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Computer-aided design (CAD) for synthetic biology promises to accelerate the rational
and robust engineering of biological systems. It requires both detailed and quantitative
mathematical and experimental models of the processes to (re)design biology, and
software and tools for genetic engineering and DNA assembly. Ultimately, the increased
precision in the design phase will have a dramatic impact on the production of designer
cells and organisms with bespoke functions and increased modularity. CAD strategies
require quantitative models of cells that can capture multiscale processes and link
genotypes to phenotypes. Here, we present a perspective on how whole-cell, multiscale
models could transform design-build-test-learn cycles in synthetic biology. We show
how these models could significantly aid in the design and learn phases while reducing
experimental testing by presenting case studies spanning from genome minimization
to cell-free systems. We also discuss several challenges for the realization of our vision.
The possibility to describe and build whole-cells in silico offers an opportunity to develop
increasingly automatized, precise and accessible CAD tools and strategies.
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INTRODUCTION

Whole-cell models (WCMs) are state-of-the-art Systems Biology
formalisms: they aim at representing and integrating all cellular
functions within a unique computational framework, ultimately
enabling a holistic, and quantitative understanding of cell biology
(Tomita, 2001; Karr et al., 2015a). Quantitative and high-
throughput in silico experiments generated from WCMs promise
to significantly shorten the distance between hypothesis/design
formulation and testing (Carrera and Covert, 2015).

While simplified models for specific cellular functions were
first developed over 30 years ago [e.g., gene expression regulation
(McAdams and Arkin, 1997), signaling (Morton-Firth and Bray,
1998) and metabolic pathways (Cornish-Bowden and Hofmeyr,
1991), cell growth (Shu and Shuler, 1989) and the cell cycle
(Goldbeter, 1991; Tyson, 1991; Novak and Tyson, 1993)], the
first WCM, the E-Cell model, was only derived in the 1990s for
Mycoplasma genitalium, which has the smallest genome among
freely living organisms (Tomita et al., 1999). The so-called virtual
self-surviving cell (SSC) model is partially stochastic; it includes
only a subset of protein-coding genes and enables dynamic
simulations which encompass various subcellular processes,
including enzymatic reactions, complex formation and substance
translocation. In parallel, the first genome-scale metabolic models
(GSMMs) were developed by Palsson’s group (Varma and
Palsson, 1994) using flux balance analysis (FBA) in the 1990s.

More recently, hundreds of GSMMs have been reconstructed
for different organisms, with an increasing number of
represented genes (McCloskey et al., 2013; Yilmaz and Walhout,
2017; Mendoza et al., 2019). GSMMs have been complemented
with a mathematical description of other processes, such as
transcription, translation, and signaling (Lee et al., 2008; Thiele
et al., 2009). Less than a decade ago a more complete, hybrid
WCM, representing all genes and molecular functions known
for an organism, was reported by Covert’s group (Karr et al.,
2012). In this pioneering work, Karr and colleagues integrated
28 sub-models to represent one cell cycle of M. genitalium; each
sub-model is represented with a distinct formalism, including
ordinary differential equations (ODEs), FBA, stochastic
simulations and Boolean rules.

Substantial research and effort are still needed to improve
WCMs’ descriptive power and to increase the complexity
of organisms they can represent. Developing a WCM is a
challenging task, which requires the collection of extensive
experimental data, integration of sub-cellular models and
in silico/in vivo model validation. A complete WCM should
ideally integrate multiscale interactions at the cellular level (Karr
et al., 2012; King et al., 2016) while accounting for the overall
cellular structure (Betts and Russell, 2007), the dynamic structure
of molecular interactions (Noske et al., 2008; McGuffee and
Elcock, 2010; Yu et al., 2016), and the spatial compartment of the
subcellular components (Ander et al., 2004; Takahashi et al., 2005;
Thul et al., 2017). Ensuring an accurate representation of all of
the cellular processes across organisms of increasing complexity
is highly challenging (Bouhaddou et al., 2018; Singla et al., 2018;
Szigeti et al., 2018). It is therefore not surprising that, to date,
only the M. genitalium and, very recently, E. Coli (Macklin

et al., 2020). WCMs have been released, although several other
WCMs are currently under development1. We refer the reader
to recent efforts which provide an overview of the state-of-
the-art in the development of WCMs (Goldberg et al., 2018;
Feig and Sugita, 2019).

Here, we focus on the enormous potential we believe WCMs
have for design-build-test cycles integrating synthetic with
systems biology (Figure 1). While the applications are diverse,
they share a high degree of complexity which would require
extensive trial and error experimental cycles in the absence
of robust computational design algorithms based on predictive
models. We conclude by considering relevant challenges that
must be addressed by interdisciplinary communities to fully
realize our vision, discussing future directions for integrating
WCMs through synthetic and systems biology.

WHOLE-CELL DESIGN STRATEGIES IN
SYNTHETIC BIOLOGY

Model Granularity of Gene Network
(re)Design
Mathematical models can be instrumental for the (re)design of
network circuits that recapitulate definite biological functions.
Knowledge of regulatory mechanisms in biological pathways has
been gained by considering living systems as a composition
of functional modules, which are investigated through
minimal computer models. Examples include controllable
oscillators (Marucci et al., 2009; Purcell et al., 2010, 2013;
Tomazou et al., 2018), circadian clocks (Gerard et al., 2009;
Ananthasubramaniam et al., 2020), signaling networks (Prescott
and Abel, 2017), the metabolism (Castellanos et al., 2004; Pandit
et al., 2017), and transcriptional regulation (Carrera et al.,
2009). Existing minimal and detailed computer models
span a broad range of granularity in their biochemical
details. However, one may expect that, if the core design
of a minimal and a detailed model is similar, their general
properties will match.

The understanding of a living organism at a system’s level may
be reached through decomposing it into functional modules or
modular circuits (Hartwell et al., 1999; Kitano, 2002; Ravasz et al.,
2002). The capability to sustain viability through autonomously
generated offspring is essential. It is therefore a feature that
WCMs shall account for through modeling cell division, which
is intimately integrated with various layers of cellular regulation
(metabolism, signaling, gene regulation, transcription, etc.).
A number of minimal models have been developed for the
eukaryotic cell cycle by Barberis’, Tyson’s and Novák’s groups
(Battogtokh and Tyson, 2004; Barberis et al., 2012; Gerard et al.,
2013, 2015; Linke et al., 2017; Mondeel et al., 2020).

Currently, the majority of multiscale models (not WCMs) lack
components able to bridge cellular networks or function (cell
cycle, metabolism, signaling, gene regulation, etc.). Identification
of hubs, i.e., elements with high connectivity in the cellular
environment that integrate cellular networks, is a critical feature

1https://www.wholecell.org/
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FIGURE 1 | Integrated design-build-test-learn cycles in synthetic biology encompassing whole-cell model-guided approaches, and relative applications.

of WCMs. Transcription factors have recently been identified as
hubs that integrate multiscale networks, potentially connecting
the cell cycle to metabolism (Mondeel et al., 2019), and can be
among the parts of a system that influence its state as a whole.
Multiscale frameworks coupling networks of differing granularity
are being developed, by identifying the relevant regulations
occurring among common network nodes and through the use
of different mathematical formalisms (van der Zee and Barberis,
2019). These and other strategies are also being developed to
integrate networks of cellular functional modules (Prescott et al.,
2015). Together with the identification of networks underlying
the cell’s autonomous oscillations, these strategies can rationalize
the proper timing of offspring generation accounted by WCMs.

Designing synthetic gene networks by modeling and
integrating them within WCM formalisms [as in Purcell et al.
(2013)] could be critical to investigate how gene expression
correlates with codon usage, explore possible cell burden effects
(Borkowski et al., 2016), and predict modularity of synthetic gene
networks and tools to modulate gene expression across different
chassis (Way et al., 2014; Pedone et al., 2019; Gomide et al., 2020).

Design and Engineering of Reduced
Genomes
Minimal genomes can be defined as reduced genomes containing
only the genetic material which is essential for a cell to
reproduce (Glass et al., 2017). Studying and engineering minimal
genomes can be instrumental both to understand the most
essential tasks a cell must perform to sustain life, and to
obtain optimal chassis for synthetic biology applications, with
reduced cell burden and superior robustness (Moya et al., 2009;

Hutchison et al., 2016; Ceroni and Ellis, 2018; Mol et al., 2018;
Landon et al., 2019).

Exhaustive experimental characterization of a minimized
genome is unfeasible: even for an organism as small as M.
genitalium (0.58 mb and 525 genes), there are thousands of
possible combinations of gene knockouts to be performed. Of
note, this figure is most probably underestimated, accounting for
the fact that the order in which gene deletions are performed can
alter the resulting phenotypes (Gawand et al., 2015). Genome-
scale computational models of cells could be instrumental to
fully understand the dynamic and context-dependent nature of
gene essentiality (Rancati et al., 2018), and to rationally design
minimized genomes in silico. Computer-aided minimal genome
engineering could significantly reduce the time and cost to reduce
genomes compared to current approaches based on extensive
experimental iterations (Posfai et al., 2006; Iwadate et al., 2011;
Hirokawa et al., 2013; Hutchison et al., 2016; Zhou et al., 2016;
Reuss et al., 2017; Breuer et al., 2019).

To the best of our knowledge, two top-down genome
reduction approaches have been proposed so far based on
genome-scale models. The MinGenome algorithm applies a
mixed-integer linear programming (MILP) algorithm to a
GSMM of Escherichia coli, using information pertaining to
essential genes and synthetic lethal pairs within the optimization
(Wang and Maranas, 2018). In contrast, Minesweeper and
GAMA are top-down genome minimization algorithms based
on the M. genitalium WCM. They exploit a divide-and-
conquer approach and a biased genetic algorithm, respectively,
to iteratively simulate reduced genomes (Rees-Garbutt et al.,
2020); their in silico predictions have not been tested in
the laboratory yet.
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GSMM-based genome reduction algorithms such
as MinGenome or analogous, adaptable metaheuristic
techniques [e.g., (Burgard et al., 2003; Tang et al., 2015;
Mutturi, 2017)] are currently more broadly applicable
across organisms given the large availability of these
formalisms. Still, as more WCMs become available, we
expect WCM-based genome reduction algorithms to
provide superior predictions of cellular processes and genetic
interactions, thanks to their richness of multiscale cellular
process representation.

Design and Prototyping of Cell-Free
Systems
Cell-free transcription/translation systems, based on crude
cellular extracts, are a valuable platform to address fundamental
biological questions in a controllable and reproducible way.
In recent years, the decrease of costs associated with this
technology and significant improvements in synthesis yield
capabilities (Calhoun and Swartz, 2005) have made cell-
free systems increasingly popular in synthetic biology for
the prototyping and testing of engineered biological parts
(McCloskey et al., 2013; Reuss et al., 2017; Yilmaz and Walhout,
2017; Mendoza et al., 2019) and networks (Noireaux et al.,
2003; Siegal-Gaskins et al., 2014; Takahashi et al., 2015).
As the possible applications of cell-free systems grow [see
(Silverman et al., 2020) for a recent review], mathematical
models are being developed to quantitatively formalize
how biological processes perform within cell-free platforms
(Koch et al., 2018).

So far, deterministic models (ODEs, or constraint-based)
have been proposed to describe specific processes within cell-
free platforms such as transcription and translation (Karzbrun
et al., 2011; Stogbauer et al., 2012; Siegal-Gaskins et al., 2014),
resource competition (Underwood et al., 2005; Borkowski et al.,
2018; Matsuura et al., 2018; Moore et al., 2018), and metabolism
(Vilkhovoy et al., 2018). The integration of mathematical
formalisms across scales for cell-free platforms, building toward
WCMs, could be highly beneficial to both facilitate de novo
design of circuits, and to quantitatively compare in vitro cell-free
products with their in vivo counterparts.

Whole-Cell Biosensor Design and
Testing
Biosensors are analytical devices which can convert a biochemical
reaction into a measurable signal. The recognition unit in
a biosensor can be composed of whole cells, nucleic acids,
enzymes, proteins, antibodies or combinations thereof. Synthetic
biology has significantly accelerated biosensor development;
new generation whole-cell biosensors (i.e., sensors implemented
throughout living cells) have been engineered, allowing, for
example: arsenic detection (Diesel et al., 2009), detection of
pollutants and antibiotics (van der Meer and Belkin, 2010),
microbial detection in industrial settings (Lu et al., 2013) and
in vivo diagnostic applications [e.g., detection of environmental
signals in the gut (Kotula et al., 2014) and diagnosis of liver

metastases (Danino et al., 2015); see (Slomovic et al., 2015) for
an overview].

The application of WCMs to the design, prototyping and
testing of whole-cell biosensors could suggest rational approaches
to tune their sensitivity, stability, and dynamic range while
facilitating the choice of the ideal chassis and, if needed, guide
its re-engineering to optimize biosensor performance (Hicks
et al., 2020). If WCMs become available for different chassis and
entire organisms, they could also support the design of optimized
targeted delivery of genetically encoded biosensors.

Industrial Implications of Whole-Cell
Models
Although the intellectual merit of pursuing a computer-aided
whole-cell design approach is unquestioned, it is clear that
the success of this endeavor will ultimately be judged by its
impact on science, medicine, and industry. The increasing
drive of computer-aided designs (CADs) toward “green”
chemistry approaches, allied to increases in gene synthesis
speed and capability and associated cost reductions, are
making biosynthesis an increasingly appealing route for the
manufacture of high-value chemicals (El Karoui et al., 2019). This
includes a plethora of opportunities across the pharmaceutical,
agrochemical, commodity chemical, and materials sectors,
amongst others.

A major challenge, however, remains the development of
robust, scalable microbial chassis, whose metabolic processes
can be predictably tuned for a desired outcome (Xu et al.,
2020). Currently, chassis choice is largely restricted to a
subset of genetically tractable microorganisms, whose physiology
and performance during fermentation are well understood,
and for whom effective molecular genetic tools required
for their manipulation exist. Chassis optimization to date
has relied exclusively on incremental, stepwise improvements
in desired host strain characteristics, including growth rate,
feedstock utilization, and product yield (Calero and Nikel,
2019). For these reasons, the process of chassis optimization
remains prohibitively slow and expensive, accounting in
part for the paucity of high-value small molecules that
are currently manufactured using synthetic biology processes.
Targeted manipulations often lead to unanticipated off-target
effects, linked to the co-dependency of metabolic processes,
which generally function in concert within interdependent
cellular networks (Woolston et al., 2013): perturbations may
compromise rather than enhance desirable characteristics,
leading to undesired outcomes. Clearly, robust, predictable
WCMs represent an attractive solution to the problem of chassis
optimization, affording a catch-all tool that can be used to
unpick dependencies and ensure that performance criteria can
be met.

Additionally, the complexities associated with population
heterogeneity during chassis fermentation must be resolved
(Danchin, 2012). For fermentation-based industrial processes to
be tractable, product yields must be sufficiently high to make
biosynthesis financially viable. The emergence of “cheaters” or
slow-growers within microbial populations should be tackled
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with tunable regulatory processes that operate throughout
populations. The introduction of such characteristics is a major
challenge to conventional chassis design approaches. WCM-
driven approaches could more easily implement and test
these processes.

Critical to the success of a computer-aided whole-cell
design approach is the quality of the employed model
(Fernandez-Castane et al., 2014). Microbial systems with small
genomes represent a compelling entry point for study, with
model development possibly being facilitated by ongoing
studies focused on establishing the core constituents of a
functional genome. These studies are in part driven by genome
minimization experiments, which in turn can be used to
further refine model performance. Importantly, fundamental
gaps remain in our understanding of microbial metabolic
processes, and this will unquestionably hinder progress (Price
et al., 2018). However, the capacity of WCMs to predict
previously unidentified metabolic dependencies should be viewed
as an acid test of model validity. Indeed, GSMMs often fail
due to their inability to account for metabolic dependencies,
a feature which has led to skepticism within industrial circles,
questioning the value of such models. Whole-cell approaches
offer a mechanism to circumvent this issue. This is of particular
significance when developing chassis for “non-natural” products
whose chemistries sit outside those of metabolites found in
nature (Calero and Nikel, 2019). Expanding the metabolic
capacity of chassis organisms to deliver such novel products
risks introducing additional complexities, including excessive
depletion of core metabolite pools or the generation of toxic
products or intermediates. Design approaches driven by WCMs
are uniquely placed to identify such issues and provide a route to
their circumvention.

The capacity to design-in explicit control over cellular
behavior is also critical for industrial adoption of model-derived
chassis. It can be argued that the ability to regulate cellular
processes is as important as defining the processes themselves.
Tunable regulatory systems must afford a degree of both intrinsic
and extrinsic control. Synthetic biology-based approaches for
constructing genetic circuitry are now placing us on a path to
broad-reaching cellular regulation, though issues still exist. These
systems are often insufficiently orthogonal, with bespoke designs
required for different chassis due to variations in core metabolic
process (Pandit et al., 2017). Again, whole-cell design approaches
offer a solution to this issue, as such systems can be predefined
and tested for functionality in silico prior to undertaking costly
lab experimentation.

WHAT’S NEXT? GOING BEYOND THE
PROTOTYPE

In recent years, advances in genomic measurement technologies
for data generation, the establishment of data repositories,
and the development of WCM simulation platforms have
significantly facilitated the derivation of WCMs [see (Goldberg
et al., 2018) for a review]. Nevertheless, the implementation
of WCM-based design-build-test cycles for genome-scale

engineering requires further challenges to be addressed
(Bartley et al., 2020).

If a model has to be used for the design and prototyping
of an engineered living system, the model needs to be
reliable. Even for a simple organism, the number of kinetic
parameters raises as the complexity and the level of detail
of a mathematical model increase; constraining parameters
thus becomes harder and requires extensive experimental data.
Mathematical models can be used to produce predictions of
missing data, however, they often abstract physical processes
using simplifying assumptions which might hold in specific
conditions (Babtie and Stumpf, 2017). To set the 1,462
quantitative parameters of the M. genitalium WCM, values
from related organisms were incorporated due to a lack of
organism-specific data (Macklin et al., 2014); a combination
of parameter values reported from previous experiments and
numerical optimization on a reduced model was performed.
While, ideally, we would like to measure all kinetic parameters
directly from experiments, we still lack the ability to measure
each state in individual cells over time, and across all possible
environmental conditions. A combination of direct experimental
estimation and parameter inference will likely be needed for
genome-scale formalisms and WCMs.

Sensitivity analysis, usually performed by perturbing
parameters to understand how uncertainties affect the model
outputs (Erguler and Stumpf, 2011), can become extremely
computationally expensive when applied to genome-scale
models. Alternatively, statistical approaches such as those
based on Bayesian methods (Vernon et al., 2018) or the Fisher
information matrix (Rand, 2008) could be carefully carried out
at least at the sub-model level, and possibly scaled up to WCMs.
The Reverse Engineering Assessments and Methods (DREAM8)
parameter estimation challenge (Karr et al., 2015b) was organized
to develop new parameter estimation techniques specific for
WCMs. It suggested possible interesting avenues for WCM
parameterization (i.e., model reduction and a combination of
differential evolution and random forests), and highlighted that
the availability of comprehensive data is critical to ensure the
model is practically identifiable (Ashyraliyev et al., 2009), and to
calibrate WCMs.

Researchers have started to collect data needed for WCM
development into public repositories [e.g., (Wittig et al., 2012;
Kolesnikov et al., 2015; Sajed et al., 2016; UniProt Consortium,
2018; Caspi et al., 2020)]; still, the data needed to derive and fit
WCMs are dispersed across many repositories and publications
and often not annotated or normalized, ultimately requiring
a massive manual effort. Federated archives of repositories,
such as the PDB-Dev system to deposit Integrative/Hybrid
models and corresponding data (Burley et al., 2017), also
exist and might be well placed to archive and disseminate
both data and models, while enabling different researchers
to attempt alternative modeling/parameterization approaches.
Covert’s group developed the WholeCellKB database (Karr
et al., 2013) to organize the quantitative measurements (over
1,400) from which the M. genitalium WCM was derived; it
would be ideal to enable automatic access and querying in
such databases.
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To enhance WCM reproducibility and collaboration, new
standards and simulations software are also needed (Medley et al.,
2016). Researchers should invest efforts to use and expand the
capabilities of standard formats such as the Systems Biology
Markup Language (SBML) (Hucka et al., 2003) and the Systems
Biology Graphical Notation (SBGN) (Le Novere et al., 2009)
to be suitable for WCMs. For example, several aspects of the
M. genitalium WCM cannot be represented by SBML, such as the
multi-algorithmic nature of the model (Waltemath et al., 2016).
Further development of standard modeling formats is needed
to enable reproducible WCM simulations, e.g., by including in
the SMBL Hierarchical Model Composition package ontologies
which could represent the algorithm needed for specific sub-
models (Courtot et al., 2011). In the context of synthetic biology
applications, we believe it would be appropriate and beneficial to
report and deposit data related to various iterations of WCM-
generated in silico predictions, in vivo testing and possible
model/design refinement; this would establish the predictive
power of WCMs and illuminate steps to make design-build-test-
learn cycles more effective.

It is also important to consider the structural uncertainties
in the model, which depend on model assumptions. While, for
certain sets of models (e.g., small ODE systems for signaling
pathways), likelihood- and Bayesian-based approaches have been
proposed for model selection (Wilkinson, 2007; Kirk et al., 2013)
and semidefinite programming for model invalidation (Anderson
and Papachristodoulou, 2009), no suitable techniques for WCMs
have been proposed to date.

We foresee that automation will play a fundamental role
in the derivation of WCMs for eukaryotic organisms and in
their application to design complex processes. Ideally, we would
like to introduce automation at different stages, such as data
extraction from the literature, model derivation, and model/data
integration both within the model fitting and validation steps,
and when comparing in silico design prediction with in vivo
tests (Bartley et al., 2020). This, in turn, will require the
adoption of standards for both data and model repositories. Also,
laboratory automation, coupled to WCM-based CAD, is expected
to transform design-build-test cycles. As the use of robotics
becomes increasingly common in both academia and industry,
the throughput and reproducibility of experiments needed
for both WCM derivation and validation can be significantly
increased, and protocol sharing across research communities
facilitated (Jessop-Fabre and Sonnenschein, 2019).

To assist the adoption of WCMs for synthetic biology
applications, high-performance parallelized computer clusters
are required to run the models with lengthy runtimes, coordinate
the corresponding databases, parameterize and validate the
models, and then to integrate WCMs in design cycles in
combination with optimization algorithms (Macklin et al., 2014;
Chalkley et al., 2019).

The implementation of standardized tools to share data and
simulate WCMs would, in turn, facilitate model validation. This
should involve the definition of proper metrics and formal
model verification techniques such as those developed for SBML-
encoded models (Kwiatkowska et al., 2011).

(RE)THINKING SYSTEM APPROACHES:
A COLLABORATIVE EFFORT

In addressing the aforementioned challenges, we believe
there is a tremendous opportunity to rethink approaches
used so far to generate genome-scale models, including
WCMs, and to integrate with broader communities including
software engineers, computer scientists, structural biologists,
bioinformaticians, and systems and synthetic biologists.

We do anticipate that, as diverse communities synergize
on WCM-related research, different kinds of formalisms might
be integrated within genome-scale models. Symbolic reasoning
provides a range of expressive and intuitive logical frameworks
that could potentially complement and help glue together sub-
models at different scales. Such methods are routinely applied
to complex systems in the electronics and software industries,
and have been applied to biological systems for nearly a
decade (Iyengar, 2011). Recent work showed the feasibility of
applying logic programming methods to signaling pathways (Ray
et al., 2011), metabolic networks (Bragagli and Ray, 2015) and
automating a mechanistic philosophy of scientific discovery in
simulated organisms (Rozanski et al., 2015); it should be feasible
to integrate such sub-models within a WCM framework.

We believe there is scope to further increase the descriptive
and predictive ability of WCMs across spatial and temporal scales
by integrating the structural biology and the molecular modeling
communities to carefully consider not only the biochemical,
but also the physical, molecular and structural components
of cells. The development of the so-called “physical” WCMs
[see (Feig and Sugita, 2019) and (Feig and Sugita, 2013)
for comprehensive reviews] is an emerging field, with the
first models describing minimal cellular environments in full
atomistic detail (Feig et al., 2015; Yu et al., 2016). With the
final aim to integrate biochemical and physical WCMs within
a multiscale framework (Sali et al., 2015), we need approaches
which can cope with the limitations of atomistic models of
biomolecules (mainly in terms of computational resources),
possibly exploiting coarse-grained (Ando and Skolnick, 2010;
Hyeon and Thirumalai, 2011) or continuum (Solernou et al.,
2018) approaches.

By collaborating with software engineers, we need to develop
tools which can enable, and possibly automate, the integration
of different data types across scales, model derivation, fitting
and validation, and visualization and interpretation of results
(Szigeti et al., 2018).

Moreover, rule-based models might become the new standard
to represent each molecular species with the required level of
granularity and multi-algorithmic sub-models (e.g., FBA and
stochastic dynamical models). Frameworks where intuitive logic
is coupled to rule-based models have started to be developed
recently (van der Zee and Barberis, 2019).

As we produce ever-increasing amounts of experimental
data and increasingly sophisticated computational tools to
realize detailed and complex representations of actual cells,
approaches instead focusing on deliberately abstract and
parsimonious simulations of artificial cellular systems provide
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a valuable change of perspective. Such “toy models” might
be a valuable tool to test different algorithms for model
derivation and fitting, while offering an opportunity to engage
with broader research communities and with the public
(Castiglione et al., 2014).

Finally, we believe there is tremendous potential for applying
machine learning techniques to both WCM derivation and their
applications in synthetic biology. Two recent works (Lin et al.,
2017; Ma et al., 2018) showed that deep neural networks are
well placed to reconstruct the architecture of living systems
[namely, the hierarchical organization of nuclear transcriptional
factors in the nucleus (Lin et al., 2017) and of a basic eukaryotic
cell (Ma et al., 2018)] and predict cell states and phenotypes.
In both cases, the configuration of network layers and thus
the biological structure were formulated using extensive prior
knowledge, ultimately enabling fully “visible” systems, where all
the internal biological states can be interrogated mechanistically
(Yu et al., 2018). Machine learning could be beneficial to
systematically process large in vivo and in silico whole-cell data-
sets, for example by applying Bayesian inference, to integrate
data from diverse sources and supplement sparse data (Perdikaris
and Karniadakis, 2016), and to help to automatically classify
WCM simulations and link phenotypes to genotypes (Alber
et al., 2019). Ensemble methods, which combine multiple
independent models into a single predictive model for increasing
the overall robustness of predictions, might also be adopted to
develop subcellular formalisms and support their integration
across chassis (Camacho et al., 2018). Additionally, machine
learning might assist in WCM parameter identification, for
example applying Bayesian parameter estimation (Vyshemirsky
and Girolami, 2008), regression models and reinforcement
learning techniques (Alber et al., 2019). Optimal experimental
design techniques might also offer a valuable methodology to
select the best experimental datasets for both model identification
and validation (Smucker et al., 2018).

DISCUSSION

We have shown that WCMs are likely to be instrumental
to inform design-build-test cycles across synthetic biology
applications. WCMs can accelerate the realization of “designer”
cells and organisms tailored to specific functions, reducing
experimental iterations and increasing the predictive power of
computational formalisms used so far.

In the (re)design of cellular network functionalities, it is
therefore important to quantitatively analyze and predict,
through dedicated modeling strategies, the dynamics of
interactions between various layers of cellular regulation. Thus,
WCMs should take into account how different cellular layers
are integrated, and how regulatory feedback among these layers
occurs in time. These challenges must be tackled through
integrative computational and experimental collaborative efforts
aimed, respectively, toward: (i) engineering in vivo network
designs which, through predictive systems biology, may be able
to autonomously oscillate, sustaining generation of offspring,
and (ii) extraction, visualization and functional exploration of

regulatory interactions among cellular layers through novel
multiscale modeling frameworks.

As synthetic biology moves toward the (re)engineering of
entire genomes and multicellular systems, interdisciplinary
communities need to collaborate for the development of tools
that are required to improve the predictive power of WCMs.
Although challenges remain, it is clear that the adoption of
model-based methods has the potential to transform both basic
research and the current bioproduction development process,
leading to marked improvements in host performance and
product yield on an industrial scale.

Ultimately, as the development of human genome-scale
kinetic models becomes more feasible (Bordbar et al., 2015;
Szigeti et al., 2018), we anticipate that whole-cell formalisms will
become an indispensable tool to study human variation, and
design treatments and synthetic cellular screening systems.
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