenzymatic
approach. PLP-dependent α-amino ε-caprolactam racemase
(ACLR; E.C. 5.1.1.15) naturally catalyzes the racemization of
α-amino-ε-caprolactam (ε-ACL), and was long ago applied for
the production of L-lysine coupled to an L-lysine-lactamase
(Fukumura, 1977). However, ACLR from different organisms
have been proved to be active toward different NcAA amides
(Asano and Yamaguchi, 2005a). Thus, coupling of an ACLR
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FIGURE 2 | Amidohydrolase process. (A) General scheme for the “Amidohydrolase Process” (D-system, dashed line; L-system, full line). L-NxAH, N-substituted
L-stereospecific amidohydrolase (e.g., L-acylase, L-carbamoylase, L-succinylase). D-NxAH, N-substituted D-stereospecific or stereoselective amidohydrolase

(Continued)
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FIGURE 2 | Continued
(e.g., D-acylase, D-carbamoylase, D-succinylase). R: Acyl, NSAR/Acylase tandem (original acylase process). R: carbamoyl, NSAR/carbamoylase tandem. R: formyl,
NAAR/carbamoylase tandem. R: succinyl, NSAR/succinylase tandem (Martínez-Rodríguez et al., 2020). (B) L-homophenylalanine production by NSAR/L-acylase
tandem. Whole cell biocatalyst containing N-succinyl-amino acid racemase (NSAR) and L-acylase (L-Acyl) from Deinococcus radiodurans were used, starting from
racemic N-acetyl-L-homophenylalanine (Hsu et al., 2007). (C) D-allylglycine production by NSAR/D-acylase tandem, consisting of pure D-acylase (D-Acyl, Chirotech
Technology Ltd.) and an engineered N-succinyl-amino acid racemase from Amycolatopsis sp (NSAR, G291D/F323Y mutant; Baxter et al., 2012). (D) Production of
enantiopure L-α-AA using an NSAR/L-succinylase system, using enzymes from Geobacillus kaustophilus overexpressed in a whole cell system (Masutoshi et al.,
2016). (E) Production of enantio-enriched D-Phe and D-Trp using a NSAR/D-succinylase system. The enzymes were cloned from Cupriavidus sp. and Geobacillus
stearothermophilus, respectively (Sumida et al., 2018). (F) Production of enantiopure L-α-AA using purified NSAR/L-carbamoylase system. Purified NSAR from
Geobacillus kaustophilus and L-carbamoylase from Geobacillus stearothermophilus were applied for the DKR of different racemic N-carbamoyl- and
N-formyl-α-AAs. R1, lateral chain of the corresponding AA. R, N-substituent (Soriano-Maldonado et al., 2014a,b).

with D- or L-specific amidases allows for the production of
enantiopure AAs by enzymatic DKR (Figure 3A).

Coupling of D-aminopeptidase from Ochrobactrum anthropi
and ACLR from Achromobacter obae allowed the production
of D-Ala, D-ABA, D-Ser, and D-Met (Figure 3B, Asano and
Yamaguchi, 2005b; Yamaguchi et al., 2007); As way of example,
45 mM L-alanine amide was converted to D-alanine (7 h,
yield > 99.7%; Asano and Yamaguchi, 2005b). Coupling of
purified ACLR from Achromobacter obae mutant (L19V/L78T)
obtained by directed evolution, together with a thermostable
mutant of D-amino acid amidase from Ochrobactrum anthropi
SV3 allowed for the biosynthesis of different enantio-enriched
D-PheGly and D-Phe derivatives (Figure 3C, Yasukawa and
Asano, 2012). On the other hand, the optical purity of this
system varied greatly for aromatic substrates, with e.e. values
ranging 16–99%. These results differed to the results presented
previously on aliphatic substrates (Figure 3C, Yamaguchi
et al., 2007), suggesting enantioselectivity of D-amino acid
amidase, as it was observed with D-succinylase (Figure 2E).
Production of enantiopure L-Ala, L-Leu, and L-Met (100%
yield, >99% e.e.) was reported by coupling ACLR from
Achromobacter obae with L-Amino acid amide hydrolase
from Pseudomonas azotoformans (Yamaguchi et al., 2007).
This strategy was afterward proved useful for the production
of different L-α-AAs. By overexpression of mutated ACLR
together with L-amino acid amidase from Brevundimonas
diminuta in E. coli, efficient production of various enantio-
enriched (S)-phenylalanine derivatives was achieved (Figure 3D,
99% yield, 90–98% e.e.). This system allowed production of
L-homophenylalanine, which continuously precipitated in the
reaction mixture (>99% yield, 98% e.e., 12 h; Yasukawa and
Asano, 2012). On the other hand, lower e.e. values were also
obtained for other aromatic compounds.

The Amidase Process has been further expanded by including
non-stereoselective nitrile hydratase (NHase, EC 4.2.1.84) for the
production of different highly enantio-enriched and enantiopure
D- and L-α-AAs (Figure 3E; Yasukawa et al., 2011; Yasukawa
and Asano, 2012). A MEC using purified nitrile hydratase
from Rhodococcus opacus (RoNHAse), D-aminopeptidase from
Ochrobactrum anthropi and ACLR from Achromobacter obae
allowed total conversion of racemic α-aminobutyronitrile in
6 h and 30◦C to D-ABA (e.e., >99%) (Figure 16, Yasukawa
et al., 2011). D-Phe was also produced afterward using the same
strategy (Yasukawa and Asano, 2012). L-ABA was synthesized
by combination of RoNHAse, ACLR from Achromobacter obae

and L-amino acid amidase from Brevundimonas diminuta (e.e.,
>99%) (Yasukawa et al., 2011). Other different D- and L-α-AAs
were produced with these systems (> 99% Yield, e.e. 97 to
>99%; Figure 3E, Yasukawa et al., 2011). Remarkably, RoNHase
and ACLR were reported to suffer inhibition by the substrate
α-amino nitrile, and thus, substrate concentrations need to be
taken into account if using this MEC combination (Yasukawa
and Asano, 2012). A recent study has showed that the ACLR
from Ochrobactrum anthropi also racemizes α-AA esters (Frese
et al., 2018). This activity opens up new enzyme combinations
for the synthesis of enantiopure α-AAs, coupling ACLR with
stereospecific esterases (see section “AAER/Esterase System”).

Amino Acid Oxidase-Based MECs
Amino acid oxidases (AAOs) are important biotechnological
flavoenzymes catalyzing the oxygen-dependent oxidative
deamination of D- or L-α-AAs, resulting in α-keto acids,
ammonia and hydrogen peroxide (through an imino acid
intermediate which can decompose spontaneously to the
corresponding α-keto acid and NH3, Figure 4A; Pollegioni et al.,
2008, 2013; Asano and Yasukawa, 2019). These enzymes have
a wide variety of biomedical and biotechnological applications,
including the production of different α-keto acids, important
intermediate building blocks. Both LAAOs (EC 1.4.3.2,
Pollegioni et al., 2013) and DAAOs (EC 1.4.3.3, Pollegioni and
Molla, 2011) have been described. Inclusion of a catalase in
AAO-based biotransformations is a common general strategy
to avoid the toxicity of the H2O2 produced during the recycling
of the FAD coenzyme necessary for AOO activity; thus, this
AAO/catalase basic scaffold can be directly used for the KR
of AA racemates, producing a mixture composed of 50% of
enantiopure AA and 50% of the corresponding α-keto acid
(Figure 4A; Pollegioni et al., 2008). Turner’s group proposed
a preparative chemoenzymatic method for deracemization of
NcAAs by inclusion of a non-selective chemical reductant,
transforming back the intermediate imino acid produced by
D- and L-AAOs till a racemic mixture of the original AA, thus
allowing 100% conversion of the initial AA racemate (Figure 4A;
Alexandre et al., 2002; Beard and Turner, 2002).

DAAO from porcine kidney, glutamic-pyruvic transaminase
(E.C.2.6.1.2) from porcine heart, catalase from bovine liver and
β-tyrosinase (tyrosine phenol lyase; EC 4.1.99.2) purified from
Citrobacter intermedius were applied as a biosynthetic MEC for
production of 11C-labeled L-Tyr and L-DOPA at the beginning of
the 90’s, starting from racemic 11C-alanine (e.e.>98%, Figure 4B,
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FIGURE 3 | Amidase process. (A) General scheme on the Amidase Process (D-system, dashed line; L-system, full line). D-amidase (e.g., D-aminopeptidase,
D-amino acid amidase, alkaline D-peptidase or R-amidase). ACLR, PLP-dependent α-amino ε-caprolactam racemase. L-amidase (e.g., L-amino acid amide
hydrolases such as LaaA and LaaABd. *A chemoenzymatic approach is also possible in a two-step process (Yamaguchi et al., 2007). (B) Synthesis of different
enantiopure D-α-AAs from the corresponding L-α-AA amides using the Amidase Process (D-system), using purified D-aminopeptidase from Ochrobactrum anthropi
(D-amid) and ACLR from Achromobacter obae (Yamaguchi et al., 2007). Racemic AA-amides can also be used with this system. (C) Synthesis of different
enantio-enriched and enantiopure aromatic D-α-AAs, using an engineered thermostable D-aminopeptidase from Ochrobactrum anthropi and engineered ACLR from
Achromobacter obae (Yasukawa and Asano, 2012). (D) Production of different enantio-enriched and enantiopure aromatic L-α-AAs, using engineered ACLR from
Achromobacter obae and L-amino acid amidase from Brevundimonas diminuta in E. coli (Yasukawa and Asano, 2012). (E) Expansion of the Amidase Process by
inclusion of a nitrilase. Enantioselective nitrilase (NHase), coupled to ACLR from Achromobacter obae, D-aminopeptidase from Ochrobactrum anthropi or L-amino
acid amidase from Brevundimonas diminuta allowed the production of D- or L-α-AA (Yasukawa et al., 2011; Yasukawa and Asano, 2012).
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FIGURE 4 | AAO-based multienzymatic cascades. (A) General scheme for enzymatic KR and chemoenzymatic DKR of AA racemates starting from AAO/catalase
systems. (B) Enzymatic synthesis of 11C L-Tyr (R = H) and L-DOPA (R = OH). A MEC consisting of DAAO from porcine kidney, Glutamic-pyruvic transaminase (GPT)

(Continued)
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FIGURE 4 | Continued
from porcine heart, catalase from bovine liver and β-tyrosinase (β-Tyr, tyrosine phenol lyase) purified from Citrobacter intermedius were successfully applied. The
radio-labeled atom is highlighted by an asterisk (Bjurling et al., 1990). (C) Enzymatic synthesis of 1-14C- or 3-14C-tryptophan (R = H) or 1-14C- or 3-14C
5-hydroxytryptophan (R = OH). It was conducted with a MEC consisting of DAAO, Glutamic-pyruvic transaminase (GPT), catalase and tryptophanase (Tpase,
L-tryptophan indole-lyase). An asterisk highlights the relative positions of the radio-labeled atoms (Pająk et al., 2018). (D) Synthesis of NcAAs starting from primary
amines; a MEC comprising mutant porcine kidney DAOO and nitrilase AY487533 (NHase) was used (Kawahara et al., 2017). (E) Two-step chemoenzymatic
syntheses of halogenated D-Trp derivatives. Combination of biocatalytic halogenation by tryptophan halogenase (TrpH) or Trp synthase (TrpS) with L-Trp oxidase
(LTrpO), followed by non-selective reduction allowed to obtain D-Trp derivatives (Schnepel et al., 2019).

Bjurling et al., 1990). A similar MEC was applied for the synthesis
of 14C-L-Trp and 5-OH-Trp starting from racemic 1-14C-
or 3-14C-alanine, replacing β-tyrosinase by tryptophanase (EC
4.1.99.1; Figure 4C, Pająk et al., 2018). Bienzymatic conversion of
primary amines to NcAAs has been proposed using an engineered
DAAO from porcine kidney and an R-enantioselective nitrilase
(GenBank Acc. No AY487533, uncultured organism; Figure 4D).
Moderate to low yields (62–73%) and e.e. (40%) were achieved
with this methodology (Kawahara et al., 2017).

Despite the numerous KR applications proposed for LAAOs,
their recombinant production in heterologous hosts has proven
difficult (Pollegioni et al., 2013). Recent studies have greatly
increased the knowledge on these enzymes (e.g., L- Trp-, L- Lys-,
Gly- or L-Arg oxidases) which might boost the applications
of LAAOs in the production of D-AA derivatives (Francis
et al., 2017; Asano and Yasukawa, 2019). An L-Trp oxidase
from L. aerocolonigenes has been successfully applied using two
alternative chemoenzymatic MECs for the synthesis of different
halogenated D-Trp derivatives (Figure 4E; Schnepel et al., 2019).
In a first step, Trypthophan halogenase or Tryptophan synthase
(TrpS), are used for the production of halogenated L-Trp
derivatives. The L-enantiomer can then be stereo-destroyed
by LAAO till the corresponding α-imino acid. Following the
general use of non-selective chemical reductant applied for AAOs
(Figure 4A), the imine intermediate can be transformed back
till a racemic mixture of L- and D-α-AA. Whereas the D-α-AA
will not be recognized by LAAO, the regenerated L-isomer enters
back to the reaction, converting the system in a chemoenzymatic
DKR (Figure 4E). Conversions achieved approximately 90%,
with e.e. >92% (Schnepel et al., 2019). This MEC shows an
interesting approach, since CLEAs obtained by cross-linking of
precipitated tryptophan halogenase, flavin reductase and alcohol
dehydrogenase were used, converting this crystalline precipitate
into a multifunctional and recyclable MEC for the production
of halogenated L-Trp derivatives in the gram scale (Frese and
Sewald, 2015). Since Trypthophan halogenase/cofactor recycling
CLEAs also recognized L-Trp, coupling of this system with
an LAOO might use cheaper racemic mixtures of D,L-Trp as
starting point.

Besides the above applications, AAOs are also pivotal enzymes
in other MECs, and in fact, their use has been mainly
linked to those applications; coupling of AAOs to amino acid
dehydrogenases, ammonia-lyases or aminotransferases avoids
the necessity of chemical transformation or further processing of
the “undesired” α-keto acid produced by D- or L-AAO, allowing
total conversion of the initial AA racemate till the corresponding
D- or L-α-AA (see sections “Amino Acid Dehydrogenase-Based

MECs,” “Ammonia Lyase-Based MECs,” and “Transaminase-
Based MECs”).

Amino Acid Dehydrogenase-Based
MECs
The reductive amination of α-keto acids to the corresponding
α-AAs can be catalyzed (reversibly) by different NADH- (or
NADPH-) amino acid dehydrogenases (AADHs; EC 1.4.1.X;
Xue et al., 2018). From the operational point of view, high
concentrations of ammonia are needed when using the reductive
amination reaction, whereas the oxidative reaction yields α-keto
acids when starting from amino acid substrates. Whereas most
AADHs are L-enantioselective, D-AADHs (EC 1.4.99.1) have
also been described (Vedha-Peters et al., 2006; De Wildeman
et al., 2007; Hall and Bommarius, 2011; Li et al., 2012; Au
et al., 2016; Akita et al., 2018; Zhang et al., 2019). This family
of enzymes is greatly diverse, although in general, AADHs
are promiscuous enzymes showing a high enantioselectivity
(Xue et al., 2018). As way of example, Leucine dehydrogenase
(LeuDH) and Phenylalanine dehydrogenase (PheDH) present
broad substrate specificity; the former accepts hydrophobic,
aliphatic, branched and unbranched or alicyclic keto acids, while
the latter also accepts aromatic substrates (Hall and Bommarius,
2011). From a preparative perspective, nicotine amide coenzymes
need to be recycled for continuous activity of AADHs, and thus,
AADH-based systems precise of efficient coenzyme regeneration
systems as a prerequisite for industrial processes. Coupling of
L- or D-AADHs together with nicotinamide cofactor-recycling
systems readily constitute bi- or multi-enzymatic modules for
the production of enantiopure L-α- or D-α-AAs starting from
α-keto acids (Figure 5A). As shown from the literature, after
three decades this AADH-based MECs continue being of great
relevance (Ohshima et al., 1989; Galkin et al., 1997; Krix et al.,
1997; Bommarius et al., 1998; Patel, 2001; Menzel et al., 2004;
Gröger et al., 2006; Cheng et al., 2016; Jiang and Fang, 2016; Chen
et al., 2017; Liu et al., 2018; Luo et al., 2020).

Using the amination (reductive) reaction, the production of
many different L-α-AAs has been reported. LeuDH from Bacillus
species, together with FDH from Candida boidnii were partially
purified and mixed for preparation of L-2-ABA, L-2-amino-3,3-
dimethylpentanoic acid, L-2-Amino-5,5-dimethylhexanoic, L-2-
Amino-4-ethylhexanoic acid, L-cyclohexyl-alanine, L-neopentyl-
glycine or L-tert-leucine (e.e. > 99%). This system allowed
production industrial scale of 30 kg of L-neopentyl-glycine
in a 450 L reactor (Figure 5B, Krix et al., 1997). In an
analogous process, Bristol-Myers Squibb produced 197 kg of
L-allysine ethylene acetal using a 1600 L reactor, with dried cells
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FIGURE 5 | AADH-based multienzymatic cascades. (A) General scheme for the production of enantiopure AAs using AADH together an enzymatic
cofactor-recycling system (e.g., FDH, GDH, NOX). D-system, dashed line; L-system, full line. The reactions are reversible, and can proceed in the other direction,
although not indicated. (B) Production of D-tert-Leucine by kinetic resolution of racemic tert-leucine, employing L-leucine dehydrogenase from Bacillus cereus
(LeuDH) and NADH oxidase from Lactobacillus brevis (NOX) for cofactor regeneration (Hummel et al., 2003). (C) Example on bioconversions carried out with
L-AADH from Bacillus stearothermophilus and FDH from Candida boidinii (Krix et al., 1997). (D) Production of D-cyclohexylalanine in the gram scale. Engineered
meso-2,6-D-diaminopimelic acid dehydrogenase from Corynebacterium glutamicum (DaaDH) and GDH as recycling system were used (Vedha-Peters et al., 2006).
(E) Simultaneous synthesis of D-3-fluoroalanine (S-3-fluoroalanine; 60% yield, 88% e.e.) and L-fluorolactic acid starting from racemic 3-fluoroalanine using alanine
dehydrogenase (AlaDH) coupled with lactate dehydrogenase (LacDH) (Gonçalves et al., 2000).

containing PheDH together FDH (Liese et al., 2006). 15N-labeled
norvaline and norleucine were produced combining LeuDH
with a GDH/galactose mutarotase as cofactor recycling system
to increase its effectivity (80–95% yield; Chiriac et al., 2008).
On the other hand, different D-α-AAs have been obtained by
AADH-based MECs (including 13C- and/or 15N-labeled DAAs;
Vedha-Peters et al., 2006; Akita et al., 2018). Coupling of
engineered meso-diaminopimelate dehydrogenase (EC 1.4.1.16)
together with a GDH recycling system allowed the production
of more than 20 different D-α-AAs (e.e. 95 to >99%, except
for alanine, e.e. 77%; the later result was possibly due to the
presence on an alanine racemase in the cellular extracts used;
Vedha-Peters et al., 2006; Akita et al., 2018). This system

was used for the gram scale synthesis of D-cyclohexylalanine
(Figure 5C).

Taking advantage of the deamination (oxidative) reaction,
kinetic resolution of D,L-tert-Leucine was achieved by coupling
L-LeuDH with a highly efficient irreversible NOX allowing
D-tert-Leucine production (e.e. > 99%). The corresponding
α-keto acid was also obtained as by-product of the reaction
(Figure 5D) (Hummel et al., 2003). Alanine dehydrogenase
coupled with lactate dehydrogenase and internal cofactor
regeneration were applied for the simultaneous synthesis
of S-3-fluoroalanine (D-3-fluoroalanine; 60% yield, 88% e.e.)
and L-fluorolactic acid starting from racemic 3-fluoroalanine
(Figure 5E, Gonçalves et al., 2000).
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The above-described systems can be expanded with the
inclusion of biocatalysts allowing the production of the
α-keto acid substrates from other low-cost materials, such
as AAOs (section “Amino Acid Oxidase-Based MECs”),
threonine deaminase (ThrD3, threonine ammonia lyase) or
“real” amino acid deaminases. L-amino acid deaminases (L-
AADs, EC 1.4.99.B3, Molla et al., 2017; Melis et al., 2018;
Nshimiyimana et al., 2019) have been described as membrane-
bound cytochrome-like flavoenzymes that catalyze the oxidative
deamination of different AAs for the formation of their
corresponding α-keto acids and ammonia; they have gained
interest in the last lustrum since they can replace LAAOs in
biotechnological applications (Molla et al., 2017). Both AAOs and
AAD can thus be engaged to enantiocomplementary AADHs,
for the theoretical production of L-α-AAs (DAAO/catalase/L-
AADH/cofactor recycling) or D-α-AAs [(LAAO/catalase) (or
LAAD)/D-AADH/cofactor recycling]. As way of example,
L-6-hydroxyleucine was produced using a MEC comprising
two enzymatic modules (Figure 6A, DAOO-catalase and
AADH-recycling system; Patel, 2001 and references therein).
L-norvaline has been also produced following this strategy, using
DAAO/LeuDH/catalase/FDH (Figure 6A, Qi et al., 2017).

L- and D-ABA have received huge attention in the literature,
and has been produced in many different reports using
ThrD. As way of example, ThrD was coupled with LeuDH
and GDH or FDH cofactor-recycling systems (Tao et al.,
2014). A scale-up of the process (30 L of reaction in a
50-L fermenter) allowed the production of 29.2 mol L-ABA
(97.3% theoretical yield), with a productivity of 6.9 g·L−1

·h−1

(Tao et al., 2014). This MEC module has also been used
to generate a heterologous biosynthetic pathway leading to
the production of L-ABA in Saccharomyces cerevisiae (Weber
et al., 2017). Metabolic engineering allowed the expansion
of the latter system for the production of S-2-aminobutanol.
D-ABA was produced by a tri-enzymatic cascade with cell-free
extract or purified enzymes, composed of ThrD, D-amino acid
dehydrogenase and FDH, starting from L-Thr (>95% yield and
>99% e.e.; Chen et al., 2017). More than 15 different enantio-
enriched and enantiopure D-α-AAS -including several D-
phenylalanine derivatives- have been produced coupling a “real”
L-AAD to engineered enantioselective meso-diaminopimelate
dehydrogenase and a cofactor-recycling system (conversions
from 45.3 to >99%, e.e. values ranging 52.1 to >99%;
Figure 6B, Parmeggiani et al., 2016; Zhang et al., 2019). Racemic
mixtures might be used as well as pure L-AAs, turning it
into a more efficient and cheaper system. A scarcely described
strategy utilized immobilized PLP-dependent L-methioninase
(L-methionine γ-lyase, EC 4.4.1.11) together with GluDH on
polyacrylamide and chitosan (with no regeneration system)
for the production of L-ABA, starting from L-methionine
(Figure 6C, El-Sayed et al., 2015).

An alternative strategy allowing in situ production of α-keto
acids for further conversion by AADHs consist in the oxidation
of α-hydroxy acids. This is the case of the MEC combining

3This enzyme belongs to the ammonia-lyase family; L-threonine ammonia lyase,
ThrD, E.C. 4.3.1.19), and is not a “real” L-amino acid deaminase.

mandelate racemase, mandelate dehydrogenase and L-AADHs,
allowing the production of L-phenyglycine from mandelic
acid; this system further uses an elegant internal cofactor
recycling system (Resch et al., 2010). This 3-step one-pot
reaction has been efficiently applied in a whole cell system,
reaching a production of 79.70 g·L−1

·d−1 (Tang et al., 2020).
It was also used for the production of different L-PheGly
derivatives starting from different mandelic acid derivatives;
conversions ranging 49–97% were achieved, with e.e., >97%
(Figure 6D, Fan et al., 2015). Further expansion of this system
allows in situ production of an α-hydroxy acid starting from
fatty acids. This strategy was shown for the production of
L-norleucine starting from hexanoic acid. This MEC consisted in
a combination of a P450 peroxygenase, two stereocomplementary
L- and D-hydroxyisocaproate dehydrogenases along with LeuDH;
no extra recycling system was needed, since this MEC also
provide internal cofactor regeneration (Figure 6E). L-norleucine
conversion was lower than 35% with up to 5 mM substrate
concentrations; e.e. > 97%; L-ABA production was also reported
(Dennig et al., 2018).

Ammonia Lyase-Based MECs
Ammonia-lyases (ALs, EC 4.3.1.X, defined as carbon-nitrogen
lyases that release ammonia as one of the products) comprise a
heterogenous enzymatic group catalyzing the reversible cleavage
of C-N bonds, typically of α-AAs, producing an unsaturated
(or cyclic) derivative and ammonia. More than 30 different EC
subclasses of ALs are reported, showing remarkable structural,
functional and mechanistic differences, which can be broadly
grouped into seven main classes (Parmeggiani et al., 2018; Viola,
2020). Besides of the interest on ALs for the production of β-AAs
and other APIs (Sariaslani, 2007; Turner, 2011; Xue et al., 2018),
applications for the synthesis of NcAAS have also been reported,
being aromatic amino acid ALs [phenylalanine AL (PAL),
histidine AL (HAL) and tyrosine AL (TAL)] the most relevant and
studied enzymes, showing a marked L-enantioselectivity (Turner,
2011; Parmeggiani et al., 2015; Zhu et al., 2019). Although as
an isolated case, the acyclic amino acid propargylglycine was
recognized by a PAL enzyme (Weiser et al., 2015).

As for other enzymes, their reversible catalytic properties
together with their enantioselective character allows the use of
isolated ALs both for (i) KR processes for deracemization of
AAs (obtaining a mixture of D-α-AAs and α,β-unsaturated acid,
Figure 7A, Poppe and Retey, 2003; Turner, 2011; Tork et al.,
2019) or (ii) asymmetric synthesis of L-α-AAs (Figure 7B), using
high concentration of ammonia to shift PAL equilibrium toward
the amination reaction starting from achiral α,β-unsaturated
acids (Poppe et al., 2012; Tork et al., 2019). Other outstanding
feature is the non-necessity of expensive cofactors or recycling
systems, thus providing a cost-effective and easier application.
It is important to highlight that aminomutase-like activity has
been detected in PALs (Weise et al., 2015, 2018); whereas
this fact might be a drawback for general application in the
synthesis of enantio-enriched α-AAs, it might also open up new
biotechnological properties of PALs.

Enantiopure L-arylalanines were produced by one-pot
chemoenzymatic reaction using porcine liver esterase and PAL
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FIGURE 6 | Additional examples on the production of D- or L-AAs using AADH-based MECs. (A) General scheme for the conversion of racemic AAs till the
corresponding enantiopure L-α-amino acids using a DAOO-catalase/AADH-recycling system MECs. Selected examples were extracted from Patel (2001) (left) and
Qi et al. (2017) (right), respectively. (B) General scheme for the conversion of racemic AAs till the corresponding enantio-enriched or enantipure D-α-AAs. L-AAD, WT or

(Continued)
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FIGURE 6 | Continued
engineered enantioselective meso-diaminopimelate dehydrogenase (DAPDH) and a cofactor-recycling system (e.g., FDH or GDH) were applied. Selected examples
were extracted from Parmeggiani et al. (2016) (left) and Zhang et al. (2019) (right). (C) Conversion of L-methionine into L-ABA using immobilized L-methioninase
(AfMETase) together with glutamate dehydrogenase (GluDH) on polyacrylamide and chitosan (El-Sayed et al., 2015). (D) Deracemization of mandelic acid derivatives
to enantiopure L-PheGly derivatives via a redox-neutral biocatalytic MEC. Mandelate racemase (MR), D-mandelate dehydrogenase (DmanDH) and LeuDH were
coupled to synthesize different PheGly derivatives (Resch et al., 2010). (E) MEC for the enantioselective α-amination of fatty acids to α-AAs. Combination of P450
peroxygenase from Clostridium acetobutylicum (P450), two stereocomplementary 2-hydroxyisocaproate dehydrogenase from Lactobacillus confusus (LHicDH) and
Lactobacillus casei (DHicDH) and LeuDH from Bacillus cereus allowed partial conversion of hexanoic acid to L-norleucine (e.e. > 97%; Dennig et al., 2018).

from parsley and ammonia (Figure 7C). The starting materials
were arylaldehydes, which were synthesized in situ from the
corresponding α,β-unsaturated acids by the Wittig reaction
(Paizs et al., 2006). Coupling of PAL together with LAAD
allowed the conversion of cinnamic acid derivatives into the
corresponding enantio-enriched D-α-AA by a chemoenzymatic
process (Figure 7D) using in situ non-selective reductants
(conversions 62–80%; e.e. values 98% to >99%; Parmeggiani
et al., 2015; conversions 12–96%; e.e. values 72% to >99%;
Zhu et al., 2019). Although PAL is reported to be mainly
L-enantioselective, PAL-catalyzed amination of the cinnamic
acids were reported to lead to the formation of significant
levels of the D-enantiomer4 (in particular, for cinnamic acids
with an electron-deficient aromatic ring; Parmeggiani et al.,
2015). Taking advantage of the unexpected production of both
enantiomers over the time, coupling of this system with a
DAAO, together with the use of a non-selective reductant,
produced different L-α-AAs starting from α,β-unsaturated acids
(conversions 66–82%; e.e. values> 99%; Parmeggiani et al., 2015;
Figure 7D).

Labeling of L-Tyr with carbon and hydrogen isotopes
was achieved by coupling of PAL and L-phenylalanine
4′aminooxygenase (Pająk et al., 2018); this strategy
might be expanded for the production of L-DOPA using
p-hydroxyphenylacetate 3-hydroxylase (Min et al., 2015),
including tetrahydropterin- and NADH-recycling systems (Hara
and Kino, 2013) (Supplementary Figure S4).

Transaminase-Based MECs
Transaminases (TAs, EC 2.6.1.X, also known as
aminotransferases) are a heterogeneous group of enzymes
catalyzing the transfer of an amino group between two different
molecules. In this kind of enzymes, different enantioselective
PLP-dependent TAs catalyze the (reversible) transfer of an
amino group between an amino donor and an amino acceptor
(in general, a carbonyl group such as α-ketocarboxylic acids
or ketones), yielding chiral amines with a new stereocenter
(e.g., AAs, Figure 8A, Guo and Berglund, 2017). During TA
catalysis, PLP-recycling is accomplished, which is an advantage
in enzymatic synthesis since no additional cofactor-recycling
system is needed (Figure 8A). TAs are well documented enzymes
for the synthesis of NcAAs (Meiwes et al., 1997; Taylor et al.,
1998; Li et al., 2002; Rozzell and Bommarius, 2002), but their

4Since (i) reduction of the e.e. value of the produced amino acid was observed over
time, (ii) the reaction conditions used pHs above 9, and (iii) chemical racemization
of AAs is known to occur at high pHs, the formation of the opposite enantiomer
might be the result of chemical racemization.

biotechnological interest is far beyond the production of
these compounds, since they allow the production of other
important molecules [e.g., β-AAs (Rudat et al., 2012) or amines
(Höhne and Bornscheuer, 2009)]. TAs continue receiving huge
attention, and have been reviewed extensively during the last
decade due to their huge biotechnological interest (e.g., Mathew
and Yun, 2012; Simon et al., 2014; Guo and Berglund, 2017;
Slabu et al., 2017; Patil et al., 2018; Xue et al., 2018; Cutlan et al.,
2019). Protein engineering strategies have been broadly used
to evolve ω-TAs (e.g., Park et al., 2013a,b; Walton et al., 2017),
and a database on sequences and structures of biotechnologically
relevant engineered ω-TAs is available (Buß et al., 2018).

TAs5 with potential application in α-NcAA production can
be broadly grouped according to the position of the transferred
amine group with respect to the carboxylic moiety (when
the substrate/reaction product is an AA). α-TAs catalyze the
transfer of the amino group at the α-carbon, whereas ω-TAs
(also referred to as amine-TAs) transfer the amino group to
a carbon further away from the carboxylic group5 (Guo and
Berglund, 2017; Slabu et al., 2017). Both R- and S-enantioselective
and promiscuous TAs have been reported (as natural or
engineered enzymes, Taylor et al., 1998; Koszelewski et al.,
2010); a unique L to D-stereoinverting hydroxyphenylglycine
aminotransferase has also been reported (Müller et al., 2006;
Walton et al., 2017). Since the enantioselectivity of TAs can
be greatly affected by the reaction conditions, enantio-enriched
compounds might be produced in some cases (Koszelewski
et al., 2010); TAs are also described to suffer substrate and/or
product inhibition (Guo and Berglund, 2017), and produce
by-products which need to be eliminated or separated; these
aspects need to be taken into account when designing TA-based
MECs. Since shifting the reaction equilibrium to the desired
product of the reaction is required to maximize the productivity
of TAs, different strategies have been already proposed to
overcome some of TAs potential drawbacks (e.g., distillation,
use of biphasic reaction systems, recycling of the carbonyl
compounds, degradation/transformation of by-products of the
reaction (Koszelewski et al., 2010; Guo and Berglund, 2017; Patil
et al., 2018). As way of example, enzymatic methods to remove
pyruvate from the reaction medium (if alanine is used as amino
donor) can be accomplished with acetolactate synthase, lactate
dehydrogenase reduction (together a nicotinamide recycling
system such as FDH, GDH, or NOX), pyruvate decarboxylase
(or phenyl pyruvate decarboxylase with phenyl alanine as amine

5The nomenclature of TAs in the literature can be confusing. We recommend
reading of the new classification carried out by Cutlan et al. (2019).
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FIGURE 7 | AL-based production of α-AAs. (A) General scheme of PAL-mediated deracemization of racemic mixtures of AAs to enantio-enriched or enantiopure
D-α-AAs mediated by deamination of L-α-AAs. (B) Asymmetric amination of α,β-unsaturated acids for the production of enantio-enriched or enantiopure L-α-AAs.
α,β-unsaturated acid (α,β-UA) (Tork et al., 2019). (C) Production of L-Phe and other L-α-NcAAs using a chemoenzymatic approach. The starting arylaldehydes were
transformed into the corresponding α,β-unsaturated acids by the Wittig reaction; further application of porcine liver esterase (PLE), PAL from parsley and ammonia
allowed transformation into L- phenyl-, L-4- chlorophenyl-, L-3-fluorophenyl- or L-thiophen-2-yl-alanine (Paizs et al., 2006). (D) Chemoenzymatic synthesis of L- and
D-phenylalanine derivatives using PAL/LAAD and PAL/DAOO systems (Parmeggiani et al., 2018).

donor) or alanine dehydrogenase (Koszelewski et al., 2010;
Simon et al., 2014).

One of the enzymatic combinations that can be carried out
for shifting TA reaction equilibrium accounts on coupling two
different TAs in a one-pot two-step procedure (Figures 8B–E).
In this general strategy, a “primary” TA converts an α-keto
acid to the corresponding α-AA. The “secondary” TA (in
general a different α-TA or a ω-TA) transforms the α-keto
acid back, replenishing the initial amino donor (Figures 8B,D)

(Taylor et al., 1998; Ager et al., 2001; Li et al., 2002; Gefflaut
et al., 2012; Park et al., 2013a). The enantiomer obtained
in these systems will depend on the enantioselectivity
of the TAs used, and thus, both D- or L-α-AAs can be
obtained; the use of ω-TAs in these systems presents many
advantages, since the secondary reaction can be conducted
using amino donors different to AAs, reducing the number
of possible interferences among the reactivity of both TAs.
Enzymatic synthesis of the herbicide L-phosphinothricin
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FIGURE 8 | TA-based production of α-AAs. (A) General scheme for reversible α-TA and ω-TA catalysis. When R2 = COOH, the reaction correspond to an α-TA;
ω-TA do not necessarily precise a carboxylic moiety in this position, although they usually also recognize α-AAs as substrates. Both the direct reaction (reduction,
dashed line) and the reverse reaction (oxidation, full line) can be used for the production of enantiopure AAs (i.e., starting from keto/keto acids or from amines/AAs).
(B) General scheme for production of enantiopure or enantio-enriched α-AAs using two different α-TAs. The selected example (C) consists on the enzymatic
synthesis of the herbicide L-phosphinothricin using 4-aminobutyrate:2-ketoglutarate (AK-TA) transaminase from E. coli and glutamate:oxalacetate transaminase
(GO-TA) from Bacillus stearothermophilus (24 h reaction, 0.5M substrate concentration). L-Glu is used as the amino donor for AK-TA, and transformed to
a-ketoglutarate; the latter compound is transformed back to L-Glu by GO-TA, which uses L-Asp as amino donor and converts it to oxaloacetic acid. Oxaloacetic
acid decarboxylate spontaneously to pyruvate, driving the AK-TA reaction till the product of the reaction (Bartsch et al., 1996; Ricca et al., 2011). (D) General
scheme for the production of enantiopure α-AAs using α-TA/ω-TA combination. The selected example (E) consists on the enzymatic synthesis of different L-α-AAs
using S-selective branched-chain transaminase (BCTA) from E. coli and ω-TA from Ochrobactrum anthropi (OATA) (Park et al., 2013b).

was achieved by using 4-aminobutyrate:2-ketoglutarate
transaminase from E. coli and glutamate:oxalacetate
transaminase from Bacillus stearothermophilus (Figure 8C,
24 h reaction, 0.5M substrate concentration; Bartsch et al.,
1996; Ricca et al., 2011). Different L-α-AAs were obtained
by using S-selective branched-chain transaminase from

E. coli and ω-TA from Ochrobactrum anthropi (Figure 8E,
Park et al., 2013a).

Since α/α- or α/ω-TA MECs with different substrate
specificities and different amino donors/acceptors combinations
are possible, concomitant production of different enantiopure
compounds can be achieved using TA-based MECs
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(Li et al., 2002; Wenda et al., 2011; Park et al., 2013a,b). Thus, if
racemic mixtures of AAs are used as the reactive of the reaction
instead of α-keto acids, one-pot production of two different
enantiopure (or enantioenriched) compounds of opposite
chirality can be achieved (Figures 9A,B) (Cho et al., 2003;
Park and Shin, 2014, 2015). An enantiocomplementary D-
α-TA/S-ω-TA system allowed conversions over 95% with e.e.
>99% for different AA pairs (Figure 9A). On the other hand,
a L-α-TA/R-ω-TA system was effective for the production
of enantiopure D-α-AAs (>95% conversion, >99% e.e.),
although the L-α-AA obtained in the reaction presented a
lower enantiopurity (L-Glu, 68–87% e.e; Figure 9B) (Park
and Shin, 2014). Simultaneous synthesis of (S)-AAs (Phe and
ABA) and (R)-amines was also conducted using different
α/ω-TA systems in a two-liquid phase system to avoid product
inhibition by removing it to the organic phase. Using 0.3 M
of 2-oxobutyrate and 0.3 M of racemic-methylbenzylamine,
276 mM of (S)-2-aminobutyrate (>99% e.e.) and 144 mM
of (R)-methylbenzylamine (>96% e.e.) were produced in 9 h
(Cho et al., 2003).

As mentioned above, shifting of α-TAs reaction equilibrium
can be achieved by coupling with enzymes allowing the
degradation/transformation of the by-products of degradation
(e.g., pyruvate if alanine is used as amino donor). The
use of acetolactate synthase (AceS) was one of the first
proposed strategies to remove the by-products of the reaction,
by condensation of two pyruvate molecules to acetolactate,
which spontaneous decarboxylates to acetoin (Figure 9C)
(Fotheringham et al., 1998). α-TA/AceS system also allowed the
production of NcAAs such as L-tert-Leu or L- and D-ABA or D-
Glu (Fotheringham et al., 1998; Taylor et al., 1998). Since α-keto
acids can be the substrates of TAs (Figures 8, 9), enzymatic
conversion of different compounds till the corresponding α-keto
acids constitute a general strategy to expand TA-based MECs;
AAOs, AADH or deaminases (sections “Amino Acid Oxidase-
Based MECs” and “Amino Acid Dehydrogenase-Based MECs”)
are thus candidates to be coupled with TAs for utilization of
AAs as initial substrates. Inclusion of L-amino acid deaminases6

into the α-TA/AceS system allows the synthesis of different AAs,
depending on the enantioselectivity of the enzymes. As way of
example, L-ABA was obtained from L-Thr; whole-cell systems
containing aromatic TA, ThrD and AceS were used efficiently
for the production of L-ABA, although L-Ala was obtained as a
by-product of the reaction (pyruvate is formed by spontaneous
decomposition of oxaloacetate during the reaction, and it can
be aminated back to L-Ala if not removed from the reaction)
(Figure 9D; Fotheringham et al., 1999; Ager et al., 2001). In an
analogous approach, NSC Technologies (Monsanto) produced
different D-α-AAs using D-aminotransferase from Bacillus sp.
and AceS, with a capacity in the multiton·a−1 scale (Liese et al.,
2006).

Removal of L-Ala by-product formed by TA as a result of
secondary amination of pyruvate formed by decomposition
of OAA (Figure 9D) was possible by coupling the
ThrD/TyrTA/AceS MEC with DAOO and alanine racemase

6Inclusion of a LAAO yields an analogous MEC from the theoretical point of view.

(Supplementary Figure S2). This expanded system also allowed
the production of L-ABA, lowering the concentrations of
L-alanine by-product in the reaction (Zhu et al., 2011). This five
enzyme-MEC allowed a large scale-preparation of L-ABA by
combining in a whole cell system (reaction volume 1500 L in
a 2000-L jar fermenter), resulting in an L-ABA concentration
of 25.38 g·L−1 (246 mM) at the second stage of the reaction
(Zhu et al., 2011).

Most of the problems arisen from these initial TA systems
(such as secondary amination of the α-keto acids produced
during the reaction, e.g., pyruvate) can be generally overcome
by substitution of α-TA by ω-TA. Simplification of previous
multienzymatic systems utilized for the synthesis of ABA
(Figures 9C,D and Supplementary Figure S2) was achieved by
using a ThrD together a ω-TA. With this configuration, both L-
and D-ABA were synthesized by using S- or R-ω-TA, respectively.
L-Thr (0.3 M) was transformed in less than 24 h, with conversions
over 99% and e.e. > 99% (Figure 9E, Park et al., 2010, 2013b).
A similar system allowed for concomitant production of D-Thr
and D- or L-ABA starting from racemic Thr (>99% e.e.; Han ,
and Shin, 2015). An alternative approach for the production of
D- or L-ABA consisted in coupling an L-methioninase with a D-
TA from Bacillus sp or an L-TA from E. coli, using methionine as
substrate (Silva et al., 2019).

Recently, a “real” promiscuous LAAD from Proteus mirabilis
together a engineered D-TA from Bacillus sp. YM-1 has been
applied for the synthesis of different D-Phe derivatives starting
from L- or D,L-α-AAs using whole cells (Figure 10A, Walton
et al., 2017). Besides these derivatives, the authors reported
that the D-TA variants shown in this work also displayed
increased activity for D-α-AAs with aliphatic or polar side chains.
Furthermore, they also suggested that the disadvantage of using
D-Glu as amino donor could be overcome by generating the
donor substrate in situ with Glu- or Asp-racemase and by
replacing LAAD from Proteus mirabilis with that from Proteus
myxofaciens, shown to not deaminate L-Glu or L-Asp (Walton
et al., 2017). Amino acid racemases have been included for in situ
regeneration/production of the amino donor of the TA reaction.
As way of example, D-TA coupled to GluDH-FDH-glutamate
racemase recycling system allowed the production of D-Phe or
D-Tyr (48 and 60 g·L−1, respectively. e.e. > 99%, 35 h) from
the corresponding α-keto acids (Figure 10B, Bae et al., 1999,
2002). If amino acid racemases are included in these MECs, it is
advisable to know whether the AR can recognize the product of
the reaction.

AAOs have also been coupled with TAs to obtain different
NcAAs. DAAO/catalase, together with an L-aspartate amino
transferase (α-TA) were used to produce L-2-naphthyl alanine
with a 98% yield and 99.5% e.e. (Figure 10C, Caligiuri et al.,
2006). The use of L-CSA as amino donor allows shifting of the
reaction by spontaneous degradation of the thio-α-keto acid to
pyruvate. A NADH-dependent lactate dehydrogenase was added
in this system to transform the produced pyruvate, allowing
to follow the course of the reaction spectrophotometrically; on
the other hand, addition of this enzyme could also become a
general idea to remove the pyruvate formed, avoiding putative
transformation to L-Ala by α-TA (see above). An alternative
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FIGURE 9 | Additional examples on TA-based MECs. (A) General scheme for the coupling of enantiocomplementary D-α-TA/S-ω-TA for deracemization of AA
mixtures, yielding two different enantiopure α-AAs of opposite chirality. Selected examples for the production of L-α-AAs (R1) and D-α-AAS (R2) produced by
D-amino acid transaminase from Bacillus sphaericus (D-α-TA) and S-selective-ω-TA Ochrobactrum anthropi or Paracoccus denitrificans (S-ω-TA) (Park and Shin,
2014). (B) Coupling of enantiocomplementary L-α-TA/R-ω-TA for deracemization of AA mixtures, yielding two different enantiopure/enantioenriched α-AAs of
opposite chirality. Selected examples for the production of L-α-AAs (R1) and D-Glu (R2) by branched-chain TA from Escherichia coli (L-α-TA) and an engineered
variant of (R)-selective ω-TA from Arthrobacter sp (R-ω-TA) (Park and Shin, 2014). (C) General scheme for the preparation of different D- or L-α-NcAAs using D-TAs
or L-TAs coupled to acetolactate synthase (AceS). D- or L-Asp are used as amino donors, producing oxaloacetate (OAA) as by-product of the reaction. OAA
decarboxylate spontaneously to pyruvate, which is converted to acetolactate by AceS, followed by spontaneous decarboxylation to acetoin (AceS reaction
sequence inside a dashed box). AceS thus allows shifting the reaction toward the acetoin, and also prevents pyruvate from being aminated to L-alanine (Taylor et al.,
1998). (D) Preparation of L-ABA in whole cell E. coli system starting from L-Thr. The system comprised threonine deaminase from E. coli (ThrD), aromatic TA from
E. coli (TyrTA), and AceS. Starting from 0.5 M of L-Thr and L-Asp, concentrations of the products of the reaction after 24 h were 27.71 mg·mL-1 (L-ABA),
1.23 mg·mL-1 (L-Ala) and 1.01 mg·mL-1 (L-Asp) (Fotheringham et al., 1999). (E) General scheme for the biosynthesis of L-ABA (continuous line) or D-ABA (dashed
line) using TD*/ω-TA systems (Park et al., 2013a).
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FIGURE 10 | Additional examples on TA-based MECs. (A) Biocatalytic cascade for the asymmetric synthesis of D-Phe derivatives starting from L-α-AAs (solid
square) or from α-AA racemates (dashed square). L-amino acid deaminase (LAAD) and engineered T242G mutant D-amino acid aminotransferase (D-TA) were used.

(Continued)
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FIGURE 10 | Continued
After 4 h of reaction e.e. values ranging 90 to >99% were achieved (Walton et al., 2017). (B) Production of D-Phe and D-Tyr using D-TA from Bacillus sp. YM-1 (D-TA)
coupled to in situ regeneration/production of the amino donor of the reaction by [GluDH/FDH/Glutamate Racemase (GluR)] (Bae et al., 1999). (C) Multi-step enzyme
catalyzed deracemization of D,L-2-naphthylalanine (2-NA) using DAAO/catalase/TA MEC (98% yield and 99.5% e.e.). *Lactate dehydrogenase was used to monitor
the reaction course, although its inclusion in the system might help to avoid pyruvate transforming till L-Ala (Caligiuri et al., 2006). (D) Conversion of racemic AAs into
D-α-AAs using AlaDH, NOX and engineered ω-TA (mut D-ω-TA) MEC (Han and Shin, 2018). (E) Biosynthetic pathway for D-PheGly production. Whole cells of E. coli
were used, overexpressing hydroxymandelate synthase (HmaS) and hydroxymandelate oxidase (Hmo) (both from A. orientalis or S. coelicolor) and
D-(4-hydroxy)-phenylglycine aminotransferase from Pseudomonas putida (HpgAT) (Müller et al., 2006).

strategy was proposed afterward by inclusion of a LAAO
together a D-TA, using D-aspartate as the amino donor, which
can be generated with an aspartate racemase (Tessaro et al.,
2008). L-ABA was produced using an engineered DAAO/catalase
module together with ω-TA (Seo et al., 2012). Together with
the ω-TA from Vibrio fluvialis JS17, a fusion protein was
created with DAAO from Rhodotorula gracilis and Vitreoscilla
hemoglobin, since it was earlier reported to significantly enhance
the DAAO activity in the production of D-fluoroalanine. Using
whole cells together with a biphasic system (to partly overcome
ω-TA inhibition by benzaldehyde), 500 mM racemic ABA
were transformed to 485 mM L-homoalanine (>99% e.e.; Seo
et al., 2012). Racemic glufosinate was also converted to the L-
enantiomer by application of a DAAO and different TAs (Green
and Gradley, 2017).

When coupled to TAs, AADHs also can provide a
deracemization process starting from AA racemates. An L-
AlaDH/NOX system, together with an engineered D-ω-TA
from Arthrobacter sp. was shown as an effective MEC for
deracemization of AA racemates (Figure 10D). Synthesis of
D-alanine with a 95% conversion yield (starting form 100 mM
solutions) and >99% e.e. was achieved after 24 h (Han and
Shin, 2018). Coupled D-TA and L-PheDH from Lysinibacillus
sphaericus (together with a recycling system using ethanol and
alcohol dehydrogenase) were applied for the production of
different para-halogenated derivatives (Br-, Cl-, and F-) of Phe,
as well as Tyr, via stereo-inversion of the D-enantiomers to the
L-isomer; e.e.> 99% (Khorsand et al., 2017).

Recently, coupling of different enantioselective SAM-
dependent α-keto acid methyltransferases (MT) with a halide
methyltransferase (HMT) and a ω- or L-α-TA has been
successfully applied for the synthesis of several enantio-enriched
D- and L-β-methyl-α-AAs (Supplementary Figure S3, Liao
and Seebeck, 2020). An S-adenosylhomocysteine nucleosidase-
deficient E. coli strain was necessary for this approach, using
CH3I as the alkylating agent. Conversions ranging 39 to >95%
were achieved for different substrates. Methylation resulted in
a high stereoselectivity, with 3R:3S methyl ratios ranging 92:8
to 99:1.

Natural pathway engineering has allowed the production
of PheGly derivatives. As way of example, D-PheGly was
produced in recombinant E. coli cells using phenylpyruvate as
substrate, by a three-step route composed of hydroxymandelate
synthase (HmaS), hydroxymandelate oxidase (HmO) and a
stereoinverting hydroxyphenylglycine TA (HpgAT) (Figure 10E,
Müller et al., 2006). The same strategy was used to produce L-
PheGly, but using L-4-hydroxyphenylglycine transaminases from

A. orientalis and S. coelicolor (Liu et al., 2014). Another synthetic
biology-derived D-Phg operon has been recently developed on
the basis of the natural lpg operon from S. pristinaespiralis;
substitution of the natural PglE TA by the stereoinverting HpgAT
allowed the creation of different plasmids which were utilized for
the synthesis of D-PheGly in different engineered actinomycetal
expression strains (Figure 11A, Moosmann et al., 2020).

Wu et al. reported different complementary enzymatic
modules for one-pot conversion of styrenes to the corresponding
(S)-α-hydroxy acids, (S)-amino alcohols, and (S)-α-amino acids
in high yields and e.e. (>98%, Wu et al., 2016). Combination of 3
out of the 4 modules proposed in E. coli (Module 1: epoxidase
and epoxide hydrolase; Module 2: alcohol dehydrogenase and
aldehyde dehydrogenase. Module 4, hydroxy acid oxidase, L-
enantioselective α-TA, catalase and glutamate dehydrogenase)
allows for the production of different L-PheGly derivatives
(Figure 11B). Besides the production of these compounds, this
work represent a valid proof of concept of elegantly tackled
multimodular whole cell factories, which is a general idea to
construct different MECs (Farnberger et al., 2017; France et al.,
2017). The previous modular strategy (Figure 11B, Wu et al.,
2016) was further expanded for the enantioselective synthesis
of D-PheGly derivatives starting from racemic mandelic acids,
styrenes, or L-Phenylalanine derivatives. Firstly, in an analogous
MEC to that presented previously (Figure 6D, Resch et al.,
2010), mandelate racemase (MR), (S)-mandelate dehydrogenase
(SMDH), D-PheGly aminotransferase (DpgAT) and GluDH built
a MEC module to produce different D-PheGly derivatives,
starting from different mandelic acids (Figure 11C); this was
possible thanks to the unique stereoinverting L- to D-activity
of DpgAT (Zhou et al., 2017). Conversions ranging 58–94%
were achieved, with e.e. values ranging 93–98%. This module
was adapted by removal of the MR and joined to two of those
presented previously (modules 1 and 2, Figure 11B), in order to
obtain D-PheGly derivatives starting from styrenes (Figure 11D).
Finally, this MEC was further extended by inclusion of another
module converting L-phenylalanine into styrene, by inclusion
of PAL and phenylacrylic acid decarboxylase (PAD), turning
into a MEC using nine different enzymes (Figure 11E, Zhou
et al., 2017). D-PheGly was produced with this 8-step cascade,
demonstrating they high efficiency of a long non-natural enzyme
cascade/pathway.

Different D-Trp derivatives have been produced from
substituted indoles coupling a tryptophan synthase from
Salmonella enterica, LAAD from Proteus species, together with
and an engineered D-alanine TA, with e.e. values ranging from
94 to >99% (Figure 11F, Parmeggiani et al., 2019b). One
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FIGURE 11 | Additional examples on TA-based MECs. (A) Schematic representation of the natural L-PheGly biosynthetic pathway from S. pristinaespiralis (lpg
operon, pglA-E). PglA, PheGly dehydrogenase. PglB, Pyruvate dehydrogenase α-subunit. PglC, pyruvate dehydrogenase β-subunit. PglD, thioesterase. PglE,
L-PheGly aminotransferase. Inclusion of the stereoinverting D-(4-hydroxy)-PheGly aminotransferase from Pseudomonas putida (HpgAT) allowed the production of
D-PheGly (Moosmann et al., 2020). (B) Conversion of styrenes to L-PheGly derivatives with E. coli multimodular systems. SMO, styrene monooxygenase from
Pseudomonas sp. VLB120; SpEH, epoxide hydrolase from Sphingomonas sp. HXN-200; AlkJ, alcohol dehydrogenase from P. putida GPo1; ALDH,
phenylacetaldehyde dehydrogenase from E. coli; HMO, hydroxymandelate oxidase from S. coelicolor A3(2); CAT, catalase from E. coli; αTA, branch chain amino acid
transaminase from E. coli. GluDH, glutamate dehydrogenase from E. coli (Wu et al., 2016). (C) Production of different D-PheGly-derivatives starting from
α-hydroxy-acids. MR, mandelate racemase; SMDH, (S)-mandelate dehydrogenase; DpgTA, D-PheGly aminotransferase; GluDH, glutamate dehydrogenase (Zhou
et al., 2017). (D) Production of different D-PheGly-derivatives starting from styrenes. SMO, styrene monooxygenase; SpEH, epoxide hydrolase; AlkJ, alcohol
dehydrogenase; ALDH, phenylacetaldehyde dehydrogenase; SMDH, (S)-mandelate dehydrogenase; DpgTA, D-PheGly aminotransferase. (E) Production of
D-PheGly starting from L-Phe. Expansion of the previous system starting from styrenes was used, by addition of two additional enzymes. PAL: phenylalanine
ammonia lyase; PAD, phenylacrylic acid decarboxylase (Zhou et al., 2017). (F) One-Pot biocatalytic synthesis of D-Tryptophan derivatives from indoles coupling
tryptophan synthase (TrpS), LAAD and engineered D-alanine TA (engDATA; Parmeggiani et al., 2019b).
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example of expansion of TA-based MECs toward the production
of functionalized AA derivatives is provided by combination
of an acetaldehyde-dependent aldolase (hydroxy-3-methyl-2-
keto-pentanoate aldolase, HPAL) from Arthrobacter simplex
together a branched-chain TA from Bacillus subtilis (BCAT).
Aldol condensation of α-ketobutyrate and acetaldehyde followed
by transamination allowed enzymatic synthesis of 4-hydroxy-L-
isoleucine (4HIL) (Smirnov et al., 2007). Whereas the final yield
of 4HIL was not high, the authors proposed that this problem
might be overcome by shifting the equilibrium of the reaction
by separation of the reaction products and recirculation of the
unreacted substrates.

Other MECs for the Synthesis of NcAAs
Other multienzymatic or chemoenzymatic strategies have been
proposed for the synthesis of NcAAs, although they have not
found yet such a biotechnological interest as those reported
above. On the other hand, it is important to bear in mind that
besides the more than 20 different enzymes comprised in the
different MECs presented in this paper, many enantioselective or
stereospecific “free” enzymes are useful for NcAAs synthesis [e.g.,
proteases (Nakao et al., 1996; Miyazawa, 1999), 2-oxoglutarate-
dependent oxygenases (Peters and Buller, 2019), aldolases (Xue
et al., 2018; Fesko, 2019) or other different PLP-enzymes (Di Salvo
et al., 2020)].

Lipase-Containing MECs
Lipases are important enzymes from the industrial point of view,
due to its huge versatility and robustness in the production
of different compounds. Despite their outstanding promiscuous
properties, one drawback that lipases (and proteases) can show
is the lack of a perfect enantioselectivity, but several enantiopure
compounds can be prepared using them. A bienzymatic method
composed of Lipozyme R© (Mucor miehei) and Alcalase R© was
applied for the production of enantiopure L-tert-leucine (99.5%
e.e., Figure 12A) (Turner et al., 1995). A similar system was
proposed starting from different 5(4H)-oxazolone derivatives
(Figure 12B); P. cepacia lipase hydrolyzes different oxazolone
derivatives yielding optically active N-benzoyl-L-α-AA methyl
esters. Subsequent methyl ester hydrolysis by proteases (prozyme
6 and protease N; pH 6.8), might yield N-benzoyl-L-α-AAs
of high enantiomeric purity (Figure 12B; Crich et al., 1993;
Miyazawa, 1999).

A chemoenzymatic approach taking advantage of lipase and
acylase I has been used for the production of enantiopure L-
α-NcAAs starting from N-acetyl-α-AAs (Podea et al., 2008;
Bencze et al., 2015). However, it is important to highlight
that acylase I alone allows deracemization of these compounds,
without the need of the lipase mediated DKR. Moderate yields
(approximately 80%) of enantiopure L-benzofuranyl- and L-
benzothienyl alanines were produced (e.e. > 99%; Podea et al.,
2008). A similar strategy allowed the production of different
enantiopure L-(5-phenylfuran-2-yl)alanines through a sequential
multi-enzyme process based in lipase Cal-B, Pig liver esterase and
Acylase I starting from racemic 2-acetamido-3-(5-phenylfuran-
2-yl)propanoic acids. The target compounds were produced in
81–84% yield, with>99% e.e. (Bencze et al., 2015).

Tyrosine Phenol Lyase-Containing MECs
Tyrosine phenol lyase (TPL, β-tyrosinase) has been applied on
different MECs for the production of interesting pharmaceutical
compounds, including the enantioselective synthesis of L-Phe/L-
Tyr derivatives (Martínez-Montero et al., 2019). Coupling with
DAAO was proposed three decades ago (Figure 4B, section
“Amino Acid Oxidase-Based MECs”). Park et al. (1998) designed
a hybrid pathway using toluene dioxygenase, toluene cis-glycerol
de-hydrogenase, and TPL for the production of L-DOPA using
benzene as substrate (Figure 12C). This strategy presented
toxicity drawbacks since it was used in whole-cell systems (Park
et al., 1998). A somehow similar system obtained by coupling of
monooxygenase P450-BM3 with a NADPH regeneration system
an engineered TPL allowed one-pot synthesis of L-Tyr derivatives
starting from monosubstituted benzenes, pyruvate, and ammonia
(Figure 12D, Dennig et al., 2015). L-lactate oxidases coupled to a
catalase and a designed thermophilic TPL (TTPL) was applied
for one-pot synthesis of L-tyrosine derivatives (Figure 12E, Li
et al., 2020). The best lactate oxidase studied (AvLOX) was used
for in situ generation of pyruvate starting from L-lactate (also
obtained with another enzyme cascade, and thus, they might
be coupled); different o-phenol acceptors were used for TTPL.
Using 28–36 h of reaction, recovery yields ranging 51–84% were
obtained for the different L-Tyr derivatives (Li et al., 2020).

Tryptophan Synthase-Containing MECs
Tryptophan synthase (TrpS) has proved an interesting tool
of expansion of NcAA MECs, since it has been engineered
to accept a wide range of compounds, such as nitroalkanes,
nitroindoles or 3-substituted oxindoles for the production of
many different NcAAs (Buller et al., 2015; Herger et al., 2016;
Romney et al., 2017, 2019; Boville et al., 2018a,b), leading even
to new quaternary stereocenters (Dick et al., 2019). TrpS has
also been engineered to accept L-Thr as a substrate for the
synthesis of β-methyltryptophan derivatives, which could be
further halogenated by a halogenase (Francis et al., 2017).

TrpSs have been included in AAO- and TA-based
MECs (sections “Amino Acid Oxidase-Based MECs” and
“Transaminase-Based MECs”; Parmeggiani et al., 2019b;
Schnepel et al., 2019). On the other hand, a series of NcAAs
including L-Trp and L-Cys derivatives were synthesized using
a D-threonine aldolase/TrpS/Alanine Racemase system in high
conversion and excellent enantioselectivity (e.e. > 99%) starting
from Gly and paraformaldehyde. In a first step, D-threonine
aldolase from Arthrobacter sp transformed the substrates into
D-serine with high yield (240 g/L). Racemization into D,L-Ser
was carried out with alanine racemase from Bacillus subtilis;
L-ser was then transformed into different L-NcAAs by coupling
with various indoles/thiols using L-tryptophan synthase from
E. coli (Yu et al., 2019).

AAER/Esterase System
Recently, the deracemization of AA esters through the action
of a combination of an AA-ester racemase (AAER) and an
enantioselective esterase has been proposed (Frese et al., 2018).
Different PLP-dependent ACLR-homologs (see section “Amidase
Process”) with AAER activity on phenylalanineamide were
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FIGURE 12 | Other MECs for the synthesis of NcAAs. (A) Production of L-tert-Leu using Lipozyme and Alcalase, followed by chemical hydrolysis. Treatment of
racemic 2-phenyl-4-tert-butyloxazolin-5(4H)-one in toluene containing n-butanol with lypozyme and a catalytic amount of trimethylamine, resulted in

(Continued)
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FIGURE 12 | Continued
(S)-N-benzoyl-tert-leucine butyl ester (yield 94%). Two additional hydrolysis steps using Alcalase R© and 6N HCl, yielded enantiopure L-tert-leucine (Turner et al., 1995).
(B) Proposed lipase/protease system for the hydrolysis of production of different enantio-enriched N-benzoyl-L-α-AAs (Miyazawa, 1999). (C) Production of L-DOPA
by a hybrid pathway using toluene dioxygenase (TolD), toluene-cis-glycerol de-hydrogenase (TolDiDe) and Tyrosine phenol lyase (TPL) (Park et al., 1998; Min et al.,
2015). (D) Production of different L-Tyr derivatives using P450-BM3 with a NADPH regeneration system and engineered TPL (Dennig et al., 2015; Parmeggiani et al.,
2018). (E) Transformation of L-lactate and o-phenols into enantiopure L-Tyr derivatives. L2HAO: L-2-hydroxy acid oxidase (e.g., AVLOX from Aerococcus viridans);
TPL: WT or engineered tyrosine phenol lyase from Symbiobacterium toebii (Li et al., 2020). (F) Theoretical approach for the deracemization of AA ester racemates
using an “amino acid ester racemase” (AAER, an ACLR homolog) and an enantioselective esterase (Frese et al., 2018). (G) 5-Hydroxy-tryptophan synthesis through
a L-phenylalanine 4-hydroxylase coupled to cofactor regeneration. PAH, L-phenylalanine 4-hydroxylase; PCD, pterin-4α-carbinolamine dehydratase; DPR,
dihydropteridine reductase; GDH, glucose dehydrogenase TetraH, tetrahydropterin; 4 α C, 4α-carbinolamine; DhP, dihydropteridine (Hara and Kino, 2013).

identified, thus allowing to propose a putative AAER/esterase
system for deracemization of AA esters, analogous to the
“Amidase Process” (Figure 12F).

Other MECs Taking Advantage of Metabolic
Pathways
Besides some of the examples shown in this work, many
additional metabolic natural or engineered MECs exist in the
literature. A recent seminal and must read review on biosynthetic
pathways to NcAAs has been published (Hedges and Ryan, 2020),
and the reader is referred to it for further information on these
systems. As isolated examples, the L-Trp biosynthesis pathway
from E. coli has been expanded by inclusion of engineered L-
Phenylalanine 4-hydroxylase from C. violaceum (Figure 12G,
Hara and Kino, 2013) or engineered aromatic amino acid
hydroxylase from Cupriavidus taiwanensis (Mora-Villalobos and
Zeng, 2018); whole cell systems for 5-HTP depend on the
elimination of the E. coli tryptophanase gene, and inclusion of
recycling of cofactors. Approx. 2–4 mM 5-HTP was produced
using those systems. Natural routes for PheGly derivative
synthesis have been reported, which might be further exploited
for future MEC development (Al Toma et al., 2015). In this
sense, special consideration should be paid to natural secondary
metabolic routes conducting to NcAAs (or using them) to expand
established MECs for their synthesis. Metabolic engineering
of microorganisms have also allowed production of NcAAs
such as L-norvaline/L-norleucine (Anderhuber et al., 2016),
L-citruline (Eberhardt et al., 2014), hydroxyproline (Falcioni
et al., 2015), L-ornithine (Wu et al., 2020) different D-α-AAs
(Mutaguchi et al., 2018) or different N-Alkylated AAs (Mindt
et al., 2019, 2020; van der Hoek et al., 2019). Thus, isolated
enzymes comprised in biosynthetic metabolic routes for the
production of different compounds (Hedges and Ryan, 2020)
might find application on some of the existing MECs described
in this paper.

CONCLUSION

In this review, we have brought together different established
MECs and other less-used approaches for the biosynthesis
of several NcAAs, providing a general overview on different
methodologies available in the literature. Some of the enzymes
described in this review have also been evolved to alter their
substrate scope, widening their application, and inviting to
revisit the old methodologies for further development. Enzymes

from biosynthetic pathways to NcAAs (Hedges and Ryan, 2020)
are clear candidates for MECs expansion. On the other hand,
information of specific enzymes for functionalization of AAs
or AA transformation into other important pharmaceutical
compounds is also accumulating in the literature (e.g., Smirnov
et al., 2012; Busto et al., 2014; Hönig et al., 2017; Hyslop
et al., 2018; Parthasarathy et al., 2018; Peters and Buller, 2019;
McDonald et al., 2019; Hedges and Ryan, 2020; Mindt et al.,
2020; Song et al., 2020; Wendisch, 2020; Zhang et al., 2020; Zhao
et al., 2020). These enzymes are, in principle, complementary
to well stablished NcAA-production MECs. As way of example,
promiscuous L-tryptophan decarboxylases have been applied for
the synthesis of different triptamines (McDonald et al., 2019), and
might be coupled to TprS-containing MECs for their expansion.
Different proteases have also been applied to produce amino acid-
ester derivatives starting from amino acids (Song et al., 2020),
which might be coupled to several MECs proposed in this review.
Thus, whereas the discovery of new or newly designed enzymes
continues being of great interest, a “back and to the future”
strategy might also speed up the “Fourth Wave of Biocatalysis”
by dusting off previous enzymatic methodologies. We expect
that potential readers in the field find the information contained
in this paper helpful to speed up the generation of new or
improved MECs.
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