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Plants recruit specific microorganisms to live inside and outside their roots that provide
essential functions for plant growth and health. The study of the microbial communities
living in close association with plants helps in understanding the mechanisms involved
in these beneficial interactions. Currently, most of the research in this field has been
focusing on the description of the taxonomic composition of the microbiome. Therefore,
a focus on the plant-associated microbiome functions is pivotal for the development of
novel agricultural practices which, in turn, will increase plant fitness. Recent advances in
microbiome research using model plant species started to shed light on the functions of
specific microorganisms and the underlying mechanisms of plant–microbial interaction.
Here, we review (1) microbiome-mediated functions associated with plant growth and
protection, (2) insights from native and agricultural habitats that can be used to improve
soil health and crop productivity, (3) current -omics and new approaches for studying
the plant microbiome, and (4) challenges and future perspectives for exploiting the plant
microbiome for beneficial outcomes. We posit that integrated approaches will help in
translating fundamental knowledge into agricultural practices.

Keywords: microbiome engineering, host-mediated selection, agricultural practices, interactions, plant growth,
plant health

INTRODUCTION

The plant microbiome comprises a plethora of beneficial, commensal, and pathogenic
microorganisms that play important roles in plant growth and health (Vorholt, 2012; Mendes
et al., 2013; Philippot et al., 2013; Raaijmakers and Mazzola, 2016; Lemanceau et al., 2017).
Advances in high-throughput sequencing have been increasing our understanding of microbial
community composition and taxa-specific distributions. However, understanding the mechanisms
underlying the interactions between plants and their microbiomes requires a focus on linking
microbiome structure to functions. Metagenomic and metatranscriptomic analyses have started
unraveling the functions of plant-associated microbiomes in both natural and agricultural systems.
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The next challenge is to develop new methods for effective
application and manipulation in agricultural settings. Here, we
discuss some of the beneficial microbiome-mediated functions
for plant growth and protection and highlight some future
strategies for engineering the plant microbiome (Figure 1).

MICROBIOME-MEDIATED FUNCTIONS
FOR PLANT PROTECTION

Microorganisms can directly impact plant growth and health by
producing phytohormones, improving nutrient acquisition and
phosphate solubilization, and indirectly by activating the plant
immune responses or competing and inhibiting the growth of
plant pathogens, for example, via the production of antibiotics,
fungal cell wall–degrading enzymes, and siderophore activity
(Gamalero and Glick, 2011; Berendsen et al., 2012; Gu et al.,
2020). An increasing number of studies have shown that, in
most cases, not a single microbe but rather a consortium
of microorganisms is responsible for the beneficial effects on
plants. For example, three bacterial genera, Microbacterium,
Stenotrophomonas, and Xanthomonas, were found to be enriched
in the rhizosphere of Arabidopsis thaliana upon foliar defense
activation by the downy mildew pathogen Hyaloperonospora
arabidopsidis (Berendsen et al., 2018). Further investigation
revealed that separately these bacteria do not impact plant
growth and health, but when acting in a consortium, induced
systemic resistance and plant growth promotion could be
achieved. In another study, a consortium of endophytes,
including the fungi Rhodotorula graminis, and the bacteria
Burkholderia vietnamiensis, Rhizobium tropici, Acinetobacter
calcoaceticus, Rahnella sp., Burkholderia sp., Sphingomonas
yanoikuyae, Pseudomonas sp., and Curtobacterium sp., enhanced
drought stress tolerance of poplar plants, thus suggesting
a potential role in plant stress response modulation, for
example, reduction of damage by reactive oxygen species (Khan
et al., 2016). Members of the endosphere and rhizosphere
microbiome have also been shown to suppress plant diseases,
such as the take-all disease caused by the fungal pathogen
Gaeumannomyces graminis (Durán et al., 2017, 2018) and the
damping-off disease caused by Rhizoctonia solani (Mendes et al.,
2011; Carrión et al., 2018). Furthermore, specific members
in the rhizosphere of tomato plants provided resistance to
Ralstonia solanacearum, a bacterial pathogen that causes wilt
disease (Kwak et al., 2018). Transplantation of the rhizosphere
microbiome from resistant to susceptible plants provided disease
suppression. A highly abundant Flavobacteria metagenome-
assembled genome (MAG) was detected in the rhizosphere
of the resistant plants. Using a culture-dependent approach,
Flavobacterium sp. TRM1 was isolated and the mediated
suppression against wilt disease was confirmed. A study
on the endosphere microbiome of sugar beet plants grown
in a soil suppressive to R. solani revealed enrichment of
Bacteroidetes, particularly those belonging to the Chitinophaga
and Flavobacterium genera which synergistically suppressed
the pathogen. Metagenomic analysis of this suppressive soil
identified a biosynthetic gene cluster (BGC) encoding for a

polyketide synthase-non-ribosomal peptide synthetase enzyme
in the genome of the isolated Flavobacterium, and site-directed
mutagenesis in the BGC confirmed its involvement in disease
suppression (Carrión et al., 2019).

INSIGHTS FROM NATIVE AND
AGRICULTURAL HABITATS ON
MICROBIOME ASSEMBLY

Studies on the microbiome of plants with natural resistance to
(a)biotic stresses or plants growing in unfavorable environments
can provide insights into microbial and plant traits that allow
them to withstand such conditions. Wild plants display higher
tolerance to abiotic (e.g., drought and salinity) and biotic (e.g.,
pests and pathogens) stresses when compared with domesticated
plants. These wild relatives have been exploited by plant breeders
as sources of resistance genes and specific traits (Hajjar and
Hodgkin, 2007; Turcotte et al., 2014; Zhang et al., 2017).
The development of crop varieties with higher yields and
other desirable agronomic traits via domestication and breeding
programs have significantly altered root architecture and traits,
as well as shrinking the plant genetic diversity (Micallef et al.,
2009; Pérez-Jaramillo et al., 2016; Cordovez et al., 2019).
An increasing number of studies has shown differences in
microbiome composition and functions in the rhizosphere of
modern and wild plants, as well as of plants grown in native
and agricultural soils (Zachow et al., 2014; Bulgarelli et al., 2015;
Coleman-Derr et al., 2016; Pérez-Jaramillo et al., 2018, 2019;
Brisson et al., 2019). Particularly, members of Bacteroidetes were
found to be highly abundant in wild relatives as compared with
modern sugar beet, common bean, and barley plants (Pérez-
Jaramillo et al., 2017, 2018).

Agricultural practices also impact the plant microbiome
composition and functions (Hartman et al., 2017, 2018) with
negative and positive consequences on plant growth. Cropping
systems, such as intercropping and no-tilling organic farming,
increased microbial community diversity, crop yield, and soil
organic carbon levels (Mader, 2002; Debenport et al., 2015;
Reganold and Wachter, 2016; Wang et al., 2017). On the
other hand, monoculture or short rotations of crops more
rapidly deplete soil nutrients and increase plant species–specific
soil pathogens and root herbivores, thus resulting in yield
decrease (Bennett et al., 2012; Hilton et al., 2013; Santhanam
et al., 2015; McDonald and Stukenbrock, 2016). Exploration
of the microbiome of wild plants in their native habitats
combined with the knowledge on how the different agricultural
practices impact microbial communities is an interesting aspect
that is used to unravel and, ultimately, reinstate beneficial
associations that may have been undermined throughout plant
domestication. Besides, a key aspect to be explored in breeding
programs will be the identification of plant genes involved in
the recruitment of beneficial microorganisms under different
agricultural practices. These innovative approaches will enable
plants to select and maintain beneficial microbiomes (Schlatter
et al., 2017; Compant et al., 2019).
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FIGURE 1 | Summary of integrated approaches to explore and exploit plant microbiomes for new agricultural strategies. Vectors designed by Brgfx (Freepik).

Plants alter the (a)biotic properties of the environment where
they grow via the production of root exudates. To some extent,
these properties will also impact the growth and health of the
current and future plant generations (Kulmatiski and Kardol,
2008; van der Putten et al., 2013; Pineda et al., 2020). This
process is known as plant–soil feedbacks (PSFs) and often
relates to changes in soil nutrient availability, or the antagonistic
and beneficial interactions between plant and soil microbial
communities (Bennett and Klironomos, 2019). For example,
benzoxazinoids, a defensive root exudate released by cereals, alter
root-associated microbiome, decrease plant growth, and suppress
herbivore performance in the next plant generation as well as
the root-associated microbiome (Hu et al., 2018). Furthermore,
PSFs are exploited in the form of crop rotation that can provide
optimal soil legacy for crop yield, quality, and environmental
sustainability (Mariotte et al., 2018; Heinen et al., 2020).

CURRENT-OMICS AND OTHER
APPROACHES FOR STUDYING THE
PLANT MICROBIOME

To study the complexity of genetic, microbial, and metabolic
factors that impact the plant microbiome, comprehensive
systems biology approaches are needed (Rodriguez et al.,
2019). Metagenomics and metatranscriptomics allow us to go
beyond the description of taxonomic changes in microbial
taxa abundances and provide further information on microbial
functions. In addition, proteomics and metabolomics, that is, the
analysis of the intermediate and final products of genes, provide
evidence of functional proteins and metabolites. Metagenomic

coupled with metaproteomic approaches highlighted proteins
involved in methane production in the rice rhizosphere
(Knief et al., 2012).

Studies of the metabolites produced by plant-associated
microbiomes in situ are still limited and complex owing to
the dynamics and heterogeneity of the soil environment. Soil
metabolites are composed of both plant and microbial secreted
molecules and their production is influenced by the soil
properties and by the interactions of soil microorganisms with
host plants (Pétriacq et al., 2017; Mhlongo et al., 2018; Hayden
et al., 2019; Jacoby and Kopriva, 2019; Nguyen et al., 2020).
Moreover, recent studies have also been using new approaches
to study soil metabolites. For example, liquid chromatography–
mass spectrometry (LC-MS) and proton nuclear magnetic
resonance spectroscopy (1H NMR) revealed a higher abundance
of sugar-derived molecules in suppressive soils than non-
suppressive soils, and the latter also contained higher amounts
of lipids and terpenes (Hayden et al., 2019). It is important
noticing that traditional mass spectrometry–based metabolomic
analyses require high input of time in sample preparation,
extraction, and purification. In addition, ambient ionization
allows the generation of metabolite ions in normal atmospheric
conditions without sample preparation or extraction, whereas
mass spectrometry imaging (MSI) allows the visualization of
the spatial distribution of metabolites in real time (Watrous
and Dorrestein, 2011; Cameron and Takáts, 2018). MSI has
been successfully applied to study microbial interactions, such
as bacteria–protist interaction (Song et al., 2015), bacteria–
fungi interaction (de Bruijn et al., 2015), and bacteria–plant
interaction (Debois et al., 2014). This technique allows not only
to investigate the metabolites of microbial communities in situ
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but also the spatial resolution ranging from nanometers to
millimeters (Watrous and Dorrestein, 2011).

For an analytical aspect, network analysis of microbial
communities has shown to be a promising first step to identify
potential microbe–microbe interactions and explore their
dynamics (Faust and Raes, 2012). For example, increased network
size and complexity were found in the rhizosphere microbiome
of Avena fatua plants, whereas networks in the surrounding soil
remained relatively static and simple over time (Shi et al., 2016).
Increased network complexity suggests a greater potential for
interactions and niche-partitioning in the rhizosphere. Network
analysis of the rhizosphere of common beans which were
resistant and susceptible to the fungal pathogen Fusarium
oxysporum revealed a more complex and interconnected bacterial
community for the resistant cultivar as compared with the
susceptible one (Mendes et al., 2018b). In the community
of resistant plants, Paenibacillus was found to be a keystone
genus (Mendes et al., 2018a). Moreover, co-occurrence network
analyses have also demonstrated that interactions between co-
existing organisms impact how microbial communities respond
to changes in their environment (de Vries et al., 2018). For
example, under drought stress, fungal communities were shown
to be more stable than bacterial communities. The drought
was also found to have a prolonged impact on bacterial
communities and their networks via changes in vegetation
composition (de Vries et al., 2018). These studies demonstrate
that network inference can provide perspectives on microbial
communities beyond those of species richness and composition
(Shi et al., 2016).

CURRENT CHALLENGES AND FUTURE
PERSPECTIVES FOR EXPLOITING THE
PLANT MICROBIOME

Moving Beyond Bacterial and Fungal
Communities
The plant microbiome encompasses distinct microbial groups,
such as bacteria, fungi, viruses, algae, and protozoa. Currently,
the majority of microbiome studies had focused on bacterial
and fungal communities. However, plant interactions with
other members of the microbiome as well as interactions
across these microorganisms determine the overall diversity
and functioning. Recent studies have shown that protists play
important roles in the soil microbiome and in plant health
(Thakur and Geisen, 2019). For example, Xiong et al. (2020)
found that the pathogen dynamics is best predicted by protists,
which were found to be negatively correlated with pathogen
abundance during the growth of tomato plants. By directly
feeding on the pathogen or indirectly by inducing shifts in the
taxonomic and functional composition of bacteria via predation,
protists might provide plant protection. Also, bacteriophages
have shown to play important roles in the rhizosphere of tomato
plants. Different phage combinations decreased the incidence
of tomato disease Ralstonia solanacearum infection by up to
80% (Wang et al., 2019). The effects of phages on the pathogen

indirectly altered the bacterial community, enriching for taxa
(Acinetobacter, Bacillus, Comamonas, Ensifer, and Rhodococcus)
that antagonize the pathogen.

Expanding Microbial Cultures and
Validating Their Functions
A number of studies have validated the role of specific microbial
synthetic communities (SynComs) using culturable microbial
consortia on plant drought tolerance (Khan et al., 2016), soil
disease suppression (Carrión et al., 2019), and plant growth
promotion (Zhang et al., 2019). To date, different strategies
have been developed to design SynComs and deployed them
in soil–plant system to achieve a desirable function. For
example, Vorholt et al. (2017) proposed reductionist strategies
for constructing SynComs based on phylogeny, classification,
interaction networks, or specific functions. Oyserman et al.
(2018) proposed microbiome-associated phenotypes (MAPs)
for developing “modular microbiomes,” that is, SynComs that
are engineered cooperatively with the host genotype to confer
different but mutually compatible MAPs to a single host or host
population. This host-mediated microbiome selection approach
also allows the identification of both host and microbial traits and
genes that co-evolved.

In addition, the identification of substrate preferences might
contribute to the culture of microorganisms which can be further
used as SynComs. For example, a study coupling genomics
and exometabolomics showed that chemical succession in the
rhizosphere interacts with metabolite substrate preferences by
microorganisms that are predictable from genome sequences
(Zhalnina et al., 2018). This approach revealed that rhizosphere-
enriched and rhizosphere-depleted strains exhibit the likelihood
to catabolize aromatic organic acids and nucleotides, respectively,
to colonize specific niches. These findings demonstrate the
chemical cues governing microbial community assembly in the
rhizosphere and provide an attractive direction for promoting the
growth of specific members of the microbiome which can have
beneficial effects for plants.

Understanding the Interactions Between
Plant Genotype, Microbiome, and
Environment
The current challenge for exploiting and applying microbiome-
mediated functions that positively influence plant growth and
protection across diverse environments rely on critical aspects
of context dependency. In other words, these beneficial effects
are largely dependent on plant genotypes, microbial interactions,
soil types, management practices as well as interactions among
these factors (Fierer and Jackson, 2006; van Elsas et al.,
2012; Rodrigues et al., 2013; Hunter, 2016; Busby et al.,
2017; Soman et al., 2017; Schmidt et al., 2019). Although
engineering microbiomes that provide beneficial effects globally
remains a challenge, understanding the interaction among plant
genotype, microbiome, and environment will contribute to define
microbial consortia that can persist in a variety of heterogeneous
ecosystems (Agler et al., 2016; Busby et al., 2017). Also, the
abundance and activity of microorganisms can be influenced by
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single members of the communities. A study using SynComs
with seven representative bacterial strains from the three most
abundant phyla in maize roots showed that the removal of one
strain resulted in the collapse of the community (Niu et al.,
2017). These findings demonstrate the importance of individual
members of the microbiome for specific functions.

Exploiting Host-Mediated Selection of
Microbiome Members and Functions
In agriculture, microbial inoculation of single strains with
beneficial traits has been used for disease management and
promoting yield gain (Berg, 2009; Lugtenberg and Kamilova,
2009; Gamalero and Glick, 2011; Chaparro et al., 2012).
However, the application under field conditions has been
limited. Establishing the strain at the right time and at
the right concentration, often under adverse environmental
conditions, are limiting factors for the successful colonization
of the applied strain in soil (Sessitsch et al., 2019). Stable
populations of beneficial microorganisms are selectively recruited
and maintained in the rhizosphere by the plant via the exudation
of carbon-rich compounds into the rhizosphere (Doornbos
et al., 2012; Vives-Peris et al., 2020). Thus, a strategy for
engineering beneficial microbiomes is to equip plants to recruit
the beneficial members of the microbial community, for example,
throughout plant breeding programs. New strategies for selection
of microbiomes, such as host-mediated microbiome selection
(Mueller and Sachs, 2015), have been proposed and are based
on the hypothesis that plants have evolved to selectively
recruit beneficial microorganisms which can be subsequently
transmitted to the next generation of plants.

CONCLUSION

Our understanding of the plant microbiome has vastly increased
in the past decade. Integrated approaches, such as different
multi-omics and microbiome engineering strategies, have greatly
contributed to a better understanding of the organization

and dynamics of plant-associated microbial communities.
In addition, plant–soil feedbacks opened a new avenue
for improvement of agricultural practices using knowledge
obtained from natural ecosystems. Plant breeding programs
have traditionally focused on exploring genetic variability of
the crops for higher productivity and stress resistance, often
neglecting the importance of beneficial interactions between
microorganisms and plants. Therefore, future strategies for
plant breeding should take plant microbial symbionts as life-
long bodyguards into consideration. These proposed integrated
approaches will provide solutions for exploring and exploiting
plant–microbiome interactions for improving the sustainability
and productivity of global agriculture.
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