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Multicellularity, the coordinated collective behavior of cell populations, gives rise to the

emergence of self-organized phenomena at many different spatio-temporal scales. At the

genetic scale, oscillators are ubiquitous in regulation of multicellular systems, including

during their development and regeneration. Synthetic biologists have successfully

created simple synthetic genetic circuits that produce oscillations in single cells. Studying

and engineering synthetic oscillators in a multicellular chassis can therefore give us

valuable insights into how simple genetic circuits can encode complex multicellular

behaviors at different scales. Here we develop a study of the coupling between the

repressilator synthetic genetic ring oscillator and constraints on cell growth in colonies.

We show in silico how mechanical constraints generate characteristic patterns of growth

rate inhomogeneity in growing cell colonies. Next, we develop a simple one-dimensional

model which predicts that coupling the repressilator to this pattern of growth rate

via protein dilution generates traveling waves of gene expression. We show that the

dynamics of these spatio-temporal patterns are determined by two parameters; the

protein degradation and maximum expression rates of the repressors. We derive

simple relations between these parameters and the key characteristics of the traveling

wave patterns: firstly, wave speed is determined by protein degradation and secondly,

wavelength is determined by maximum gene expression rate. Our analytical predictions

and numerical results were in close quantitative agreement with detailed individual based

simulations of growing cell colonies. Confirming published experimental results we also

found that static ring patterns occur when protein stability is high. Our results show that

this pattern can be induced simply by growth rate dilution and does not require transition

to stationary phase as previously suggested. Our method generalizes easily to other

genetic circuit architectures thus providing a framework for multi-scale rational design of

spatio-temporal patterns from genetic circuits. We use this method to generate testable

predictions for the synthetic biology design-build-test-learn cycle.

Keywords: genetic circuits, repressilator, biodesign, spatio-temporal patterns, traveling waves, cellModeller,

synthetic biology
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1. INTRODUCTION

Multicellularity and collective cell behavior exemplify the
emergence of complex patterns and structures across scales in
living systems. When cells interact they can generate higher
order patterns of gene expression (differentiation) as well as
patterns of mechanical stresses and strains (Chan et al., 2017;
Vining and Mooney, 2017). This process takes place in natural
phenomena such as embryonic development, tumor formation,
wound healing, among others (Velardo et al., 2004; Aboobaker
et al., 2005; Khain and Sander, 2006; Gjorevski and Nelson, 2010;
Santos-Moreno and Schaerli, 2019). Understanding how these
patterns are generated and maintained will enable applications
in tissue engineering and regenerative medicine. However,
natural emergent multicellular phenomena present numerous
unknown processes that pose difficulties for understanding the
fundamental mechanisms underlying pattern formation.

Synthetic biology applies design principles to generate
combinations of genetic parts that perform a given function,
for example oscillation, which at the same time helps us to
understand the complexity inherent to natural systems. The
prototypical engineering process is the design-build-test-learn
cycle, which is an iterative process relying heavily on models
of genetic circuit function. A variety of genetic circuits have
been designed, analyzed, simulated, and then implemented in
this way. These synthetic circuits simplify biological systems
reproducing a specific function (Xie and Fussenegger, 2018) such
as toggle switches (Gardner et al., 2000; Yeung et al., 2017),
oscillators (Elowitz and Leibler, 2000; Stricker et al., 2008; Danino
et al., 2010; Potvin-Trottier et al., 2016), logic gates (Tamsir et al.,
2011; Nielsen et al., 2016; Green et al., 2017; Kim et al., 2018), and
arithmetic operators (Wong et al., 2015; Ausländer et al., 2018).

While these circuits are often studied as dynamical systems
in single cells or well mixed populations, the function of genetic
circuits has also been studied in cell colonies (Luo et al., 2019;
Santos-Moreno and Schaerli, 2019) through the engineering of
patterns of gene expression such as symmetry breaking (Nuñez
et al., 2017), Turing patterns (Karig et al., 2018), fractal
patterns (Rudge et al., 2013), tissue like structures (Toda et al.,
2018; Healy and Deans, 2019), among others. These emergent
spatio-temporal patterns depend on mechanical constraints
on cells, which are the result of cell-cell and cell-substrate
interactions. Thus, synthetic gene circuits can be engineered to
generate higher order spatio-temporal patterns when coupled to
mechanical constraints.

We focus here on the repressilator (Elowitz and Leibler,
2000), a gene network that encodes a ring oscillator topology
consisting of three repressors, where repressor 1 inhibits
repressor 2, repressor 2 inhibits repressor 3, and repressor 3
inhibits repressor 1 (Figure 1). In the original realization of
this circuit topology (Elowitz and Leibler, 2000) the circuit was
subject to significant effects of noise and oscillations quickly
became desynchronized. Recently, the circuit was revisited by
Potvin-Trottier et al. (2016) with microfluidics systems that
allowed them to observe single cells oscillating synchronously
in chemostatic conditions for long periods of time. In this
work sources of noise were reduced in several ways. Firstly, the

fluorescent reporters were integrated into the same low-copy
plasmid as the repressilator reducing the standard deviation in
amplitude greatly. They also removed the degradation tags and
used a protease deletion strain (1clpXP) as the chassis to remove
noise from enzymatic queuing (Cookson et al., 2011; Steiner
et al., 2016). They also increased the effective repression threshold
with a high-copy titration “sponge” plasmid that sequesters
a proportion of the TetR repressor, since low repression
thresholds imply sensitivity to noisy repressor expression levels.
These modifications allowed regular and sustained synchronous
oscillations that peaked around every 14 generations. The circuit
oscillated for approximately 18 periods before accumulating half
a period of drift, demonstrating that cells remained synchronized
for more than 250 generations. Strikingly, Potvin-Trottier et al.
(2016) were able to observe whole flasks of liquid bacterial culture
oscillate synchronously, and bacterial colonies form coherent
ring patterns at macroscopic scale. These findings show that the
repressilator can be effectively isolated from noise, function in
a robust and synchronous fashion, and is capable of forming
spatial patterns.

Models are essential in the design process, they allow
engineers to screen the parameter space looking for possible
functional constructions (Endy and Brent, 2001; De Jong,
2002). Synthetic biology has gone from intracellular dynamic
models using ODEs (Elowitz and Leibler, 2000; Gardner
et al., 2000), and SSA (Potvin-Trottier et al., 2016; Karig
et al., 2018) to sophisticated collective behavior models
based on individual agents (Rudge et al., 2012; Gorochowski,
2016) and integrated circuit-host models (Sickle et al., 2020).
Using cellular scale individual-based models (IBMs) gives rich
information about the emergent collective properties of cell
populations due to the interactions between themselves and
their environment. These models track cell growth and gene
expression in ways analogous to experiments performed in
controlled environmental conditions with specified properties
such as viscosity, chemical concentrations, etc. This makes them
an essential tool in the analysis and design of emergent properties
of genetic circuits operating in multicellular chassis. However
these models are complex and require significant computation
time, highlighting the need for simple tractable mathematical and
computational methods.

In this study we uncover novel spatio-temporal patterns of
gene expression generated by the repressilator in growing cell
colonies, and establish a simple method for their design. Since
it is generalizable, this work provides a quantitative framework
for multi-scale rational design of spatio-temporal patterns
from genetic circuits. We provide testable predictions for the
synthetic biology design-build-test-learn cycle for engineering
repressilator spatio-temporal pattern.

2. RESULTS

2.1. Growth Rate Variation in Growing
Microcolonies
We consider the case of Escherichia coli, the cellular
chassis for which the repressilator (Figure 1) was designed,
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FIGURE 1 | Repressilator genetic oscillator circuit. (A) Network representation

of the repressilator, in the schematic 1 represses 2, 2 represses 3, and 3

represses 1. (B) Genetic circuit diagram of a plasmid encoding the

repressilator. (C) Oscillating repressor concentrations over time computed by

solving Equation (11) with fixed growth rate. CDS 1, 2, and 3 are the

complementary DNA sequences coding for each repressor, and Ori is the

origin of replication.

growing on a viscous substrate such as a hydrogel or PDMS
(polydimethylsiloxane) and supplied with fresh nutrients
via microfluidic channels. Growth is constrained by forces
between cells and between cells and the substrate due to
viscous drag (Rudge et al., 2012). The cells in such a system are
constrained to a monolayer and form a quasi-two-dimensional
array of extending rod shapes (Farrell et al., 2013; Grant et al.,
2014). We used an individual-based model (Rudge et al., 2012)
to characterize the distribution of cell growth rates across a two
dimensional cell monolayer growing in such conditions over
time. We simulated the growth of microcolonies from single
cells to populations of approximately 60,000 cells with a radius
of approximately 200 cell diameters. Figures 2A–C show the
development of a colony from approximately 5,000 to 50,000
cells. The distribution of growth rates across the colony has a
clear radially symmetric pattern with a maximum at the edge
of the colony (Figure S1). This is as expected (Vicsek et al.,
1990; Smith et al., 2017) since the cells at the edge of the colony
are relatively unconstrained. Thus individual bacteria inside
microcolonies perceive a different biophysical environment
depending on their spatial position. Taking radial averages of
growth rate on growing colonies over a range of time points
we see the same exponential decay relative to the colony edge
(Figure 2E), leading to a simple model for the cell growth rate
as a function of the radial position of the cell with respect to the
colony edge r(t),

µ̄(t) = e−r(t)/r0 , (1)

where r0 (8.23 ± 1.69 cell diameters) is the characteristic
length scale of the radial variation in growth rate, and we have
normalized by µ0—the maximal unconstrained growth rate of
the cells. These results suggest that growth rate time dynamics

are determined by radial distance from the colony edge. After
a short transient, the colony edge moves with constant velocity
vfront = 5.00 so that Rmax increases linearly (Figure 2F).

Assuming a two-dimensional densely packed monolayer with
random cell orientations, growth is isotropic and expansion is
equal in all directions. The area expansion rate approximates the
growth rate and is given by the divergence of the velocity field,

∇ · v =
1

A

dA

dt
, (2)

where A is the cell area and v is the velocity. Since growth
is isotropic we may decompose the expansion rate equally
into its radial and perpendicular components. Considering the
velocity v in the radial direction r, and velocity w in the
perpendicular direction s, and expanding the divergence term,
Equation (2) gives,

dv

dr
+

dw

ds
= 2

dv

dr
= µ(r). (3)

Hence, with v = dr/dt, and considering only the radial direction,
we can rescale time as t → tµ0 and radial distance as r → r/r0
to obtain,

d

dr

(

dr

dt

)

=
1

2
e−r . (4)

Integrating by r and t results in,

v(t) =
1

2

(

1+ exp

(

τ − t

2

))−1

, (5)

r(t) = log

(

1+ exp

(

t − τ

2

))

, (6)

µ̄(t) =

(

1+ exp

(

t − τ

2

))−1

, (7)

where τ = −2log(exp(r(0)) − 1), and r(0) is the initial radial
position of the cell.

Equations (5)–(7) give us valuable insights into the system
behavior (Figure 3). The velocity in the radial direction (away
from the colony edge) is a sigmoidal logistic function and
saturates to a velocity of v = 1/2 as r increases (Figure 3A).
This gives the front velocity as vfront = 1/2 in rescaled units.
Correspondingly the radial position relative to the colony edge
r tends toward linear increase at velocity v = 1/2 as the
cell becomes effectively stationary relative to the colony center
(Figure 3B). In real units this means that the front velocity
is vfront = r0/2, where r0 is the length scale of growth rate
variation (Equation 1). This is consistent with our individual
based simulations (Figure 2F), in which vfront = 5.00 and r0 =

8.23 ± 1.69. The growth rate is also sigmoidal and tends from
maximum at the colony edge to zero as the cell moves away from
the growing front of the colony (Figure 3C).

The critical time τ , depending on the initial cell position, is
the time at which the growth rate and velocity are at their half
maximum values, and the cell is at radial position r = log(2)
(Figure 3, dashed lines). At this time the cell switches from a high
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FIGURE 2 | Average growth rate decays exponentially with distance relative to the edge. (A–C) Are growing colonies at 5,000, 25,000 and 50,000 cells, respectively.

(D) Is a zoom from the white square region in (C). Single cells are colored according to their growth rate, which ranges between 0 and 1. (E) Average growth rate 〈µ〉

at different distances from the colony edge, blue line is an exponential function (e−r/r0) with r0 = 8.23 fitted to the binned data (blue dots). Inset shows the log scale of

the average growth rate 〈µ〉 at different distances from the edge. (F) Colony radius (Rmax ) over time (dashed red line), linear fit to data at t>10 giving vfront = 5.00 the

velocity of the colony edge (blue line).

growth, low velocity regime (remaining close to the colony edge),
to a high velocity, low growth regime (remaining stationary
while the colony edge propagates). The time τ for this switch
to occur is greater for cells closer to the colony edge, that is
they remain in the fast growing regime for longer. Thus, cells
effectively experience a switch in growth rate and velocity at their
critical time τ , which depends on their initial radial position in
the colony.

2.2. Dynamic Growth Rate Dependent
Mathematical Model of the Repressilator
Here we develop a simple mathematical model coupling the
repressilator genetic circuit to growth rate variation via simple
dilution of proteins. The repressilator can be considered as an
abstract genetic circuit topology.We consider an implementation
of this topology following the design modifications made by
Potvin-Trottier et al. (2016), which essentially isolated the circuit
from noise and allowed sustained and synchronous oscillations
over time scales up to 250 generations. Stochastic simulations
performed with relevant parameters reproduced this behavior,
showing essentially deterministic behavior (Figure S2), therefore
we may use a simpler differential equation model to track the
repressor concentration of each cell over time. A simple two-step

model of the balanced repressilator genetic circuit (Figure 1), a
type of genetic ring oscillator, can be formulated as follows,

dmi

dt
=

a+ b(pj/Kj)n

1+ (pj/Kj)n
− δmi, (8)

dpi

dt
= cmi − γ pi − µ(t)pi, (9)

where i is one of the three genes, j is its corresponding
repressor gene, mi, pi are the mRNA and protein concentrations
respectively, a is the constitutive transcription rate, b is the
leaky or repressed transcription rate, µ is the instantaneous
growth rate of the cell or population of cells, γ is the
protein degradation rate, and δ is the mRNA degradation rate.
Order of magnitude estimates of these parameters are given in
Supplementary Material.

Since mRNAs are typically short lived (see
Supplementary Material), we may assume quasi-steady
state concentrations and the system is,

dpi

dt
=

c

δ

a+ b(pj/Kj)n

1+ (pj/Kj)n
− γ pi − µ(t)pi. (10)

Rescaling protein concentration as pj → pj/Kj and time by
t → tµ0 with µ0 the maximal growth rate, assuming that basal
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FIGURE 3 | Analytical solutions for cell velocity (A) and position (B) relative to

the colony edge, and growth rate (C), based on exponential decay of growth

rate with distance from colony edge. At critical time τ the system switches

between two regimes: high growth/low velocity, and low growth/high velocity.

expression is negligible, and combining with (Equation 7),

dpi

dt
=

α

1+ pnj
− γ̄ pi − pi

(

1+ exp

(

t − τ

2

))−1

, (11)

where α = ca/δµ0K (order of magnitude 104, see
Supplementary Material) is the steady state maximal gene
expression rate and the constant γ̄ = γ /µ0 is the protein
degradation rate as a fraction of the maximal growth rate (order
of magnitude 1). This model depends on three dimensionless
parameters α, γ̄ , and n.

In this model we assume that the dominant effect of
growth rate variation is by dilution of proteins. While there
is evidence for growth rate dependencies of transcription and
translation rates and plasmid copy number (Neubauer et al.,
2003; Klumpp et al., 2009; Klumpp, 2011), all of which affect
the parameters of the model, these effects have only been
observed due to different biochemical environments. In spatially
constrained cell populations the shape of the growth profile

µ̄(t) depends both upon the biochemical environment and
mechanical constraints (Andersen and von Meyenburg, 1980;
Matsushita and Fujikawa, 1990; Tuson et al., 2012; Farrell et al.,
2013; Rudge et al., 2013; Smith et al., 2017; Winkle et al.,
2018). At the typical bacterial microcolony scale the biochemical
environment is essentially uniform in space due to the fast
diffusion of small molecules like sugars and aminoacids (Matson
and Characklis, 1976; Fraleigh and Bungay, 1986; Guélon et al.,
2012). Using microfluidic devices cells can be maintained in
constant fresh media allowing observation of the long term
dynamics of genetic circuits (Danino et al., 2010; Long et al.,
2013; Potvin-Trottier et al., 2016). Under these conditions then
the predominant factors determining growth rate are physical
forces and constraints.

2.3. Protein Dilution Enables the
Repressilator to Produce Traveling Waves
in Growing Microcolonies
The model presented above (Equations 5–7 and 11) describes
the trajectories of cells as they move in the radial direction and
change their protein concentrations over time. Assuming that
the motion and growth of cells is not affected by the expression
of repressor genes, this model describes the mean behavior of
cells starting from some initial radial position. It is obvious
from these equations that in the absence of growth the system
can only produce plane wave, homogeneously synchronized
oscillations. However, in the presence of growth we have an
explicit relation between cell position and protein expression rate,
enabling spatio-temporal pattern formation.

Since growth dilutes proteins the effective degradation rate of
the repressors is γ̄ + µ̄(t). The effect of the sigmoidal growth rate
switch on the repressilator is therefore to decrease the effective
degradation rate of the repressors from γ̄ + 1 to γ̄ as cells move
out of the growing regime (Equation 7). Potvin-Trottier et al.
(2016) showed that increasing the degradation rate of repressors
by appending a degradation tag reduced the period of oscillations
T. This decrease was by approximately a factor of two at 37◦C,
with less effect at lower temperatures likely due to decrease in
protease activity (Purcell et al., 2012). We confirmed this result
using ourmodel by numerically integrating Equation (11) at fixed
effective degradation rates γ̄ + µ̄ (Figure 4). The frequency of
oscillations f = 1/T was proportional to the degradation rate,
with a slope depending on α, the maximum gene expression
rate. Hence in colonies, as cells move away from the edge due
to mechanical constraints the effective repressor degradation rate
decreases and the period of their oscillations increases.

After the critical time τ the period of oscillations increases
as the cell switches from high growth rate and low velocity to
low growth rate and high velocity (Equations 5–7). This means
that there is effectively an interior region oscillating with long
period Tint and an exterior region oscillating with short period
Text . The phase offset between peaks of the two signals after some
time 1t is,

1T =

(

Tint − Text

Tint

)

1t. (12)
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FIGURE 4 | Oscillation frequency f (or period T ) depends on the effective

degradation rate of repressors γ̄ + µ̄. For a given maximum gene expression

rate α the frequency is proportional to the effective degradation rate, and

increasing α decreases the frequency.

When the phase offset 1T = Text we have in phase oscillations.
The time required for a cell to achieve this phase offset is the time
spent in the high growth regime τ , plus the time spent in the low
growth regime, hence,

t∗ = τ + 1t = τ +
TintText

Tint − Text
, (13)

is the time at which the cell is in phase with the edge of the colony,
the wave source. At time t∗ the distance from the edge r(t∗) of
this cell can be obtained from Equation (6), and since this is the
peak-to-peak distance it gives the wavelength λ. Assuming that
exp(t∗)≫ 1,

λ =
TintText

2(Tint − Text)
. (14)

The wave propagation velocity is vp = λ/Text− v̄front = λ/Text−
1
2 , where v̄front is the velocity of the colony edge in normalized
distance units, hence,

vp =
Text

2(Tint − Text)
. (15)

Equations (14) and (15) show that when Text < Tint the system
generates traveling waves with finite wavelength and wave speed.
When Tint = Text , there is no effect of mechanical constraint on
oscillation period and we find that vp = ∞ and λ = ∞, meaning
that the system forms homogeneous plane waves with the whole
colony oscillating synchronously. As Tint → ∞ the interior does
not oscillate and we find that vp → 0 and λ → Text/2 and we
thus have static rings of gene expression with spatial wavelength
Text/2 = v̄frontText . This is the case when protein degradation
is negligible (γ̄ = 0), a condition under which the repressilator
has been shown to form static rings in growing colonies (Potvin-
Trottier et al., 2016). Thus we have shown analytically that growth

rate heterogeneity induces the repressilator to form either static
rings or traveling waves in growing cell colonies, depending on
the degradation rate of the repressors.

2.4. Novel Spatio-Temporal Patterns
Emerging From Repressilator Dynamics
To test the predicted spatio-temporal patterns we integrated
Equation (11) from a range of initial cell radial positions
to construct the kymograph pi(R, t), where R = t/2 −

r is the rescaled distance from the center of the colony. A
kymograph (Figures 5A–C) represents the spatial dynamics of
a one-dimensional system, such as ours, evolving over time.
Each point in the kymograph represents the state of the system
at a given time (x-axis) and position (y-axis) with a color.
By taking radial averages the kymograph fully characterizes
radially symmetric spatio-temporal patterns with the vertical
axis representing distance from the center of the colony. Here
we reflect the kymograph to represent the symmetric structure
of the pattern (Figures 5A–C), whereby the growth of the
colony can be seen as two linearly expanding borders forming
a triangular shape. The slope of this border is the front speed
v̄front = 1/2. The color represents the radially averaged
repressor protein concentrations (red, green, and blue) at each
position at each time point, normalized to their maximum
values. The corresponding predicted colony pattern is shown
inset in Figure 5C. Stripes in the kymograph represent rings
of gene expression. Horizontal stripes show static rings since
their radial position does not change (Figure 5A). Vertical
stripes would represent in-phase homogeneous oscillations
since they do not vary in space (Figure 5B). Diagonal
stripes represent traveling waves, moving rings of repressor
expression, since they vary in both space and time (Figure 5C).
Hence we confirm our theoretical prediction of traveling
wave patterns.

The spatio-temporal dynamics of the system are described by
two parameters that can be extracted from the kymographs. The
slope of each stripe gives the wave speed vp, and the vertical peak-
to-peak distance gives the spatial wavelength λ = (vp+v̄front)T =

(vp + 1
2 )T, where T is the period of oscillations at the colony

edge (the wave front) and v̄front is the front velocity in normalized
distance units (Figure 5C).

2.5. Tuning the Repressilator to Control
Spatio-Temporal Pattern Formation
In order to quantitatively test our theoretical predictions and to
characterize the design space of these traveling wave patterns
we scanned the parameter space within physiologically relevant
ranges. We measured the wave speed vp and wavelength λ of the
system for 625 combinations of α and γ̄ spanning four orders
of magnitude to construct the phase space (Figures 5D,E). We
see that wavelength was predominantly determined by α, while
wave speed depended on γ̄ . Traveling waves were observed for
all values of α but clearly require non-zero protein degradation
rate γ̄ (Figure 5F).

We observed that wave speed was proportional to γ̄ , with
vp ≈ γ̄ /2 (linear fit vp = 0.535γ̄ + 0.0214) . Static

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 6 August 2020 | Volume 8 | Article 893

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Yáñez Feliú et al. Tunable Patterns

FIGURE 5 | Parameter dependence characterization for 1D model. (A–C) Kymographs of growing colonies show protein concentrations as a function of radial

position over time, with no protein degradation (A, γ̄ = 0, α = 104) we obtain static rings, with no growth rate dilution (B, γ̄ = 1.5, α = 104) we see plane waves, and

with growth rate dilution and protein degradation (C, γ̄ = 1.5, α = 104) we have traveling waves. White dashed lines show wave trajectories. The distance between

two trajectories is the wavelength λ, and the slope is the wave speed vp. Inset in (C) is the whole colony at the end of the experiment. (D,E). Heatmaps of wave speed

vp and wavelength λ, respectively over a range of α and γ̄ . (F). Effect of γ̄ on wave speed vp at different α. (G). Effect of α on wavelength λ at different γ̄ . Triangles in

(F,G) show analytical estimates for α = 100 and γ̄ = 1, respectively.

rings (vp = 0) form when γ̄ = 0. As γ̄ → ∞, as
is the case at growth arrest (µ0 = 0), we saw earlier that
the system can only form plane waves with all parts of the
colony oscillating in phase, which corresponds to vp = ∞.
Wavelength was predominantly but weakly affected bymaximum

gene expression rate α (Figure 5G) following approximately
α ≈ 10λ−1 [from the linear fit λ = 1.01 log10(α) + 0.998
]. These results are consistent with our theoretical predictions
based on the oscillation period from Equations (14) to (15)
(Figures 5F,G triangles).
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We demonstrate the tuning parameters α and γ̄ above
using kymographs in Figure 6. With no protein degradation
(γ̄ = 0) the system produces static rings of gene expression
following the phase of each repressor (Figures 6A,B). In the
kymograph this spatio-temporal pattern is observed as horizontal
stripes of consecutive red, green, and blue, representing the
three repressors. This confirms the observation of fixed ring
patterns in colonies hosting a repressilator with stable repressor
proteins (Potvin-Trottier et al., 2016). The static ring patterns
observed are therefore a special case of the more general traveling
wave solution with velocity vp = 0. These traveling waves
are induced and modulated by protein degradation. In the
intermediate case when protein degradation and growth are
similar (Figures 6C,D,F) we see the clear emergence of a traveling
wave solution. This spatio-temporal pattern is characterized by
diagonal stripes in the kymograph, with steeper sloped lines
indicating higher velocity of the waves (Figure 5A). At lower
protein degradation rate (γ̄ = 0.3) we see traveling waves with
lower velocity (Figures 6C,D). Hence protein degradation rate
tunes the speed of the traveling waves. Changing α however
does not affect the speed of the waves (Figures 6A–F) but does
change the wavelength of the traveling waves resulting in more
spatial rings at lower α values. We note that increasing α also
stabilizes the oscillations as found by Osella and Lagomarsino
(2013) and Potvin-Trottier et al. (2016) (Figure 6 panels below
each kymograph).

2.6. Growing Cell Colonies Generate
Traveling Waves in Quantitative Agreement
With Predictions
To test if these predictions hold in constrained growing
microcolonies of cells we used our individual based biophysical
model of bacterial cell growth and division. We grew colonies
from a single cell up to 60,000 cells, tracking each cell’s
motion and protein expression levels according to Equation
(11) without the growth rate term (dilution was computed
by the biophysical model). The results show, as predicted,
the formation of symmetrical rings relative to the center
of the colony (Figure 7A, Supplementary Material, Video 1

and Video 2).
In order to test the dependency of wavelength and wave

speed on protein degradation and maximal expression rate, we
simulated a range of γ̄ and α (kymographs in Figures 7B–E).
Our findings matched with the prediction of the 1D model;
no waves were formed for γ̄ = 0, wave speed increased
when γ̄ was increased, and wavelength increased when α was
increased. The spatio-temporal dynamics of each repressor is
regulated by protein dilution (γ̄ ), which moves the system from
fixed rings (Figure 7B) to an oscillatory behavior which gives
rise to traveling waves with different wavelengths controlled by
maximum expression levels and speeds controlled by protein
degradation (Figures 7C–E).

Since we tracked every cell as they grow, replicate, and
express proteins (Figures 7B–E right column) we could follow
the dynamics of individual cells as they move through the colony,
changing their growth rate depending on their mechanical

environment (Figures 7B–E middle column). We selected
central and peripheral cells for each of the colonies to study the
most restricted and the most unconstrained cells. For colonies
with traveling waves the constrained non-growing central cells
oscillated with constant frequency and phase. Cells starting at the
periphery of the colony however experience changes in growth
rate as they move away from the colony edge that cause a sharp
decrease in frequency and a resulting phase offset with respect
to the central cell. We found that cells in the periphery exhibit
higher frequency oscillations compared to central cells, and that
difference is increased when increasing γ̄ (Figures 7B–E central
column). This is consistent with our theoretical prediction that
growth rate reduction increases the period of oscillations, causing
a phase offset between the interior and peripheral regions of
the colony.

The wavelength and wave speed obtained from growing
microcolonies was closely correlated to the predictions of
our simple model (Pearson’s correlation coefficient 0.983 for
wavelength and 0.999 for wave speed, Figure 8). The length
scale of wave speed and wavelength is set by r0, hence fitting
a linear model between the predicted and simulated speed and
wavelengths gives an estimate of r0 for the growing colony.
From the wave speed values we obtained r0 = 11.6 and
from wavelength r0 = 9.01, which is in close agreement
with that estimated from the growth rate distribution of
colonies (Figure 2). Our one dimensional model predicts that
the front velocity of the colony should be vfront = r0/2. From
wave speed we obtain a value of vfront = 5.80 and from
wavelength vfront = 4.51, which is extremely close to the
estimated value of vfront = 5.00 for our individual based
model (Figure 2).

2.7. Manipulating Mechanical Growth
Constraints to Control Pattern Formation
Microfabricated cell culture devices and microfluidics provide
fine control over the mechanical as well as biochemical
conditions in which cells grow. As well as providing fresh
nutrients via flow, maintaining cells in steady state, these
devices provide techniques to physically constrain cell growth
and therefore another mode of design of spatio-temporal
patterns induced by growth rate heterogeneity as we have
demonstrated. Commonly microfluidic devices are designed to
constrain cells to a monolayer, while allowing loading of seed
cells into a chamber or channel (Figures 9A,B). We imposed
two such constraints on our colonies. In a long thin channel
(400 × 20 × 1 cell diameters) cells form one dimensional
traveling waves directed along the channel axis (Figure 9A,
See Supplementary Material, Video 4, Video 5, Video 6).When
constrained to a chamber (80 × 80 × 1 cell diameters) we
observed the emergence of traveling waves during unconstrained
growth (Figure 9B, t+4, See Supplementary Material, Video 3).
These waves were sustained over long time periods after the cells
became constrained and stopped growing altogether (Figure 9B,
t + 8, t + 12). Growth is necessary to form traveling waves but
the established phase offsets between different radial positions
are maintained after growth arrest, continuing to produce
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FIGURE 6 | 1D model simulations for selected parameters. Each panel shows: kymograph of the emerged pattern, where stripes show wave trajectories; trace of the

three repressor concentrations over time in the center of the colony; the whole colony showing the final ring pattern. (A) γ̄ = 0.0, α = 10,000. (B) γ̄ = 0.0, α =

100. (C) γ̄ = 0.3, α = 10,000. (D) γ̄ = 0.3, α = 100. (E) γ̄ = 1.0, α = 10,000. (F) γ̄ = 1.0, α = 100.

traveling waves. The history of the shape of wavefront is
therefore retained in the pattern. Finally, we demonstrate that
growth rate heterogeneity in three dimensional colonies also

generates traveling waves as layers (Figure 9C), showing that
the spatio-temporal pattern is not specific to monolayers (see
Supplementary Material, Video 7 and Video 8).
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FIGURE 7 | Simulations of growing colonies. (A) Colonies with 5,000, 20,000, 35,000, and 50,000 cells, equally spaced 9.3 doubling times apart, with γ̄ = 0.3,

α=10.000. (B–E) Each panel shows: kymograph of repressor concentrations (51 doublings, approximately 60,000 cells); time dynamics for central cell and peripheral

cell in colony; close up of edge of colony at end of experiment. Parameters: (B) γ̄ = 0, α = 10, 000. (C) γ̄ = 0.3, α = 10, 000. (D) γ̄ = 0.3, α = 100. (E) γ̄ = 1.0,

α = 1, 000.
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FIGURE 8 | Comparison of wave speed (A) and wavelength (B) between 1D

model and growing cell colonies (IBM). The length scale of wave speed and

wavelength is set by r0 and the slope of these plots gives estimates for r0 as

11.6 (wave speed) and 9.01 (wavelength) cell diameters. Speed and

wavelength of traveling waves were closely correlated between the models,

with Pearson’s correlation coefficient 0.999 for wave speed, and 0.983

for wavelength.

3. DISCUSSION

Here we demonstrated how biophysical constraints on growth
can induce spatio-temporal pattern formation from a simple
genetic circuit. By coupling the repressilator (Potvin-Trottier
et al., 2016) to a heterogeneous growth rate pattern via
protein dilution we generated emergent traveling waves of gene
expression. These traveling waves can be characterized by two
properties; the wavelength and the wave speed. These properties
are determined by two simple parameters that are feasible
to control experimentally; the protein degradation rate, which
controls the wave speed, and themaximal protein expression rate,
which controls the wavelength. Our results make quantitative
and qualitative predictions about the spatio-temporal patterns
produced by the repressilator in growing cell colonies.

Our analysis predicts that traveling waves will be observed
if the ratio of protein degradation to growth rate γ̄ = γ /µ0,
is sufficiently high for the waves to form in the time of the

experiment. For γ̄ = 0 we predict the formation of static
rings of gene expression as observed in experiments (Potvin-
Trottier et al., 2016), however we show here that this pattern
could be generated purely by protein dilution and does not
require cells to transition into stationary phase. We show
that increasing γ̄ , which means increasing protein degradation
rate or decreasing growth rate, will increase the speed of the
waves. This could be achieved by choosing one of several
protein degradation tag sequences that target the proteins for
proteolysis (Purcell et al., 2012). Further, our model suggests that
increasing maximum protein expression rate α, for example by
choosing a more efficient ribosome binding site (RBS) (Salis
et al., 2009) will increase the wavelength of the pattern. We
parameterize simple empirical models for the effects of each of
these genetic design modifications; log10(α) = λ − 1 and vp =

γ̄ /2 . Thus, we have effectively generated a quantitative datasheet
for the repressilator gene circuit topology operating in a simple
microcolony chassis.

We derive a simple model of coupling genetic circuits to
growth rate via protein dilution, and show that it accurately
predicts traveling wave patterns in growing cell colonies, their
speed, and wavelength. The model also accurately predicts the
colony front velocity. The mathematical and computational
approach outlined here is not specific to the repressilator nor
to bacterial colonies and could make predictions about spatial
patterns produced by other circuit topologies and chassis. Here
we did not consider gene circuits that affect growth rate, for
example by regulation of metabolism, which may produce
more complex spatial patterns (Nuñez et al., 2017), however
it could be included in our framework leading to a more
complex set of coupled differential equations. Thus, this analysis
approach implements the rational design of spatio-temporal
patterns of gene expression, enabling the design stage of the
design-build-test-learn cycle.

Oscillators are important in regulation of multicellular
systems and many studies have reproduced oscillations in
synthetic genetic circuits by assembling different devices
combining modular parts (Liu et al., 2015; Niederholtmeyer
et al., 2015; Perez-Carrasco et al., 2018; Riglar et al., 2019).
Studying and engineering synthetic oscillators can direct us to
understand complex multicellular behaviors at multiple scales,
in particular here the emergence of traveling waves of gene
expression in populations of cells. There are a wide range of
phenomena in which a key element to a developmental process
is the appearance of a traveling wave of chemical concentration,
mechanical deformation (Espeso et al., 2016), electrical or other
type of signal (Murray, 2002). Two examples are the chemical
and mechanical waves which propagate on the surface of many
vertebrate eggs (Deneke and Di Talia, 2018). A developing
embryo presents a large number of wave like events that appear
after fertilization (Kimmel et al., 1995). Thus, one importance of
this work is that we were able to rationally design and manipulate
in silico genetic circuits to recapitulate such patterns with tunable
wavelength and wave speed.

Noise is known to affect oscillators in various ways
including stochastic coherence which makes the oscillations
more consistent (Hilborn and Erwin, 2008), and may therefore
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FIGURE 9 | Traveling waves in microfluidic devices. (A) Simulations of a monolayer of cells in a narrow infinite channel 20 cell diameters wide and one cell diameter

tall. Traveling waves start at the sides and merge in the center (white arrows). (B) Growing colony in a square simulated microfluidic chamber. Before the colony

reaches the constraints it grows with radial symmetry and initiates traveling waves (t, t+4). At t+12 the colony has used all the space and is constrained by chamber,

growth arrest occurs, but the traveling waves continue (white arrows). (C) Spherical colonies grow when not constrained to a plane, forming traveling layers of gene

expression. Image shows a cutaway of half the colony. (D) Transversal section of (C).

stabilize spatio-temporal patterns to stochastic fluctuations in
gene expression. We do not consider the role of noise in
this study because at the parameter values we explore, the

stochastic behavior approximates the continuous model, with
regular and sustained synchronous oscillations (Woods et al.,
2016) (Figure S2). We also note that since (Potvin-Trottier et al.,
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2016) observed synchronous long-term oscillations that form
ring patterns in growing colonies, cells must be synchronized
on average over long length and time scales, and so noise is not
likely to be important in the pattern formation process described
here. However, it would be interesting to consider the role
of noise in the generation of spatio-temporal patterns (Sagués
et al., 2007; Zhou et al., 2008) due to lower gene copy or other
circuit properties (Vilar et al., 2002; Lestas et al., 2010).

We reason that the traveling waves described here are
generated by phase and frequency changes induced by reduction
in growth rate as cells become more distant from the edge of the
colony, but maintained by protein degradation. In the absence
of protein degradation no traveling waves but simple static rings
form (Potvin-Trottier et al., 2016). The phase differences are
locked in as growth rate decays to zero, such that even after total
growth arrest the traveling waves continue (Figure 9B). The scale
of the waves, their speed and their wavelength are determined
by r0, the characteristic length scale of decay in growth rate.
However, the radius of the colony also scales with r0 and so
the overall pattern is in a sense scale invariant, showing the
same relative wavelength and speed for any exponential growth
rate profile.

Our results show that the speed of traveling waves in growing
bacterial colonies is approximately 10 cell diameters per doubling
time (approximately 10µm per hour for E. coli) toward the
colony center, but the colony border grows at only around 4
cell diameters per doubling. Hence gene expression information
can be transferred faster via a traveling wave than by the
physical transmission of cells. The ability to tune the wavelength
λ and wave speed vp of these patterns could enable design
of novel cell-cell communication systems based on oscillatory
signals. Further, coupling the oscillator to production of pulses
of diffusing chemicals such as acyl-homoserine lactones (AHLs)
could be used to enhance information transmission (Hopfield,
1974; Mangan et al., 2003). We note also that in a sense the
traveling wave pattern, its speed and wavelength encode the
history of the shape of the wavefront as the colony expands, which
may be useful for example for information storage.

A fundamental result of this work is to demonstrate that
mechanical constraint gives rise to higher order gene expression
patterns in cell colonies, and provide such a system for analysis.
There are a vast number of experimental conditions which
could be created to induce different spatio-temporal patterns in
such microcolonies. Microfluidics has shown to be of particular
help to control mechanical constraints (Ruprecht et al., 2017),
substrate stiffness (Wang et al., 2018), nutrients (Alnahhas
et al., 2019), chemical inducers (Danino et al., 2010), cell-cell
signaling (Alnahhas et al., 2019), and pattern formation (Kantsler
et al., 2020). As we showed in Figure 9, controlling biophysical
constraints using different channel layouts and mechanical
properties of the substrate could produce different patterns
of growth rate that give rise to structures that mimic
different stages of the development of organisms (Johnson
et al., 2017; Toda et al., 2018). A simple example is
the one dimensional channel (Figure 9A) which mimics
in a simple way an embryo growing along its axis and
sending back waves of gene expression from the front of the
cell population.

In summary we report here novel traveling wave spatio-
temporal patterns resulting from the growth rate dependent
dynamics of a repressilator genetic oscillator circuit. We
developed an analytical framework to predict the spatio-temporal
behavior of such genetic circuits in growing colonies. This
framework allows multi-scale rational design of spatio-temporal
patterns from genetic circuits and makes testable predictions for
the synthetic biology design-build-test-learn cycle.

4. MATERIALS AND METHODS

Computation and analysis in this work were performed in
Python (Van Rossum and Drake, 2009) with the use of the
packages NumPy (Oliphant, 2006), SciPy (Virtanen et al., 2020),
Pandas (McKinney, 2010), Jupyter (Pérez and Granger, 2007),
Matplotlib (Hunter, 2007), Seaborn (Waskom et al., 2017), and
NetworkX (Hagberg et al., 2018).

4.1. Individual Based Model
We grew colonies from 1 up to 60,000 cells, simulated using
CellModeller (Rudge et al., 2012) with parameters Ŵ = 10
and 1t = 0.05. Ŵ = γcell/γs is the ratio of cell stiffness to
substrate stiffness, which we estimate order of magnitude 10 (see
Supplementary Material). Briefly, CellModeller simulates cells
as rods extending along their axis but otherwise rigid. As cells
expand the resulting constraint energy is minimized to find the
new arrangement of cells. Cells experience viscous drag with the
substrate (γs) and along their length axis (γcell), and divide when
they reach a target length set to l0 = 3.5 cell diameters. At
division the cell is divided into two equal sized rods, which are
randomly perturbed slightly in their axis orientation. Cells were
constrained to lie in a plane, except in Figure 9C in which cells
grew in three dimensions.

Colonies were grown for approximately 48 doubling times
and the final radius of the colonies was approximately ∼230 cell
diameters. Since these simulations correspond to E. Coli cells,
these units represents approximately∼230µm. Simulations were
stored in a file for each time step. This file contains information
about the state of each cell present in the colony, including the
position, protein concentrations, growth rate, volume, length,
among other variables.

4.2. Colony Growth Analysis
Growth rate µ and radial position R were obtained for each cell
from 3 growing colonies from 5,000 up to 60,000 cells. At each
time point the colony radius Rmax(t) was calculated and divided
into n bins of size 1r = 5 cell diameters from the edge b0 to the
center bn. The growth rates µ of all cells with r ∈ [bn, bn+1) were
averaged to get 〈µ〉. An exponential of the form e−r(t)k was fitted
to 〈µ〉 at each time, obtaining k at colonies with different Rmax. A
linear model was fitted to the colony radius Rmax(t) when t > 10
to compute the front velocity vfront using numpy.polyfit.

4.3. Kymograph Construction for 1D Model
To obtain values of pi(r, t) we integrate Equation (11). Starting
from some initial colony radius R0 we initialize pi(r, 0) for r a
regularly spaced lattice on (0,R0). We use p2(r, 0) = 5 for all r,
that is homogeneous expression of only p2. At each step of an
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explicit Euler integration scheme we find the new cell positions
and construct a new regularly spaced lattice in (0,R(t)) = (0,R0+
t/2) and interpolate pi(r, t + 1t) onto this grid before taking the
next integration step. The algorithm is as follows:

1. Initialize r(0) as a regular lattice on (0,R0) and p∗i (r, 0) to
some values.

2. Compute pi(r, t + 1t) by an explicit Euler step of Equation
(11) , and r(t + 1t) using Equation (6).

3. Compute a new regular mesh r′(t + 1t) on (0,R(t + 1t)).
4. Interpolate the protein concentrations to get pi(r′, t + 1t).
5. Set t → t + 1t, and r(t + 1t) → r′(t + 1t), and repeat from

step 2.

At the end of this procedure we have constructed a set of samples
pi(r, t) which we then interpolate to form the kymograph.

4.4. Dynamical Simulations of Gene
Expression
Using the file stored for each simulation in the IBM, we have
a representation of the biophysical model decoupled from the
genetic circuit. Using these data we performed simulations of
the gene expression model derived in Equation (11). In order
to keep updating the state of the cells, which is affected by cell
division, we constructed a graph of parent-child relations. Thus,
we integrate Equation (11) forward using explicit Euler method
between each state of the biophysical model. One assumption
made is that when a cell divides the children inherit the value of
the protein concentration his parent. We assume the number of
proteins divides equally between the two cells, as does the volume
of the cell, keeping protein concentration constant. Resultant
simulations then serialized to a JSON file. These files were later
used to perform analysis and create visual representations.

4.5. Kymograph Construction for Individual
Based Simulations
Using the JSON file obtained in the temporal simulation of gene
expression with the biophysical model, we generated positions
and growth rates of cells. Then we binned cells according to their
radial position using bin size 1R = 5. Finally we take the average
protein concentration in each bin and repeat for all time steps to
get pi(R, t).

4.6. Wave Speed Estimation
First we take each row of the kymograph and identify the radial
peaks (scipy.signal.find_peaks) in each protein concentration for
each time step. Next the peaks are paired with the nearest peak
in the previous time step, and the average distance between them
used to calculate the wave speed as v = 〈1x〉/δt, where 〈1x〉 is
the mean peak to peak distance and δt is the simulation time step.

4.7. Wavelength Estimation
In order to estimate the wavelength λ of the traveling waves we
note that λ = (vp + vfront)T, where vp is the wave speed, T is

the period of oscillations, and vfront = 1
2 is the velocity of the

colony edge or wavefront. To estimate the oscillation period we
take the leading edge of the colony and compute the peaks in its
time varying protein concentration pi(r = 0, t). Then as above

we estimate the period as the mean of the peak to peak times so
that T = 〈1t〉. The wave speed is taken from the calculations
described above, and the resulting estimate for wavelength is
λ = (vp +

1
2 )T = (vp +

1
2 )〈1t〉.

4.8. Analytical Estimates of Wavelength
and Wave Speed
We used Equations (14)–(15) to estimate the wavelength and
wave speed of traveling waves that the repressilator would
produce with an exponential growth rate profile (Equation
1). First we numerically integrated Equation (11) with fixed
growth rate µ̄. For each combination of parameters we simulated
oscillations at the colony edge (µ̄ = 1) and the colony interior
(µ̄ = 0), and measured the periods Text and Tint as described
above. These values were then substituted into Equations (14)–
(15) to compute the estimated wavelength and wave speed.
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