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Better understanding of the local deformation of the bone network around metallic
implants subjected to loading is of importance to assess the mechanical resistance of
the bone-implant interface and limit implant failure. In this study, four titanium screws
were osseointegrated into rat tibiae for 4 weeks and screw pullout was conducted
in situ under x-ray microtomography, recording macroscopic mechanical behavior and
full tomographies at multiple load steps before failure. Images were analyzed using
Digital Volume Correlation (DVC) to access internal displacement and deformation fields
during loading. A repeatable failure pattern was observed, where a ∼300–500 µm-
thick envelope of bone detached from the trabecular structure. Fracture initiated close
to the screw tip and propagated along the implant surface, at a distance of around
500 µm. Thus, the fracture pattern appeared to be influenced by the microstructure of
the bone formed closely around the threads, which confirmed that the model is relevant
for evaluating the effect of pharmacological treatments affecting local bone formation.
Moreover, cracks at the tibial plateau were identified by DVC analysis of the tomographic
images acquired during loading. Moderate strains were first distributed in the trabecular
bone, which localized into higher strains regions with subsequent loading, revealing
crack-formation not evident in the tomographic images. The in situ loading methodology
followed by DVC is shown to be a powerful tool to study internal deformation and
fracture behavior of the newly formed bone close to an implant when subjected to
loading. A better understanding of the interface failure may help improve the outcome
of surgical implants.

Keywords: X-ray tomography, bone, metallic screw, in situ loading, Digital Volume Correlation

INTRODUCTION

Metal implants are commonly used in surgery to e.g., stabilize bone fractures or replace joints or
teeth. A joint prosthesis generally stabilizes biologically during the first year after implantation by
integrating with the bone. Since the introduction of the concept of osseointegration (Bothe et al.,
1940; Leventhal, 1951; Brånemark et al., 1969), much work has been done to increase knowledge
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about the bone-implant interface characteristics and behavior
(Shah et al., 2019). However, poor bone ingrowth, linked for
instance to increased implant micromotion, still compromises
the long-term stability of the implant and leads to loosening
and secondary surgery (Mathieu et al., 2014). Understanding the
integration process and the strength of the newly formed bone-
implant interface may help improve implant designs and surgical
strategies in order to enhance prosthesis integration (Alenezi
et al., 2018; Hanawa, 2019; Li et al., 2020).

The surrounding trabecular bone network has been shown to
be important for the mechanical stability of implanted screws
(Marquezan et al., 2014; Bernhardsson et al., 2015; Le Cann
et al., 2019). Increased trabecular bone formation, by using, e.g.,
growth factors (Bernhardsson et al., 2015), or anti-resorptive
drugs (Raina et al., 2019) improves the mechanical resistance of
the bone-implant interface (Le Cann et al., 2019; Raina et al.,
2019). The mechanical performance of the interface has until
recently been assessed macroscopically during in vitro pullout
tests, e.g., comparing bone volume fractions with obtained load-
displacement data (Iijima et al., 2013; Shea et al., 2014; Raina
et al., 2019). Such experimental data can be coupled with
numerical models to investigate and predict the mechanical
stability of implanted screws (Wirth et al., 2011; Chevalier et al.,
2018). However, the trabecular bone structure is complex, and
the understanding could be improved by investigating how
the material deforms locally around an implant while being
subjected to loading.

Mechanical loading under x-ray tomographic imaging,
followed by image analysis such as Digital Volume Correlation
(DVC), allows to access the internal deformation of a structured
material subjected to load (Bay et al., 1999; Roberts et al., 2014;
Grassi and Isaksson, 2015). Concurrent mechanical testing and
imaging approaches have recently become widely accepted to
track the load response of bone tissue and to study the evolution
of damage and local failure (Dall’Ara et al., 2014; Gillard et al.,
2014; Palanca et al., 2015; Jackman et al., 2016; Chen et al., 2017;
Costa et al., 2017; Le Cann et al., 2017; Martelli and Perilli, 2018;
Oliviero et al., 2018; Peña Fernández et al., 2018; Knowles et al.,
2019). However, only sparse studies have applied the method to
the bone-implant interface (Du et al., 2015; Sukjamsri et al., 2015;
Joffre et al., 2017; Le Cann et al., 2017; Rapagna et al., 2019).

The choice of imaging modality is important to ensure
sufficient image quality that is suitable for DVC. Synchrotron-
based x-ray tomography currently provides the best signal
to noise ratio and the fastest acquisition (Neldam et al.,
2017). However, the high radiation dose may affect the
mechanical properties of bone (Barth et al., 2011; Peña
Fernández et al., 2018), and the fast imaging may result in
strong artifacts around metallic implants (Le Cann et al.,
2019). Lab-source micro-CT represents an alternative that
is less detrimental in terms of radiation dose and thus
preserving the mechanical properties (<1 kGy, Rawson et al.,
2020) as well as potentially reducing the artifacts. However,
lab micro-CT comes with the drawback of lower resolution
and longer imaging times (Peyrin et al., 2014). Neutron
tomography was recently presented as a promising alternative,
allowing imaging of the implant-interface without any artifacts.

However, neutron imaging comes with a cost of long imaging
times and somewhat lower resolution (Isaksson et al., 2017;
Le Cann et al., 2017).

This study investigates local damage in the bone around an
implant during pullout, through concurrent x-ray tomography
and mechanical loading followed by image analysis using DVC.
Thereby, we aim (1) to assess the potential of DVC to characterize
inner local displacements and deformations of newly formed
bone around a screw during pullout and (2) to investigate the
local failure patterns to validate the model’s usefulness to study
possible treatments to improve bone regeneration using, e.g.,
delivery of growth factors.

MATERIALS AND METHODS

Animal Model
A subset of four male Sprague Dawley rats that were part of
a larger study is reported in this work. Overall, 40 rats (age
8 weeks, average weight 95 g ± 19 g, Charles River, Germany)
were anesthetized with diazepam and pentobarbitalnatrium.
Antibiotic prophylaxis was given as 12.5 mg dihydrostreptomycin
and 10 mg procaine benzylpenicillin. A longitudinal incision over
the anteromedial aspect of the right proximal tibial metaphysis
was made under aseptic conditions. A hole with 1.5 mm
in diameter was drilled transversely to the longitudinal axis
of the bone to guide implantation of a titanium screw (Ø
2.6 mm, length 8 mm). Animals were treated with growth
factors and anti-resorptive drugs to ensure early formation of
substantial amounts of trabecular bone (Belfrage et al., 2012;
Raina et al., 2016; Mathavan et al., 2018). Other subsets of
these animals were previously used to develop the in situ
methodology with neutron tomography (Le Cann et al., 2017)
and synchrotron tomography (Le Cann et al., 2019). The
previous studies highlighted that both biological treatments and
surgical variability of the samples affected their mechanical
response. To focus the current study on the fracture behavior
of the bone-implant interface and the surrounding bone, we
carefully isolated four samples with similar implant depth,
distance from the tibial plateau and angulation of the screw.
Each of these animals received 0.02 mL of BMP-7 (Osigraft,
Stryker Biotech, Malmö, Sweden) in the form of a putty in
the drilled hole before screw insertion. One animal was also
given a systemic injection of Zoledronic Acid (0.1 mg/kg)
2 weeks after implantation (Zometa, Novartis, Apoteket AB,
Sweden) to further increase the amount of trabecular bone by
limiting premature bone resorption (Belfrage et al., 2012; Raina
et al., 2016; Mathavan et al., 2018). The wound was closed,
leaving the entire screw subcutaneous. After the operation,
4.5 µg buprenorphine of analgesic was given subcutaneously. All
animal handling was approved by the regional animal research
ethics committee (M25-13) and institutional guidelines for the
care and treatment of experimental animals were followed.
The rats had free access to water and food. The animals were
sacrificed after 4 weeks of implant integration and the tibiae
were carefully dissected with the screw in place and kept frozen
(−20◦C) until imaging.
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FIGURE 1 | Overview of the x-ray µCT set-up (A) and zoom on the custom-made loading device (B) to pullout the screw in situ, with the sample wrapped in gauze
inside the polycarbonate chamber. A view of the sample inside the chamber is presented in the insert. The blue arrow indicates the loading direction.

In situ Mechanical Pullout Test
Screw pullout was conducted using a custom-made loading
device placed in the x-ray tomograph (ZEISS XRM520 Versa)
at the 4D Imaging Lab at Lund University (Figure 1A).
The samples were wrapped in NaCl soaked gauze to limit
dehydration during the test and placed in a closed cylindrical
chamber with the screw head pointing downwards. The
screw head was connected to a tensile rod through a hook
and pulled out from the bone in displacement control
(Figure 1B). The parts of the device that were in the x-ray
path were made of polycarbonate to limit absorption. Force
and displacement were monitored through a force-meter (U9C
load cell, 500N, Hottinger Baldwin Messtechnik (HBM) GmbH)
and a displacement sensor (cantilever-type with strain gauges,
HBM) connected to the hook, and the data were recorded
by a custom written LabVIEW program. All images for the
tomographies were obtained with an energy of 80 kV (7 W,
87.5 µA) using a LE4 filter to remove the low energy x-rays
and reduce the beam hardening artifacts (effective energy of
the spectrum after filter is 77kV). A 20 × 20 × 20 mm3

field of view was used to include the whole tibia, leading
to a 25 µm voxel size. 1601 radiographic projections over
360◦ were acquired with 1 s exposure time, resulting in a
total scanning time of 70 min. The images were reconstructed
with cone beam geometry using the software provided by the
manufacturer (ZEISS).

A first, base-line, tomography was acquired after the initial
loaded contact with the sample (preload of 5.9 ± 0.4 N). This
is referred to as the “unloaded” scan. Immediately after the first
scan, a displacement of 0.1 mm was applied at 0.1 mm/min,
and after 400 s of relaxation, another tomographic acquisition
was started. The procedure was repeated until a drop in the
force-displacement curve was observed, followed by a final
tomographic acquisition after failure.

Analysis of Bone Formation and Screw
Insertion
Peri-implant bone tissue was quantified in all samples using the
base-line (first unloaded) scans and the image analysis software
Fiji (Schindelin et al., 2012). First, images were filtered (Median
filter radius 4 voxels) and the screw was aligned vertically using
the plugin TransformJ (Meijering et al., 2001). Images were
then visually binarized to remove the background and the screw
using the same thresholds for all samples (IsoData algorithm,
Fiji). A cylindrical region of interest (ROI) of 0.5 mm extending
from the screw maximal diameter and spanning over the threads
(2.2 mm length) was defined and bone volume fraction (bone
volume/total volume, BV/TV) was quantified inside the ROIs
using the plugin BoneJ (Doube et al., 2010).

Screw insertion was evaluated by measuring the distance and
the tilt between the screw and the tibial plateau (Le Cann et al.,
2019) on 2D radiographs (pixel size 150 µm, GE Healthcare
discovery x-ray machine, CT, United States). The screw-tibial
plateau distance was defined as the orthogonal projection of the
middle of the screw threads onto the tibial plateau line, between
the two intercondylar eminences. The screw tilt corresponded to
the angle between the long axis of the screw and the tibial plateau
line. Pearson correlations were used to investigate relationships
between screw insertion and mechanical parameters.

Digital Volume Correlation (DVC)
To assess internal local damage during loading, the 3D images
were analyzed using DVC with the python-based in-house DVC
code TomoWarp2 (Le Cann et al., 2017; Tudisco et al., 2017).
This local-DVC approach tracks image intensities in subsets
between the first reference image and a consecutive deformed
image to access 3D displacement and deformation fields (Bay
et al., 1999; Roberts et al., 2014). For a more complete description,
please see Hall et al. (2010) and Tudisco et al. (2017).
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A regular, cubic grid with node spacing of 4 voxels
(representing the grid of analysis points) and cubic subsets of
17 voxels per side (around each node of the grid) were used
for the analysis, leading to a voxel size of 100 µm in the DVC
maps. Based on two gray value thresholds, the background
and the screw were removed from the analysis by setting the
corresponding voxels values to NaNs, i.e., these voxels were
not included in the calculation of the correlation coefficient to
avoid any edge-effect. Repeated over the entire grid points, 3D
displacement fields were extracted between two loading steps and
smoothed by a median filter (radius 1 voxel) before calculating
strains using a continuum mechanics approach. The Green-
Lagrange strain tensor field was obtained using linear shape
functions on 8-node isoparametric hexahedron finite elements
whose nodes correspond to the grid points. Volumetric strain is
then calculated as det(F)-1, where F is the deformation gradient,
and the maximum shear strain according to Eq. 1.
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Accuracy and precision of the DVC measurements were
determined from two repeated unloaded scans of one sample.
The same DVC approach was applied and the errors were
quantified using Matlab, calculating the mean (accuracy of
the procedure) and standard deviation (precision) of each
displacement component (X, Y, and Z-displacements) and of all
absolute values of the six strain components.

RESULTS

Baseline Imaging
Analysis of the unloaded baseline scans revealed an average bone
volume fraction around the screw of 32 ± 0.5% (range 28–33),
screw-tibial plateau distance of 7.2± 1.2 mm (5.7–8.5) and screw
tilt of 9.9± 7.6◦ (5.2–21).

In situ Loading and Macro-Mechanics
Between four and eight scans were acquired per sample, resulting
in a total testing time of 7–11 h. The mechanical behavior
was similar among the samples, with average stiffness of
161 ± 68 N.mm−1 (65–215) and maximum force of 38 ± 11 N
(26–51). No correlation was found between screw tilt and
the measured macroscopic mechanical properties. However,
the displacement at maximum force correlated to the screw-
tibial plateau distance (R2 = 0.98, P = 0.012), with a higher
displacement at maximum force recorded when the screw was
closer to the tibial plateau.

Screw Pullout: Failure Away From the
Screw-Bone Interface
A similar mechanical behavior was observed in all samples, and
the results are illustrated based on two samples. Consistently,
trabecular bone attached to the screw threads appeared to follow
the screw pullout direction, while the rest of the sample remained
steady (Figures 2, 3 and Supplementary Data Sheet 1, File
1). This fracture pattern with detachment of trabecular bone

was visually observed on all tomographic images after failure,
but it was already detected in the DVC results one to two
steps before failure in the form of propagation of the crack(s)
inside the trabecular network (Figure 2 and Supplementary
Data Sheet 1, File 1). For instance, compressive strains (negative
volumetric strains) were detected in regions where bone detached
from the trabecular network and was crushed (blue, lowest row
Figures 2, 3). Visually in the tomographies, the flat surfaces of the
implant (screw tip and cylindrical part close to the hook) appear
to detach and slide, as highlighted by the DVC analysis with
dilatational strains (positive volumetric strains) at crack opening
(red, lowest row Figures 2, 3).

The DVC analysis showed that the displacements in the
loading direction were substantially higher close to the interface
at one-two steps before maximum load, compared to the rest of
the sample (Figures 2, 3). This region of higher displacements
formed an envelope around the threaded region of the screw,
which was about 300- to 500 µm-thick with displacement
magnitude of about 100 µm (4 voxels) between two loading
steps, which corresponded well with the displacement step
applied to the screw.

The envelope of high displacement induced a shell of high
strains around the screw threads (lower rows Figures 2, 4).
Three main regions were observed: a strain-free region close to
the threads (labeled 1 in Figure 4), followed by a high strain
region at a distance of 300–500 µm (3–5 DVC voxels) from the
interface where the high displacement region ends (labeled 2),
and finally a low strain region continuing into the trabecular
structure (labeled 3).

Crack Development at the Tibial Plateau
In addition to the deformation around the screw, cracks were
also seen to develop at the tibial plateau in two samples (sample
S1 and sample S3) during the pullout. The results are presented
for sample S1 (Figure 5 and Supplementary Data Sheet 1, Files
2, 3). During the early loading (steps 0–4), bone at the tibial
plateau was compressed and crushed close to the support (see
Figure 5B, label 1 and Supplementary Data Sheet 1, File 3) while
moderate strains were spread out inside the trabecular bone.
These strains localized (step 4–5) and a crack appeared (label
2, step 5). Moreover, a third crack (labeled 3), linking cracks 1
and 2, was revealed by the DVC analysis that could not be clearly
seen in the tomographies (Supplementary Data Sheet 1, File 3).
During the final loading steps, the cracks continued to open and
propagate inside the trabecular structure toward the implant (see
Supplementary Data Sheet 1, File 2), while the strains relaxed in
the remaining bone tissue.

The errors from the DVC calculations assessed on a repeated
unloaded scan revealed accuracy and precision below 6.2 µm and
3.6 µm for displacements (only maximum values reported), and
accuracy and precision of 4900 and 7400 µε for strains.

DISCUSSION

This study highlights the benefits of investigating local bone
damage close to an osseointegrated implant with concurrent
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FIGURE 2 | Tomography scan cuts (top row) after each loading step for sample S2. Cutting direction of the scans is presented in the insert to the right. Three lower
rows present the corresponding DVC results between loading steps, with vertical displacements (Z-displ), shear and volumetric strains. Bone detachment close to
the threads can be observed in the last scan (step 4). High strains were already detected step 2–3 (before failure) where the crack will later develop (arrows).

FIGURE 3 | Zoom in on two last steps of Sample S4, to illustrate the detachment of the bone close to the threads from the trabecular network. From left to right,
tomographic slices with yellow dotted line highlighting the bone detaching, and DVC results for the same position.

mechanical loading and tomographic x-ray imaging, followed
by image analysis with DVC. We found a typical failure pattern
through an envelope of bone that detached from the trabecular
structure, suggesting that fracture was initiated close to the
screw tip and propagated at some distance away from the
implant surface.

This study was part of a larger framework that investigated the
use of growth factors to promote new bone formation around
implants. Our aim was not to investigate the impact of the
growth factors, as we have already shown that BMP alone or

in combination with Zoledronic Acid promotes trabecular bone
formation in a variety of small animal models (Bosemark et al.,
2013; Raina et al., 2016, 2019; Mathavan et al., 2018). This animal
model has been designed to particularly test the trabecular bone’s
resistance to pullout. The sliding observed between the bone and
the implant in the implant that was not threaded (cylindrical
portion) confirms that the cortical bone had a limited influence
in this model (Le Cann et al., 2019).

Previous work has shown that a combination of various
parameters effect the mechanical behavior of the screw-bone
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FIGURE 4 | The left column represents the same cutting direction as Figure 2. Right side shows 3 horizontal cuts of the threaded region: close to the screw tip
(yellow line), the middle (red) and close to the end of the screw threads (green). Note the envelope of vertical displacement (∼4 voxels) around the screw (white arrow)
inducing a specific strain pattern with a strain-free regions (1, red arrow), followed by high strains region (2, red arrow), and again a low strain region (3, red arrow).

construct, including screw insertion position, angle and depth, as
well as peri-implant bone content (Varghese et al., 2017; Le Cann
et al., 2019). For this study, we focus on bone-implant failure and
limit other sources of variability by isolating, from a larger set,
four samples that presented similar screw-tibial plateau distance,
peri-implant bone content and macro mechanical response
during pullout (stiffness and maximum force). Additionally, the
BV/TV values were consistent with previous analyses on the
same screw-ingrowth model when imaged with higher resolution
(Le Cann et al., 2019).

The errors of the DVC procedure were estimated from a
repeated scan, and despite being higher than usual due to metal
artifacts, they still remained within the range of values presented
in literature (e.g., Dall’Ara et al., 2017; Tozzi et al., 2017). It has
to be noted that the strain values are not of interest here but are
used as apparent strains to localize and investigate the fracture
behavior, as we did not differentiate continuous vs. discontinuous
(broken) regions.

All four samples experienced screw pullout, as observed in the
tomographic images after failure and further revealed by DVC.
The DVC images revealed an envelope of vertical displacements
(pullout direction) about 1–2 steps before failure that started
to form around the threads. The magnitude was approximately
100 µm (i.e., 4 voxels), which corresponded well with the loading
step size. This suggests that the failure of the interface starts
at the screw tip and propagates relatively far from the surface

(∼300–500 µm). Bone tissue close to the threads stayed attached
to the implant without being deformed, but detached from the
trabecular network (Figure 3) where a shell of high strains is
observed. This is consistent with observations made directly from
the tomographic images and can be explained by the rather
smooth screw threads. To our knowledge, only one other study
experimentally investigated screw pullout using in situ loading
(Joffre et al., 2017). They observed strains initiating in close
proximity of the implant (<500 µm), and decreasing radially
inside the bone (up to 2 mm), which they attributed to bending
of the trabeculae. The current study differs when it comes to the
screw design (approximately 1 mm long threads as opposed to
200 µm in our screw model) and the animal model (rabbit vs. rat
in our study). Most importantly, the screws in Joffre et al. (2017)
were not osseointegrated, which most likely affects the failure
mechanisms. Our smoother thread design combined with denser
trabecular bone lead to a concentration of strains around the
screw, with a quick decrease in strain intensity going away from
the threads inside the trabecular structure. As the failure pattern
was observed close to the screw, it appears to be highly dependent
on the bone microstructure formed around the threads, and
thus represents an interesting model to investigate the effect of
local differences in bone close to the implant surface, which can
be highly affected by local drug treatment (Raina et al., 2019).
Combined with the in situ loading methodology, this model is
valuable to understand how screw-bone interfaces are loaded in
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FIGURE 5 | (A) Cutting direction for the following results and loading curve of sample S1. (B) From top row to bottom row, tomographic scans cuts at the tibial
plateau region, and corresponding DVC shear and volumetric strains for all loading steps. Crushing of bone close to the support (arrows 1) can be seen in the scans
(see also Supplementary Data Sheet 1, Files 2, 3). Crack opening (2) is also seen in scans in relatively dense bone. However, the connection (3) between 1 and 2
was not clearly observed in the tomographies (see Supplementary Data Sheet 1, File 3). Note the strains spread in the bone structure at early loading stages,
gathering where the cracks are to open, and finally relaxing in the bone while the cracks were opening (from step 4–5).

order to improve designs of screws and to investigate the effect of
treatments on trabecular bone.

The image quality close to the implant was reduced because
of artifacts due to the high difference in absorption between
titanium and bone, as is often the case with x-rays based methods
(Barrett and Keat, 2004). Such artifacts usually disturb the images
up to 60 µm from the metal surface (Li et al., 2014), and it
has been recommended to examine the interface within 200 µm
with caution (Vandeweghe et al., 2013). The voxel size of the
tomographic scans of 25 µm lead to a relatively high image
analysis resolution (DVC voxel size of 100 µm as a consequence
of the node spacing of 4 voxels), so the artifacts did not seemingly
disturb the analysis too much, as the main strain patterns were
observed 300–500 µm away from the implant. Nonetheless,
such artifacts could have hindered the analysis of possible bone
damage initiated directly at the implant surface, around the screw
threads and especially at the tip where gap opening is observed.
Artifact-free images of higher resolution would be needed to
more carefully investigate the failure pattern of this envelope of
peri-implant newly formed bone.

In addition to the deformation around the implant, two
samples also cracked at the tibial plateau far away from the
interface. This was a result of the experimental design, where
forces were channeled through the cortical shell during pullout,
as previously observed (Le Cann et al., 2017). Tibial fractures
were successfully detected by the DVC technique in the form
of high apparent strains prior to crack formation (Figure 5
and Supplementary Data Sheet 1, Files 2, 3), which were not
all visible in the tomographic images. Moreover, DVC also
provided insight onto the formation of those cracks showing
strain concentration at the crack zone prior to crack appearance
(Figure 5 and Supplementary Data Sheet 1, File 3, before step
4). This confirms the usefulness of the DVC technique to track
crack formation and evolution in bone during loading.

The most important limitations of the study are linked to the
use of the DVC technique, which was found more efficient in
regions far from the screw where metal artifacts were minor.
Moreover, dehydration from long imaging time occurred in
trabecular bone, as observed in Figure 2, which led to a loss
of DVC points. Future efforts will be dedicated to acquiring
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artifact-free images, for instance using neutron tomography (Le
Cann et al., 2017), or less absorbant implants (PEEK, ceramics)
as well as developing image analysis filters or techniques to
correct for artifacts, mostly implemented for clinical-CT so far
(Katsura et al., 2018).

CONCLUSION

In situ loading combined with Digital Volume Correlation is
becoming a powerful tool to investigate bone damage close
to an implant. In this study, DVC analysis was applied to a
series of x-ray tomographic images obtained during mechanical
pullout of an osseointegrated implant. The methodology revealed
a consistent failure pattern, in the close trabecular bone structure
around the screw threads, at an approximate distance of 300–
500 µm, suggesting that this model is well-suited to evaluate the
effect of drugs or other treatment to increase bone formation.
Further investigations will be needed at higher resolution to
investigate and resolve the finer processes at the direct interface
and especially the crack initiation, which our data points to that
it happens at the screw tip.
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