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Cancer is still a severe health problem globally. The therapy of cancer traditionally
involves the use of radiotherapy or anticancer drugs to kill cancer cells, but these
methods are quite expensive and have side effects, which will cause great harm to
patients. With the find of anticancer peptides (ACPs), significant progress has been
achieved in the therapy of tumors. Therefore, it is invaluable to accurately identify
anticancer peptides. Although biochemical experiments can solve this work, this method
is expensive and time-consuming. To promote the application of anticancer peptides
in cancer therapy, machine learning can be used to recognize anticancer peptides by
extracting the feature vectors of anticancer peptides. Nevertheless, poor performance
usually be found in training the machine learning model to utilizing high-dimensional
features in practice. In order to solve the above job, this paper put forward a 19-
dimensional feature model based on anticancer peptide sequences, which has lower
dimensionality and better performance than some existing methods. In addition, this
paper also separated a model with a low number of dimensions and acceptable
performance. The few features identified in this study may represent the important
features of anticancer peptides.

Keywords: anticancer peptide, feature extraction, feature model, feature selection, machine learning

INTRODUCTION

Cancer is still a severe health problem globally, and lots of people have died from cancer (Liao
et al., 2018; Cheng et al., 2019a; Zeng W. et al., 2019; Zhang Y. et al., 2019; Zhou et al., 2019;
Yang et al., 2020). Traditional cancer treatments kill not only cancer cells but also normal cells,
and the medical costs are very high (Feng, 2019; Lin et al., 2019; Li Y.H. et al., 2020; Zhang
et al., 2020). With the find of anticancer peptides, the situation has changed because anticancer
peptides can interact with the anionic cellular elements of cancer cells to selectively kill cancer
cells without harming the normal cells of the body (Ozkan et al., 2019; Wang Y. et al., 2020; Yin
et al., 2020). Although there have been some defects in the development of anticancer peptides,
anticancer peptides are safer than man-made drugs (Sun et al., 2016; Liu H. et al., 2018; Liao
and Jiang, 2019; Munir et al., 2019; Srivastava et al., 2019; Liu H. et al., 2020; Ru et al., 2020;
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Wang J. et al., 2020) and have higher effectiveness, specificity and
selectivity. Anticancer peptides provide a new direction for the
treatment of cancer, so the therapeutic methods of anticancer
peptides have attracted greater attention. Anticancer peptides are
generally composed of five to thirty amino acids. Nevertheless, it
is still hard to identify anticancer peptides from other (artificially
designed or natural) peptides. Using biochemical experiments
to identify anticancer peptides is very time-consuming and
expensive. In addition, only a few anticancer peptides can be used
in the clinic. Thus, it is essential to apply machine learning to
forecast anticancer peptides.

In past few years, some bioinformatics methods have been
introduced to predict anticancer peptides. By extracting the
amino acid composition and binary features of anticancer
peptides as feature vectors, Tyagi et al. (2013) applied support
vector machine to verify the performance, and the accuracy
reached 91.44%. Hajisharifi et al. (2014) applied support vector
machine to predict anticancer peptides on the basis of the local
alignment kernel and pseudo-amino acid composition, and the
highest accuracy was 89.7%. Chen W. et al. (2016) developed
a classifier for predicting anticancer peptides by optimizing
the composition of g-GAP dipeptides, and 94.77% accuracy
was obtained by using 126D features. Xu et al. (2018b) used
400D features or 400D-g gap features to predict anticancer
peptides, and the accuracy of support vector machine reached
91.86%. The above methods obtained sound prediction results,
but these methods did not mention the dimensional advantages
of the model. In reality, training the machine learning model
utilizing high-dimensional features usually behaves poorly, This
phenomenon is called Curse of Dimensionality (Wilcox, 1961; Xu
et al., 2017; Xu Y. et al., 2018; Zou et al., 2017; Wang et al., 2019).

In this paper, through using a variety of polypeptide feature
extraction methods, the obtained feature vectors were selected
many times, which gained a low-dimensional model. Using
multiple classifiers for verification, the performance accuracy
was 92.73%, while the number of dimensions of the model
was only 19. In this paper, the most important 7 dimensional
features were further separated and verified, and good results
were obtained. The feature model obtained in this paper can
not only accurately and rapidly classify anticancer peptides, but
also effectively avoid Curse of Dimensionality. The above results
may suggest that these low-dimensional features are important
features for distinguishing anticancer peptides.

MATERIALS AND METHODS

The process of this research is shown in Figure 1. Every detailed
step will be presented in the following sections.

Benchmark Dataset
In this paper, we used the benchmark dataset constructed by
Hajisharifi et al., which contained 206 non-anticancer peptides
and 138 anticancer peptides. The anticancer peptides in this data
set were extracted from APD2, and 206 non-anticancer peptides
established by Wang et al. were extracted from UniProt. To
avoid the deviation of the classifier, peptides with more than

90% similarity were deleted from the data set through CD-HIT.
Chen et al. and Xu et al. have applied the identical benchmark
data set as well.

Feature Extraction Strategies
The peptide sequences can not be immediately identified by
machine learning algorithms. Therefore, it is requisite to translate
the strings stood for peptide sequences into numerical features
(Liu et al., 2006, 2019b; Liu S. et al., 2018; Jia et al., 2018; Wang
et al., 2018; Chen C. et al., 2019; Hong J. et al., 2019). The feature
extraction methods are very crucial in building computational
predictors (Cheng et al., 2018, 2019b; Xiong et al., 2018; Zhang
et al., 2018b, 2019a; Sun et al., 2019; Tang et al., 2019).

In this paper, we applied five sorts of feature extraction
strategies including amino acid composition (AAC), conjoint
triad (CT), pseudo-amino acid composition (PAAC), grouped
amino acid composition (GAAC) and C/T/D. Each strategy
may also include several feature extraction methods.
This paper implemented these strategies through iFeature
(Chen et al., 2018).

Conjoint Triad
Shen et al. (2007) put forward the conjoint triad model (CT). In
consideration of the properties of one amino acid and its nearby
amino acids and regards any three sequential amino acids as a
unit, the model classifies amino acids into seven sorts. Triad in the
same class are considered similar. As an example, triads which are
composed by three amino acids belonging to the same sort, such
as GLM and VFT, could be treated equally, since they may play
the same role. A peptide sequence is represented by a binary space
(V,F). V is the vector space of sequence features. Each feature (vi)
represents a unit. F is the frequency vector corresponding to V,
and each feature (fi) is the frequency of vi in a peptide sequence.

C/T/D
Dubchak et al. (1995) put forward the C/T/D model. This model
considers 3 properties of amino acids, their solubility, secondary
structure and relative hydrophobicity. Amino acids are classified
into three classes on the basis of the relative hydrophobicity, three
or four classes on the basis of the secondary structure, and two
classes on the basis of solubility. Each class is presented by the
three kinds of descriptors: C/T/D (Tan et al., 2019).

Amino Acid Composition
The peptide is composed of 20 sorts of amino acids (Liu
et al., 2019a). The frequency of every amino acid type in a
peptide sequence was computed to present the peptide sequences.
Therefore, each peptide sequence can be represented as a 20-
dimensional feature model. This model is called amino acid
composition model (AAC). The features can be defined as:

f (a) = Na
/

N, a ∈ (A, C, . . . , W, Y)

where Na is the quantity of amino acid type a. while N is the
length of a peptide sequence.

In this paper, we also used the k-spaced amino acid pair
composition model (CKSAAP), which computes the frequency
of amino acid pairs separated by an arbitrary number (k) of
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FIGURE 1 | The main flow chart of the research process in this paper.

amino acid residues. A example of this encoding scheme (k = 0)
is provided as follow:

a peptide sequence : CRACRKDSMVN

The features (k = 0) can be defined as:
(

NAA = 0/
(N− 1),

NAC = 1/
(N− 1), . . . ,

NCQ = 0/
(N− 1),

NCR = 2/
(N− 1), . . . ,

NYY = 0/
(N− 1)

)
400

At the same time, this paper used the tripeptide composition
model (TPC), which computes the frequency of three consecutive
amino acids in a peptide sequence and provides 8000 dimensional
features. The features can be defined as:

f
(
a, b, c

)
= Nabc

/
(N− 2), a, b, c ∈ (A, C, . . . , W, Y)

where Nabc is the quantity of amino acid type a, b, and c. while N
is the length of a peptide sequence.

At the same time, this paper used the dipeptide composition
model (DPC), which computes the frequency of two consecutive
amino acids in a peptide sequence and provides 400D features.
The features can be defined as:

f
(
a, b

)
= Nab

/
(N− 1), a, b ∈ (A, C, . . . , W, Y)

where Nab is the quantity of amino acid type a and b. while N is
the length of a peptide sequence.

Pseudo-Amino Acid Composition
Chou (2001) put forward a pseudo-amino acid composition
model (PAAC). In this model, It takes into account not only the
frequency of each amino acid type in a peptide sequence but
also the position information of the amino acids. Therefore, the
feature of the pseudo-amino acid composition is stated as below:

PAAC = (a1,a2,...,a19,a20,a20+1, a20+2,...,a20+n)
The front portion a1,..., a19,a20 stand for the frequency of each

amino acid type in a peptide sequence, and the latter portion
a20+1,...,a20+n represent the location info of the amino acids in
a peptide sequence.

This paper also used a method similar to PAAC. The
amphiphilic pseudo-amino acid composition model (APAAC)
was put forward by Chou et al. The model takes the hydrophilic
and hydrophobic properties of amino acids into account.

Grouped Amino Acid Composition
The grouped amino acid composition model (GAAC) divides 20
amino acid types into 5 classes on the basis of the physical and
chemical properties and then computes the frequency of each
amino acid group in a peptide sequence. The features can be
defined as:

f(c) = Nc
/

N, c ∈ (c1, c2, c3, c4, c5)
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where Nc is the quantity of amino acid in class c. while N is the
length of a peptide sequence.

In this paper, a model similar to the grouped amino acid
model, k-spaced amino acid group pair (CKSAAGP), was used
to compute the frequency of amino acid group pairs separated by
an arbitrary number (k) of amino acid residues.

This paper also used the grouped dipeptide composition
model (GDPC), which can be regarded as a combination
of GAAC and DPC.

In addition, this paper used the grouped tripeptide
composition model (GTPC), which can be regarded as a
combination of GAAC and TPC.

Feature Selection
Feature selection is the procedure of picking out a subset
from the relevant features applied in machine learning model
building (Zou et al., 2016; Qiao et al., 2018; Cheng, 2019;
Yang et al., 2019; Zhang M. et al., 2019; Li F. et al., 2020).
The dimension of features will be decreased after feature
selection, thus this procedure is named dimension reduction as
well. MRMD2.0 was mainly used in this paper to reduce the
feature dimensions. Each feature was given a numerical value
by MRMD2.0 (the larger the number, the feature’s recognition
ability will be more obvious). MRMD2.0 sorted the features in
order on the basis of the ranking value. Next, the first feature
with the highest value was examined for its performance. The
second feature was added to examine the capability of the new
feature subset. This procedure continued till examining total
features. Eventually, some parameters in disparate dimensions
were acquired, including F-score, accuracy, etc.

Classifier
Support Vector Machine
A support vector machine (SVM) was used for prediction in this
study. SVM has been widely applied in the proteome prediction
(Jiang et al., 2013; Wei et al., 2016, 2018; Ding et al., 2017; Lin
et al., 2017; Qu et al., 2017; Wang et al., 2017, 2018; Guo and Xu,
2018; Xu et al., 2018a,b; Zhang et al., 2018a; Chao et al., 2019;
Chen Z. et al., 2019; Fang et al., 2019; Hong Z. et al., 2019; Liu
and Li, 2019; Yu and Gao, 2019; Zeng et al., 2019b; Dao et al.,
2020; Huang et al., 2020), transcriptome (Chen X. et al., 2016;
Tang et al., 2017) and genome (Zeng et al., 2017; Song et al., 2018;
Deng et al., 2019b; Hong Z. et al., 2019). Therefore, support vector
machine is a pretty useful classifier. libSVM was adopted in this
paper to optimize the prediction results of SVM utilizing grid
method to correct parameters g and c.

Random Forest
Random forest (rf) has been extensively applied as a classifier in
chemoinformatics (Zeng et al., 2019b, 2020a,b; Song et al., 2020)
and bioinformatics (Zhang J. et al., 2016; Guo and Xu, 2018; Deng
et al., 2019a; Liu et al., 2019a; Lv H. et al., 2019; Lv Z. et al., 2019;
Lv et al., 2020; Ru et al., 2019; Wei et al., 2019; Xu et al., 2019;
Tang et al., 2020; Yu et al., 2020). Rf was applied in this paper.

LibD3C
At the same time, this paper used the LibD3C classifier (Lin
et al., 2014) for prediction to examine the performance of the
model. The classifier adopts the strategy of selective integration,
based on the hybrid integrated pruning model on the basis of
k-means clustering and functional selection cycle framework and
sequential search, by training multiple classifiers and selecting a
group of accurate and diversified classifiers to solve the problem.

Prediction Result Estimate
It is extremely critical to quantitatively evaluate the effectiveness
of the method because the benchmark data set is non-balanced
data. This paper used Mathew correlation coefficient (Mcc),
specificity (Sp),sensitivity (Sn), total accuracy (Acc) and the
F-score value (F-score) phase to evaluate the performance of the
model (Li et al., 2015, 2017; Wei et al., 2017; Chu et al., 2019;
Ding et al., 2019; Gong et al., 2019; Liang et al., 2019; Shan et al.,
2019; Yan et al., 2019; Yu and Gao, 2019; Zeng et al., 2019a, 2020b;
Zhang et al., 2019b; Liu X. et al., 2020; Wang H. et al., 2020).

Mcc = (TP× TN− FP× FN) /

√
(TP+ FP)× (TP+ FN)× (TN+ FP)× (TN+ FN)

Sn = TP/ (TP+ FN)

Sp = TN/ (TN+ FP)

Acc = (TP+ TN) / (TP+ TN+ FP+ FN)

F− score = 2× P× R/ (P+ R)

where TP stands for the quantity of anticancer peptides correctly
predicted, FP stands for the quantity of non-anticancer peptides
predicted as anticancer peptides, TN stands for the correctly
predicted quantity of non-anticancer peptides, and FN stands for
the quantity of anticancer peptides predicted as non-anticancer
peptides. P represents the accuracy, indicating the proportion of
the total number of predicted positive cases; R is the recall rate,
indicating the number of correct cases identified and accounting
for the total number of cases in this category.

RESULTS AND DISCUSSION

In this paper, a total of 12 feature extraction methods were
used. Because the number of dimensions of the amino acid
composition model was only 20, it is of little significance to
reduce the dimensionality of the amino acid composition model
alone, and the k-spaced amino acid pair composition model
is an extension of this method. The principles of the two
models were similar, and so the two models were merged and
expressed uniformly by AAC. Similarly, the grouped amino
acid composition model and the k-spaced amino acid group
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pair model were merged and expressed uniformly by GAAC.
To compare the advantages and disadvantages of different
feature extraction methods for anticancer peptide sequences,
each model obtained by each method was examined by 10-fold

cross-validation utilizing the random forest classifier, and then
10-fold cross-validation was carried out for each method after
dimensional reduction through MRMD2.0. Figure 2A lists the
F-score of each feature extraction method before and after feature

FIGURE 2 | The results of different experiments. (A) According to the results, this paper thought that the CT, GAAC, GDPC, GTPC, and TPC are not ideal.
(B) According to the results, this paper thought that the greedy algorithm was more efficient than MRMD2.0. (C) According to the results, this paper thought that the
greedy algorithm is worse than MRMD2.0 in the performance index of the selected model. (D) After several dimension reductions, the results showed that the
MRMD2.0 was better than the greedy algorithm index of the selected model. (E) After several dimension reductions, the results showed that the dimension of model
of the greedy algorithm is about five times that of the MRMD2.0. The results showed that as for the dimensions of the selected model, the greedy algorithm was more
efficient than MRMD2.0. However, the greedy algorithm cannot further reduce the dimensions of the selected feature model, but MRMD2.0 can still further reduce it.

TABLE 1 | Comparing the performance of different methods.

Methods Sn Sp Acc MCC F-score Dimension

iACP 88.40% 99.02% 94.77% 89.30% 126

Hajisharifi et al. 85.18% 92.68% 89.70% 78.40%

SAP 86.23% 95.63% 91.86% 83.01% 89.47% 400

Our method(RF) 86.20% 97.10% 92.73% 84.90% 92.70% 19

Our method(LibD3C) 85.50% 96.60% 92.15% 83.70% 92.10% 19

Our method(SVM) 87.70% 96.10% 92.73% 84.80% 92.70% 19
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selection. In this paper, according to the verification results,
it is believed that the effects of the CT, GAAC, GDC, GTC,
and TC methods were not ideal, so the above model was not
considered in the follow-up study. To compare the advantages
and disadvantages of different feature selection methods, the
greedy algorithm and MRMD2.0 were used to select each feature
model. Figure 2B lists the dimensions of each feature model
after two kinds of software selection, and Figure 2C lists the
F-score of each feature model after two kinds of software
selection. For the feature selection method of anticancer peptide,
after synthesizing the situation of all types of model selection,
MRMD2.0 was better than the greedy algorithm in terms of the
capability index of the selected model; As for the dimensions of
the selected model, the greedy algorithm was more efficient than
MRMD2.0. However, the greedy algorithm cannot further reduce
the dimensions of the selected feature model, but MRMD2.0 can
still further reduce it.

The feature subset of each method was merged and
reduced to get a 102D feature model after selected by
the greedy algorithm. The F-score value was 0.924 after
random forest 10-fold cross-validation. At this time, it was
impossible to use the greedy algorithm to further reduce the
dimensions of the model.

After merging the selected feature model by MRMD2.0, the
model dimension number was 1177. This paper continued to
use MRMD2.0 to reduce the dimension of the model to get a
767-dimensional feature model which was still too high. After

continuing to reduce the dimensionality of the model again
to obtain 633 dimensional features, the result was still not
ideal. In this paper, the dimensionality reduction was carried
out 6 times. For each dimensionality reduction, a line chart
of F-score was drawn changing with the dimension according
to the obtained indicators. The feature points were separated
with large changes in the line to form a new model for
verification, and the results were not ideal. After 8 times of
dimensionality reduction, a 19-dimensional feature model was
obtained. At this time, it was no longer possible to use MRMD2.0
for dimensionality reduction. Figures 2D,E list the feature
model F-score and dimensions separated by the two methods,
respectively. By comparison, MRMD2.0 was found to be better
than the greedy algorithm.

The 19-dimensional model was tested by random forest,
support vector machine (parameters c and g are 8192.0 and
0.00048828125, respectively) and LibD3C, respectively. Table 1
listed the prediction results of three types of classifiers. The
results indicated that the performance of the 19-dimensional
model separated in this paper is stable. Table 1 also lists the
prediction results of others based on the same data set. Compared
with Hajisharifi et al.’s and Xu et al.’s models, the model in this
paper performs better in all prediction indicators. Although it
is slightly inferior to Chen et al. in the prediction results, the
number of dimensions of their model was 126, while the number
of dimensions of this paper is 19, which is obviously lower
than that in the previous study. By evaluating the performance

FIGURE 3 | The figure was the change of F-score with dimension according to the last dimension reduction. The red dots in the figure were the feature points with
great changes in this paper. And these points were separated to form a new feature model and verified. After verification, these seven red dots are the most
important seven features.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 6 August 2020 | Volume 8 | Article 892

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00892 August 10, 2020 Time: 14:52 # 7

Li et al. Prediction Using Low-Dimensional Feature Model

of the model and comparing it with the previous work, this
paper believed that the 19-dimensional model proposed in this
paper can be used to predict the anticancer peptide conveniently,
quickly and accurately.

In this paper, the feature points with large slopes in the
last reduced-dimension line chart (Figure 3) were separated
to form a 7-dimensional model, which was verified by support
vector machine with an accuracy of 90.41%. This possibly
imply that these seven-dimensional features are important
features to distinguish anticancer peptides. These 7-dimensional
features are GL.gap4, hydrophobicity_PRAM900101.Tr2332,
polarizability.2.residue0, Pc1.C, Xc1.K, Pc2.Hydrophobicity.8,
and secondarystruct.1.residue0. These features may
suggest that for anticancer peptides, the composition
and content of glycine, leucine, cysteine and lysine
as well as their secondary structure, polarization and
hydrophobicity are important indicators different from other
non-anticancer peptides.

CONCLUSION

In this paper, a low-dimensional feature model with better
performance was obtained through feature extraction and
continuous feature selection over many iterations. The features
were further isolated, and a few features that might distinguish
anticancer peptides were identified. It is hoped that the results of
this paper can be used in the artificial design and prediction of
anticancer peptides.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

QWL and SW conceived and designed the research. QWL and
WZ performed the machine learning experiments. QWL, DW,
and QYL analyzed the data. QWL and WZ wrote the manuscript.
QYL and SW coordinated the study and revised the manuscript.
All authors read and approved the final manuscript.

ACKNOWLEDGMENTS

This manuscript used iFeature online tool to extract features,
used random forest classifier through Weka platform, and used
MRMD2.0 to reduce dimensions. Yuwei Jiang and Dongyuan
Yu contributed to the language editing of this article. Yuwei
Jiang and Dongyuan Yu are from Tianjin Normal University and
Northeast Agricultural University, respectively.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fbioe.
2020.00892/full#supplementary-material

REFERENCES
Chao, L., Wei, L., and Zou, Q. (2019). SecProMTB: a SVM-based classifier for

secretory proteins of mycobacterium tuberculosis with imbalanced data set.
Proteomics 19:e1900007.

Chen, C., Zhang, Q., Ma, Q., and Yu, B. (2019). LightGBM-PPI: predicting
protein-protein interactions through LightGBM with multi-information fusion.
Chemometr. Intellig. Lab. Syst. 191, 54–64. doi: 10.1016/j.chemolab.2019.
06.003

Chen, Z., Zhao, P., Li, F., Marquez-Lago, T., Leier, A., Revote, J., et al. (2019).
iLearn: an integrated platform and meta-learner for feature engineering,
machine learning analysis and modeling of DNA, RNA and protein sequence
data. Briefings Bioinform. 21, 1047–1057. doi: 10.1093/bib/bbz041

Chen, W., Ding, H., Feng, P., Lin, H., and Chou, K.-C. (2016). iACP: a sequence-
based tool for identifying anticancer peptides. Oncotarget 7:7815. doi: 10.18632/
oncotarget.7815

Chen, X., Pérez-Jiménez, M. J., Valencia-Cabrera, L., Wang, B., and Zeng, X. (2016).
Computing with viruses. Theoret. Computer Sci. 623, 146–159.

Chen, Z., Zhao, P., Li, F., Leier, A., Marquez-Lago, T. T., Wang, Y., et al. (2018).
iFeature: a Python package and web server for features extraction and selection
from protein and peptide sequences. Bioinform. J. 34, 2499–2502.

Cheng, L. (2019). Computational and biological methods for gene therapy. Curr.
Gene Ther. 19, 210–210.

Cheng, L., Jiang, Y., Ju, H., Sun, J., Peng, J., Zhou, M., et al. (2018). InfAcrOnt:
calculating cross-ontology term similarities using information flow by a random
walk. BMC Genomics 19(Suppl. 1):919. doi: 10.1186/s12864-017-4338-6

Cheng, L., Yang, H., Zhao, H., Pei, X., Shi, H., Sun, J., et al. (2019a). MetSigDis:
a manually curated resource for the metabolic signatures of diseases. Brief
Bioinform. 20, 203–209. doi: 10.1093/bib/bbx103

Cheng, L., Zhao, H., Wang, P., Zhou, W., Luo, M., Li, T., et al. (2019b).
Computational methods for identifying similar diseases. Mol. Ther. Nucleic
Acids 18, 590–604.

Chou, K.-C. (2001). Prediction of protein cellular attributes using pseudo-amino
acid composition. Proteins 43, 246–255. doi: 10.1002/prot.1035

Chu, Y., Kaushik, A. C., Wang, X., Wang, W., Zhang, Y., Shan, X., et al. (2019).
DTI-CDF: a cascade deep forest model towards the prediction of drug-target
interactions based on hybrid features. Brief Bioinform. 2019:bbz152. doi: 10.
1093/bib/bbz152

Dao, F. Y., Lv, H., Zulfiqar, H., Yang, H., Su, W., Gao, H., et al. (2020). A
computational platform to identify origins of replication sites in eukaryotes.
Brief Bioinform. 2020:bbaa017. doi: 10.1093/bib/bbaa017

Deng, L., Li, W., and Zhang, J. (2019a). “LDAH2V: Exploring meta-paths across
multiple networks for lncRNA-disease association prediction,” in Proceedings
of the IEEE/ACM Transactions on Computational Biology and Bioinformatics,
Piscataway, NJ.

Deng, L., Wang, J., and Zhang, J. (2019b). Predicting gene ontology function of
human micrornas by integrating multiple networks. Front. Genet. 10:3. doi:
10.3389/fmicb.2018.0003

Ding, Y., Tang, J., and Guo, F. (2017). Identification of drug-target interactions via
multiple information integration. Inform. Sci. 418–419, 546–560. doi: 10.1016/
j.ins.2017.08.045

Ding, Y., Tang, J., and Guo, F. (2019). Identification of drug-side effect
association via multiple information integration with centered kernel
alignment. Neurocomputing 325, 211–224. doi: 10.1016/j.neucom.2018.
10.028

Dubchak, I., Muchnik, I., Holbrook, S. R., and Kim, S. H. (1995). Prediction of
protein folding class using global description of amino acid sequence. Proc. Natl.
Acad. Sci. U.S.A. 92, 8700–8704. doi: 10.1073/pnas.92.19.8700

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 7 August 2020 | Volume 8 | Article 892

https://www.frontiersin.org/articles/10.3389/fbioe.2020.00892/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbioe.2020.00892/full#supplementary-material
https://doi.org/10.1016/j.chemolab.2019.06.003
https://doi.org/10.1016/j.chemolab.2019.06.003
https://doi.org/10.1093/bib/bbz041
https://doi.org/10.18632/oncotarget.7815
https://doi.org/10.18632/oncotarget.7815
https://doi.org/10.1186/s12864-017-4338-6
https://doi.org/10.1093/bib/bbx103
https://doi.org/10.1002/prot.1035
https://doi.org/10.1093/bib/bbz152
https://doi.org/10.1093/bib/bbz152
https://doi.org/10.1093/bib/bbaa017
https://doi.org/10.3389/fmicb.2018.0003
https://doi.org/10.3389/fmicb.2018.0003
https://doi.org/10.1016/j.ins.2017.08.045
https://doi.org/10.1016/j.ins.2017.08.045
https://doi.org/10.1016/j.neucom.2018.10.028
https://doi.org/10.1016/j.neucom.2018.10.028
https://doi.org/10.1073/pnas.92.19.8700
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00892 August 10, 2020 Time: 14:52 # 8

Li et al. Prediction Using Low-Dimensional Feature Model

Fang, T., Zhang, Z., Sun, R., Zhu, L., He, J., Huang, B., et al. (2019). RNAm5CPred:
prediction of RNA 5-methylcytosine sites based on three different kinds of
nucleotide composition. Mol. Ther. Nucleic Acids 18, 739–747. doi: 10.1016/j.
omtn.2019.10.008

Feng, Y. M. (2019). Gene therapy on the road. Curr. Gene Ther. 19:6. doi: 10.2174/
1566523219999190426144513

Gong, Y., Niu, Y., Zhang, W., and Li, X. (2019). A network embedding-based
multiple information integration method for the MiRNA-disease association
prediction. BMC Bioinform. 20:468. doi: 10.1186/s12859-019-3063-3

Guo, M., and Xu, Y. (2018). Single-cell transcriptome analysis using SINCERA
pipeline Transcriptome. Data Analy. 1751, 209–222.

Hajisharifi, Z., Piryaiee, M., Mohammad Beigi, M., Behbahani, M., and
Mohabatkar, H. (2014). Predicting anticancer peptides with Chou’s pseudo
amino acid composition and investigating their mutagenicity via Ames test.
J. Theor. Biol. 341, 34–40. doi: 10.1016/j.jtbi.2013.08.037

Hong, J., Luo, Y., Zhang, Y., Ying, J., Xue, W., Xie, T., et al. (2019). Protein
functional annotation of simultaneously improved stability, accuracy and false
discovery rate achieved by a sequence-based deep learning. Brief Bioinform. 21,
1437–1447. doi: 10.1093/bib/bbz081

Hong, Z., Zeng, X., Wei, L., and Liu, X. J. B. (2019). Identifying enhancer-
promoter interactions with neural network based on pre-trained DNA vectors
and attention mechanism. Bioinformatics 36, 1037–1043.

Huang, Q., Chen, Y., Liu, L., Tao, D., and Li, X. (2020). On combining biclustering
mining and adaboost for breast tumor classification. IEEE Trans. Knowl. Data
Eng. 32, 728–738. doi: 10.1109/TKDE.2019.2891622

Jia, C. Z., Zuo, Y., and Zou, Q. (2018). O-GlcNAcPRED-II: an integrated
classification algorithm for identifying O-GlcNAcylation sites based on fuzzy
undersampling and a K-means PCA oversampling technique. Bioinformatics 34,
2029–2036. doi: 10.1093/bioinformatics/bty039

Jiang, Q. H., Wang, G. H., Jin, S. L., Li, Y., and Wang, Y. D. (2013). Predicting
human microRNA-disease associations based on support vector machine.
Intern. J. Data Min. Bioinform. 8, 282–293. doi: 10.1504/ijdmb.2013.056078

Li, B., Tang, J., Yang, Q., Li, S., Cui, X., Li, Y., et al. (2017). NOREVA: normalization
and evaluation of MS-based metabolomics data. Nucleic Acids Res. 45, W162–
W170. doi: 10.1093/nar/gkx449

Li, F., Zhou, Y., Zhang, X., Tang, J., Yang, Q., Zhang, Y., et al. (2020). SSizer:
determining the sample sufficiency for comparative biological study. J. Mol.
Biol. 432:3411. doi: 10.1016/j.jmb.2020.01.027

Li, Y. H., Li, X. X., Hong, J. J., Wang, Y. X., Fu, J. B., Yang, H., et al. (2020).
Clinical trials, progression-speed differentiating features and swiftness rule of
the innovative targets of first-in-class drugs. Brief Bioinform. 21, 649–662. doi:
10.1093/bib/bby130

Li, W., Yu, J., Lian, B., Sun, H., Li, J., Zhang, M., et al. (2015). Identifying prognostic
features by bottom-up approach and correlating to drug repositioning. PLoS
One 10:e0118672. doi: 10.1371/journal.pone.0118672

Liang, C., Changlu, Q., He, Z., Tongze, F., and Xue, Z. (2019). gutMDisorder: a
comprehensive database for dysbiosis of the gut microbiota in disorders and
interventions. Nucleic Acids Res. 48, D554–D560.

Liao, Y.-D., and Jiang, Z.-R. (2019). MoABank: an integrated database for
drug mode of action knowledge. Curr. Bioinform. 14, 446–449. doi: 10.2174/
1574893614666190416151344

Liao, Z. J., Li, D. P., Wang, X. R., Li, L. S., and Zou, Q. (2018). Cancer diagnosis
through isomir expression with machine learning method. Curr. Bioinform. 13,
57–63. doi: 10.2174/1574893611666160609081155

Lin, C., Chen, W., Qiu, C., Wu, Y., Krishnan, S., and Zou, Q. (2014).
LibD3C: ensemble classifiers with a clustering and dynamic selection strategy.
Neurocomputing 123, 424–435. doi: 10.1016/j.neucom.2013.08.004

Lin, H., Liang, Z. Y., Tang, H., and Chen, W. (2017). Identifying sigma70 promoters
with novel pseudo nucleotide composition. IEEE/ACM Trans. Comput. Biol.
Bioinform. 16, 1316–1321. doi: 10.1109/TCBB.2017.2666141

Lin, M., Li, X., Guo, H., Ji, F., Ye, L., Ma, X., et al. (2019). Identification
of bone metastasis-associated genes of gastric cancer by genome-wide
transcriptional profiling. Curr. Bioinform. 14, 62–69. doi: 10.2174/
1574893612666171121154017

Liu, B., Chen, S., Yan, K., and Weng, F. (2019a). iRO-PsekGCC: identify DNA
replication origins based on pseudo k-tuple GC composition. Front. Genet.
10:842. doi: 10.3389/fmicb.2018.0842

Liu, B., Gao, X., and Zhang, H. (2019b). BioSeq-Analysis2.0: an updated platform
for analyzing DNA, RNA, and protein sequences at sequence level and residue
level based on machine learning approaches. Nucleic Acids Res. 47:e127.

Liu, B., and Li, K. (2019). iPromoter-2L2.0: identifying promoters and their types by
combining smoothing cutting window algorithm and sequence-based features.
Mol. Ther.Nucleic Acids 18, 80–87.

Liu, H., Luo, L. B., Cheng, Z. Z., Sun, J. J., Guan, J. H., Zheng, J., et al. (2018).
Group-sparse modeling drug-kinase networks for predicting combinatorial
drug sensitivity in cancer cells. Curr. Bioinform. 13, 437–443. doi: 10.2174/
1574893613666180118104250

Liu, S., Liu, C., and Deng, L. (2018). Machine learning approaches for protein-
protein interaction hot spot prediction: progress and comparative assessment.
Molecules 23:2535.

Liu, H., Zhang, W., Zou, B., Wang, J., Deng, Y., and Deng, L. (2020).
DrugCombDB: a comprehensive database of drug combinations toward the
discovery of combinatorial therapy. Nucleic Acids Res. 48, D871–D881.

Liu, X., Hong, Z., Liu, J., Lin, Y., Rodríguez-Patón, A., Zou, Q., et al. (2020).
Computational methods for identifying the critical nodes in biological
networks. Briefings Bioinform. 21, 486–497.

Liu, W., Meng, X., Xu, Q., Flower, D. R., and Li, T. (2006). Quantitative prediction
of mouse class I MHC peptide binding affinity using support vector machine
regression (SVR) models. BMC Bioinform. 7:182. doi: 10.1186/1471-2105-7-
182

Lv, H., Dao, F.-Y., Zhang, D., Guan, Z.-X., Yang, H., Su, W., et al. (2020). iDNA-
MS: an integrated computational tool for detecting DNA modification sites in
multiple genomes. iScience 23:100991. doi: 10.1016/j.isci.2020.100991

Lv, H., Zhang, Z. M., Li, S. H., Tan, J. X., Chen, W., and Lin, H. (2019). Evaluation
of different computational methods on 5-methylcytosine sites identification.
Briefings Bioinform. 21, 982–995. doi: 10.1093/bib/bbz048

Lv, Z., Jin, S., Ding, H., and Zou, Q. (2019). A random forest sub-Golgi protein
classifier optimized via dipeptide and amino acid composition features. Front.
Bioeng. Biotechnol. 7:215. doi: 10.3389/fmicb.2018.00215

Munir, A., Malik, S. I., and Malik, K. A. (2019). Proteome mining for the
identification of putative drug targets for human pathogen clostridium tetani.
Curr. Bioinform. 14, 532–540. doi: 10.2174/1574893613666181114095736

Ozkan, A., Isgor, S. B., Sengul, G., and Isgor, Y. G. (2019). Benchmarking
classification models for cell viability on novel cancer image datasets. Curr.
Bioinform. 14, 108–114. doi: 10.2174/1574893614666181120093740

Qiao, Y., Xiong, Y., Gao, H., Zhu, X., and Chen, P. (2018). Protein-protein
interface hot spots prediction based on a hybrid feature selection strategy. BMC
Bioinform. 19:14. doi: 10.1186/s12859-018-2009-5

Qu, K., Han, K., Wu, S., Wang, G., and Wei, L. (2017). Identification of
DNA-binding proteins using mixed feature representation methods. Molecules
22:1602. doi: 10.3390/molecules22101602

Ru, X., Wang, L., Li, L., Ding, H., Ye, X., and Zou, Q. (2020). Exploration of the
correlation between GPCRs and drugs based on a learning to rank algorithm.
Comput. Biol. Med. 119:103660.

Ru, X. Q., Li, L. H., and Zou, Q. (2019). Incorporating Distance-based top-n-gram
and random forest to identify electron transport proteins. J. Proteome Res. 18,
2931–2939. doi: 10.1021/acs.jproteome.9b00250

Shan, X., Wang, X., Li, C. D., Chu, Y., Zhang, Y., Xiong, Y., et al. (2019). Prediction
of CYP450 enzyme-substrate selectivity based on the network-based label space
division method. J. Chem. Inf. Model. 59, 4577–4586. doi: 10.1021/acs.jcim.
9b00749

Shen, J., Zhang, J., Luo, X., Zhu, W., Yu, K., Chen, K., et al. (2007). Predicting
protein-protein interactions based only on sequences information. Proc. Natl.
Acad. Sci. U.S.A. 104, 4337–4341. doi: 10.1073/pnas.0607879104

Song, B., Li, K., Orellana-Martín, D., Valencia-Cabrera, L., and Pérez-Jiménez,
M. J. (2020). Cell-like P systems with evolutional symport/antiport rules and
membrane creation. Inform. Comput. 2020:104542.

Song, T., Rodríguez-Patón, A., Zheng, P., and Zeng, X. (2018). Spiking
neural P systems with colored spikes. IEEE Trans. Cogn. Dev. Syst. 10,
1106–1115.

Srivastava, N., Mishra, B. N., and Srivastava, P. (2019). In-silico identification of
drug lead molecule against pesticide exposed-neurodevelopmental disorders
through network-based computational model approach. Curr. Bioinform. 14,
460–467. doi: 10.2174/1574893613666181112130346

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 8 August 2020 | Volume 8 | Article 892

https://doi.org/10.1016/j.omtn.2019.10.008
https://doi.org/10.1016/j.omtn.2019.10.008
https://doi.org/10.2174/1566523219999190426144513
https://doi.org/10.2174/1566523219999190426144513
https://doi.org/10.1186/s12859-019-3063-3
https://doi.org/10.1016/j.jtbi.2013.08.037
https://doi.org/10.1093/bib/bbz081
https://doi.org/10.1109/TKDE.2019.2891622
https://doi.org/10.1093/bioinformatics/bty039
https://doi.org/10.1504/ijdmb.2013.056078
https://doi.org/10.1093/nar/gkx449
https://doi.org/10.1016/j.jmb.2020.01.027
https://doi.org/10.1093/bib/bby130
https://doi.org/10.1093/bib/bby130
https://doi.org/10.1371/journal.pone.0118672
https://doi.org/10.2174/1574893614666190416151344
https://doi.org/10.2174/1574893614666190416151344
https://doi.org/10.2174/1574893611666160609081155
https://doi.org/10.1016/j.neucom.2013.08.004
https://doi.org/10.1109/TCBB.2017.2666141
https://doi.org/10.2174/1574893612666171121154017
https://doi.org/10.2174/1574893612666171121154017
https://doi.org/10.3389/fmicb.2018.0842
https://doi.org/10.2174/1574893613666180118104250
https://doi.org/10.2174/1574893613666180118104250
https://doi.org/10.1186/1471-2105-7-182
https://doi.org/10.1186/1471-2105-7-182
https://doi.org/10.1016/j.isci.2020.100991
https://doi.org/10.1093/bib/bbz048
https://doi.org/10.3389/fmicb.2018.00215
https://doi.org/10.2174/1574893613666181114095736
https://doi.org/10.2174/1574893614666181120093740
https://doi.org/10.1186/s12859-018-2009-5
https://doi.org/10.3390/molecules22101602
https://doi.org/10.1021/acs.jproteome.9b00250
https://doi.org/10.1021/acs.jcim.9b00749
https://doi.org/10.1021/acs.jcim.9b00749
https://doi.org/10.1073/pnas.0607879104
https://doi.org/10.2174/1574893613666181112130346
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00892 August 10, 2020 Time: 14:52 # 9

Li et al. Prediction Using Low-Dimensional Feature Model

Sun, Y., Zhang, W., Chen, Y., Ma, Q., Wei, J., and Liu, Q. (2016). Identifying
anti-cancer drug response related genes using an integrative analysis of
transcriptomic and genomic variations with cell line-based drug perturbations.
Oncotarget 7:9404.

Sun, Z., Deng, Z.-H., Nie, J.-Y., and Tang, J. (2019). Rotate: knowledge
graph embedding by relational rotation in complex space. arXiv [Preprint].
arXiv:1902.10197v1

Tan, J. X., Li, S. H., Zhang, Z. M., Chen, C. X., Chen, W., Tang, H., et al.
(2019). Identification of hormone binding proteins based on machine learning
methods. Math. Biosci. Eng. 16, 2466–2480. doi: 10.3934/mbe.2019123

Tang, J., Fu, J., Wang, Y., Li, B., Li, Y., Yang, Q., et al. (2020). ANPELA: analysis
and performance assessment of the label-free quantification workflow for
metaproteomic studies. Brief Bioinform. 21, 621–636. doi: 10.1093/bib/bby127

Tang, J., Fu, J., Wang, Y., Luo, Y., Yang, Q., Li, B., et al. (2019). Simultaneous
improvement in the precision, accuracy, and robustness of label-free proteome
quantification by optimizing data manipulation chains. Mol. Cell Proteom. 18,
1683–1699. doi: 10.1074/mcp.RA118.001169

Tang, Y., Liu, D., Wang, Z., Wen, T., and Deng, L. (2017). A boosting approach
for prediction of protein-RNA binding residues. BMC Bioinform. 18:465. doi:
10.1186/s12859-018-2009-465

Tyagi, A., Kapoor, P., Kumar, R., Chaudhary, K., Gautam, A., and Raghava,
G. P. (2013). In silico models for designing and discovering novel anticancer
peptides. Sci. Rep. 3:2984. doi: 10.1038/srep02984

Wang, H., Ding, Y., Tang, J., and Guo, F. (2020). Identification of membrane
protein types via multivariate information fusion with Hilbert-Schmidt
Independence criterion. Neurocomputing 383, 257–269. doi: 10.1016/j.neucom.
2019.11.103

Wang, J., Wang, H., Wang, X., and Chang, H. (2020). Predicting drug-target
interactions via FM-DNN learning. Curr. Bioinform. 15, 68–76. doi: 10.2174/
1574893614666190227160538

Wang, Y., Zhang, S., Li, F., Zhou, Y., Zhang, Y., Wang, Z., et al. (2020). Therapeutic
target database 2020: enriched resource for facilitating research and early
development of targeted therapeutics. Nucleic Acids Res. 48, D1031–D1041.
doi: 10.1093/nar/gkz981

Wang, X., Yu, B., Ma, A., Chen, C., Liu, B., and Ma, Q. (2018). Protein-protein
interaction sites prediction by ensemble random forests with synthetic minority
oversampling technique. Bioinformatics 35, 2395–2402.

Wang, Y., Ding, Y., Guo, F., Wei, L., and Tang, J. (2017). Improved detection of
DNA-binding proteins via compression technology on PSSM information. PLoS
One 12:185587. doi: 10.1371/journal.pone.0185587

Wang, Y., Liu, K., Ma, Q., Tan, Y., Du, W., Lv, Y., et al. (2019). Pancreatic
cancer biomarker detection by two support vector strategies for recursive
feature elimination. Biomark. Med. 13, 105–121. doi: 10.2217/bmm-2018-
0273

Wei, L., Wan, S., Guo, J., and Wong, K. K. (2017). A novel hierarchical selective
ensemble classifier with bioinformatics application. Artif. Intellig. Med. 83,
82–90.

Wei, L., Zhou, C., Chen, H., Song, J., and Su, R. (2018). ACPred-FL: a sequence-
based predictor based on effective feature representation to improve the
prediction of anti-cancer peptides. Bioinformatics 34, 4007–4016.

Wei, L., Zhou, C., Su, R., and Zou, Q. (2019). PEPred-Suite: improved and
robust prediction of therapeutic peptides using adaptive feature representation
learning. Bioinformatics 35, 4272–4280. doi: 10.1093/bioinformatics/btz246

Wei, L., Zou, Q., Liao, M., Lu, H., and Zhao, Y. (2016). A novel machine learning
method for cytokine-receptor interaction prediction. Combinat. Chem. High
Throughput Screen. 19, 144–152.

Wilcox, R. (1961). Adaptive control processes—A guided tour, by richard bellman,
princeton university press, princeton, New Jersey, 1961, 255 pp., $6.50. Naval
Res. Logist. Q. 8:314. doi: 10.1002/nav.3800080314

Xiong, Y., Wang, Q., Yang, J., Zhu, X., and Wei, D. Q. (2018). PredT4SE-Stack:
prediction of bacterial Type IV secreted effectors from protein sequences using
a stacked ensemble method. Front. Microbiol. 9:2571. doi: 10.3389/fmicb.2018.
02571

Xu, L., Liang, G., Liao, C., Chen, G.-D., and Chang, C.-C. (2018a). An efficient
classifier for alzheimer’s disease genes identification. Molecules 23:3140.

Xu, L., Liang, G., Wang, L., and Liao, C. (2018b). A novel hybrid sequence-
based model for identifying anticancer peptides. Genes 9:158. doi: 10.3390/
genes9030158

Xu, Y., Zhao, W., Olson, S. D., Prabhakara, K. S., and Zhou, X. (2018). Alternative
splicing links histone modifications to stem cell fate decision. Genome Biol. 19,
1–21.

Xu, L., Liang, G., Liao, C., Chen, G.-D., and Chang, C.-C. (2019). k-Skip-n-
Gram-RF: a random forest based method for Alzheimer’s disease protein
identification. Front. Genet. 10:33. doi: 10.3389/fgene.2019.00033

Xu, Y., Wang, Y., Luo, J., Zhao, W., and Zhou, X. (2017). Deep learning of the
splicing (epi)genetic code reveals a novel candidate mechanism linking histone
modifications to ESC fate decision. Nucleic Acids Res. 45, 12100–12112. doi:
10.1093/nar/gkx870

Yan, K., Fang, X., Xu, Y., and Liu, B. (2019). Protein fold recognition based on
multi-view modeling. Bioinformatics 35, 2982–2990.

Yang, Q., Li, B., Tang, J., Cui, X., Wang, Y., Li, X., et al. (2019). Consistent gene
signature of schizophrenia identified by a novel feature selection strategy from
comprehensive sets of transcriptomic data. Brief Bioinform. 21, 1058–1068.
doi: 10.1093/bib/bbz049

Yang, Q., Wang, Y., Zhang, Y., Li, F., Xia, W., Zhou, Y., et al. (2020).
NOREVA: enhanced normalization and evaluation of time-course and multi-
class metabolomic data. Nucleic Acids Res. 48, W436–W448. doi: 10.1093/nar/
gkaa258

Yin, J., Sun, W., Li, F., Hong, J., Li, X., Zhou, Y., et al. (2020). VARIDT 1.0:
variability of drug transporter database. Nucleic Acids Res 48, D1042–D1050.
doi: 10.1093/nar/gkz779

Yu, L., and Gao, L. (2019). Human pathway-based disease network. IEEE/ACM
Trans. Comput. Biol. Bioinform. 16, 1240–1249. doi: 10.1109/TCBB.2017.
2774802

Yu, L., Xu, F., and Gao, L. (2020). Predict new therapeutic drugs for hepatocellular
carcinoma based on gene mutation and expression. Front. Bioeng. Biotechnol.
8:8. doi: 10.3389/fbioe.2020.00008

Zeng, W., Wang, F., Ma, Y., Liang, X. C., and Chen, P. (2019).
Dysfunctional mechanism of liver cancer mediated by transcription
factor and non-coding RNA. Curr. Bioinform. 14, 100–107. doi:
10.2174/1574893614666181119121916

Zeng, X., Wang, W., Deng, G., Bing, J., and Zou, Q. (2019a). Prediction of potential
disease-associated MicroRNAs by using neural networks. Mol. Ther. Nucleic
Acids 16, 566–575.

Zeng, X., Zhu, S., Liu, X., Zhou, Y., Nussinov, R., and Cheng, F. (2019b). deepDR:
a network-based deep learning approach to in silico drug repositioning.
Bioinformatics 35, 5191–5198. doi: 10.1093/bioinformatics/btz418

Zeng, X., Liao, Y., Liu, Y., and Zou, Q. (2017). Prediction and validation of disease
genes using hetesim scores. IEEE/ACM Trans. Comput. Biol. Bioinform. 14,
687–695. doi: 10.1109/tcbb.2016.2520947

Zeng, X., Zhu, S., Hou, Y., Zhang, P., Li, L., Li, J., et al. (2020a).
Network-based prediction of drug-target interactions using an arbitrary-order
proximity embedded deep forest. Bioinformatics 36, 2805–2812. doi: 10.1093/
bioinformatics/btaa010

Zeng, X., Zhu, S., Lu, W., Liu, Z., Huang, J., Zhou, Y., et al. (2020b). Target
identification among known drugs by deep learning from heterogeneous
networks. Chem. Sci. 11, 1775–1797. doi: 10.1039/C9SC04336E

Zhang, J., Ju, Y., Lu, H., Xuan, P., and Zou, Q. (2016). Accurate identification
of cancerlectins through hybrid machine learning technology. Int. J. Genom.
2016:7604641. doi: 10.1155/2016/7604641

Zhang, M., Li, F., Marquez-Lago, T. T., Leier, A., Fan, C., Kwoh, C. K., et al. (2019).
MULTiPly: a novel multi-layer predictor for discovering general and specific
types of promoters. Bioinformatics 35, 2957–2965. doi: 10.1093/bioinformatics/
btz016

Zhang, W., Jing, K., Huang, F., Chen, Y., Li, B., Li, J., et al. (2019a). SFLLN: a sparse
feature learning ensemble method with linear neighborhood regularization for
predicting drug-drug interactions. Inform. Sci. 497, 189–201. doi: 10.1016/j.ins.
2019.05.017

Zhang, W., Li, Z., Guo, W., Yang, W., and Huang, F. (2019b). “A fast linear
neighborhood similarity-based network link inference method to predict
microRNA-disease associations,” in Proceedings of the IEEE/ACM Trans
Comput Biol Bioinform, Piscataway, NJ.

Zhang, Y., Kou, C., Wang, S., and Zhang, Y. (2019). Genome-wide
differential-based analysis of the relationship between DNA methylation
and gene expression in cancer. Curr. Bioinform. 14, 783–792. doi:
10.2174/1574893614666190424160046

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 9 August 2020 | Volume 8 | Article 892

https://arxiv.org/abs/1902.10197
https://doi.org/10.3934/mbe.2019123
https://doi.org/10.1093/bib/bby127
https://doi.org/10.1074/mcp.RA118.001169
https://doi.org/10.1186/s12859-018-2009-465
https://doi.org/10.1186/s12859-018-2009-465
https://doi.org/10.1038/srep02984
https://doi.org/10.1016/j.neucom.2019.11.103
https://doi.org/10.1016/j.neucom.2019.11.103
https://doi.org/10.2174/1574893614666190227160538
https://doi.org/10.2174/1574893614666190227160538
https://doi.org/10.1093/nar/gkz981
https://doi.org/10.1371/journal.pone.0185587
https://doi.org/10.2217/bmm-2018-0273
https://doi.org/10.2217/bmm-2018-0273
https://doi.org/10.1093/bioinformatics/btz246
https://doi.org/10.1002/nav.3800080314
https://doi.org/10.3389/fmicb.2018.02571
https://doi.org/10.3389/fmicb.2018.02571
https://doi.org/10.3390/genes9030158
https://doi.org/10.3390/genes9030158
https://doi.org/10.3389/fgene.2019.00033
https://doi.org/10.1093/nar/gkx870
https://doi.org/10.1093/nar/gkx870
https://doi.org/10.1093/bib/bbz049
https://doi.org/10.1093/nar/gkaa258
https://doi.org/10.1093/nar/gkaa258
https://doi.org/10.1093/nar/gkz779
https://doi.org/10.1109/TCBB.2017.2774802
https://doi.org/10.1109/TCBB.2017.2774802
https://doi.org/10.3389/fbioe.2020.00008
https://doi.org/10.2174/1574893614666181119121916
https://doi.org/10.2174/1574893614666181119121916
https://doi.org/10.1093/bioinformatics/btz418
https://doi.org/10.1109/tcbb.2016.2520947
https://doi.org/10.1093/bioinformatics/btaa010
https://doi.org/10.1093/bioinformatics/btaa010
https://doi.org/10.1039/C9SC04336E
https://doi.org/10.1155/2016/7604641
https://doi.org/10.1093/bioinformatics/btz016
https://doi.org/10.1093/bioinformatics/btz016
https://doi.org/10.1016/j.ins.2019.05.017
https://doi.org/10.1016/j.ins.2019.05.017
https://doi.org/10.2174/1574893614666190424160046
https://doi.org/10.2174/1574893614666190424160046
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00892 August 10, 2020 Time: 14:52 # 10

Li et al. Prediction Using Low-Dimensional Feature Model

Zhang, W., Chen, Y., Li, D., and Yue, X. (2018a). Manifold regularized matrix
factorization for drug-drug interaction prediction. J. Biomed. Inform. 88, 90–97.

Zhang, W., Yue, X., Tang, G., Wu, W., Huang, F., and Zhang, X. (2018b).
SFPEL-LPI: sequence-based feature projection ensemble learning for predicting
LncRNA-protein interactions. PLoS Comput. Biol. 14:e1006616. doi: 10.1371/
journal.pcbi.1006616

Zhang, Z. M., Tan, J. X., Wang, F., Dao, F. Y., Zhang, Z. Y., and Lin, H. (2020).
Early diagnosis of hepatocellular carcinoma using machine learning method.
Front. Bioeng. Biotechnol. 8:254. doi: 10.3389/fbioe.2020.00254

Zhou, L. Y., Qin, Z., Zhu, Y. H., He, Z. Y., and Xu, T. (2019). Current RNA-
based therapeutics in clinical trials. Curr. Gene Ther. 19, 172–196. doi: 10.2174/
1566523219666190719100526

Zou, Q., Chen, L., Huang, T., Zhang, Z., and Xu, Y. (2017). Machine learning
and graph analytics in computational biomedicine. Artif. Intell. Med. 83:1.
doi: 10.1016/j.artmed.2017.09.003

Zou, Q., Wan, S., Ju, Y., Tang, J., and Zeng, X. (2016). Pretata: predicting
TATA binding proteins with novel features and dimensionality
reduction strategy. BMC Syst. Biol. 10:114. doi: 10.1186/s12859-018-
2009-114

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Li, Zhou, Wang, Wang and Li. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 10 August 2020 | Volume 8 | Article 892

https://doi.org/10.1371/journal.pcbi.1006616
https://doi.org/10.1371/journal.pcbi.1006616
https://doi.org/10.3389/fbioe.2020.00254
https://doi.org/10.2174/1566523219666190719100526
https://doi.org/10.2174/1566523219666190719100526
https://doi.org/10.1016/j.artmed.2017.09.003
https://doi.org/10.1186/s12859-018-2009-114
https://doi.org/10.1186/s12859-018-2009-114
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

	Prediction of Anticancer Peptides Using a Low-Dimensional Feature Model
	Introduction
	Materials and Methods
	Benchmark Dataset
	Feature Extraction Strategies
	Conjoint Triad
	C/T/D
	Amino Acid Composition

	Pseudo-Amino Acid Composition
	Grouped Amino Acid Composition

	Feature Selection
	Classifier
	Support Vector Machine
	Random Forest
	LibD3C

	Prediction Result Estimate

	Results and Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


