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Bone reconstruction techniques are mainly based on the use of tissue grafts and artificial
scaffolds. The former presents well-known limitations, such as restricted graft availability
and donor site morbidity, while the latter commonly results in poor graft integration
and fixation in the bone, which leads to the unbalanced distribution of loads, impaired
bone formation, increased pain perception, and risk of fracture, ultimately leading to
recurrent surgeries. In the past decade, research efforts have been focused on the
development of innovative bone substitutes that not only provide immediate mechanical
support, but also ensure appropriate graft anchoring by, for example, promoting de
novo bone tissue formation. From the countless studies that aimed in this direction,
only few have made the big jump from the benchtop to the bedside, whilst most have
perished along the challenging path of clinical translation. Herein, we describe some
clinically successful cases of bone device development, including biological glues, stem
cell-seeded scaffolds, and gene-functionalized bone substitutes. We also discuss the
ventures that these technologies went through, the hindrances they faced and the
common grounds among them, which might have been key for their success. The
ultimate objective of this perspective article is to highlight the important aspects of the
clinical translation of an innovative idea in the field of bone grafting, with the aim of
commercially and clinically informing new research approaches in the sector.

Keywords: bone grafting, bioadhesives, bioactive scaffolds, cell therapies, clinical trials, commercialization

INTRODUCTION

Bone’s extraordinary healing capacity can be challenged by complex fractures (i.e., injuries above
critical size) or health conditions (i.e., diabetes, genetic factors, poor lifestyle), resulting in non-
union fractures that can lead to long-term disability and pain (Keating et al., 2005). Bone grafting
is one of the most frequently used procedures in traumatology, orthopedics, oral and maxillofacial
surgery, intending to form new bone tissue at the target area (e.g., skeletal defect, atrophy region, a
space between bones to be fused). Annually, half a million patients require bone repair intervention
in the US and Europe (Amini et al., 2012). The global annual expenditure in bone fractures and
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orthobiologics is estimated at US$ 5.5 billion and US$ 4.7
billion, respectively, whilst the total cost of bone repair-
related expenditure is estimated at US$ 17 billion per year
(Ho-Shui-Ling et al., 2018).

Bone repair interventions are based on autografts, allografts,
xenografts, and artificial scaffolds. Autografts are considered the
gold standard due to their osteoinductive and osteoconductive
properties, but entail important drawbacks, such as limited
availability and donor-site morbidity (Fillingham and Jacobs,
2016; Morris et al., 2018; Haugen et al., 2019). Allografts and
xenografts, although efficiently overcoming the aforementioned
limitations, are prone to trigger immune rejection, disease
transmission and their osteoinductive potential is frequently
impaired due to disruptive processing (Fillingham and Jacobs,
2016; Klifto et al., 2018; Haugen et al., 2019). Alternative
approaches are based in the use of artificial scaffolds specifically
designed to maintain physical integrity and promote bone
ingrowth at the defect site. Artificial scaffolds, also denominated
bone graft substitutes, can be divided in three groups:
natural or synthetic scaffolds alone, scaffolds combined
with bioactive molecules and cell-based combination products
(Ho-Shui-Ling et al., 2018).

Although a huge range of bone grafts and substitutes is
available for clinical use, the problem of effective reconstructive
treatment remains extremely challenging. Further, despite the
extensive pre-clinical investigations, the translational pathway
for novel technologies is slow and commonly results in minor
improvements of established clinical treatments. The major
impediments reside in scalability, high economic requirements
and safety concerns that some of these new therapies entail
(Hollister and Murphy, 2011; Bara et al., 2016).

Herein, we discuss some of the therapies that have successfully
reached the clinic, serving as models in clinical translation of
bone tissue engineering. This manuscript covers the use of glues,
cements, tissue grafts, biohybrid scaffolds, bioactive matrices,
and stem cell-loaded constructs in reported clinical trials or in
well-settled clinical practices.

FROM SCREWS TO BONE CEMENT AND
GLUE

The implantation of plates and screws to fix bone fractures is
a common practice in orthopedic surgery since the beginning
of the 20th century. These implants have evolved substantially
with the development of new materials, designs, and clinical
implantation strategies (Augat and von Rüden, 2018). The
primary function of plates and screw implants is to provide
mechanical stability to bone fracture fragments. In non-locked
plates as the screws are tightened and go into tension, the
resulting friction between the plate and the bone stabilizes
the fracture and results in a load-sharing device (Egol et al.,
2004). The Gamma Locking Nail R© (Stryker) is an example
of an intramedullary fixation system whose design has been
shown effectiveness in providing mechanical stability as an
intramedullary fixation device in hundreds of thousands
implantations to date (Queally et al., 2014). However, implant

complications still occur at considerable rates (up to 20%)
and include screw cut-out through poor bone quality, re-
fractures and infections that necessitate revision surgeries
(Ahrengart et al., 2002; Schliemann et al., 2015; Ma et al.,
2017). In such complications, bone quality plays a vital role
and osteoporotic or low-density bone leads inevitably to higher
risks of implant failure. Other factors, such as implant position
and anatomical fracture reduction, influence this complication
rate independently of the screw design (Mueller et al., 2013).
Therefore, for several decades, it has been accepted that there
is a clinical need for augmentation systems, which will improve
the performance of the current fixation devices, in terms of
osteointegration and biomechanical support, particularly in
osteoporotic bone.

To satisfy this unmet clinical need, bone cements have been
further developed to increase the area of contact between the
screws and the bone, providing better anchoring and mechanical
support (DeKeyser et al., 2019). Such bone cements have proved
their clinical value in fractured osteoporotic bones (Moroni
et al., 2006; DeKeyser et al., 2019; McCoy et al., 2019). This
is the case in HydroSetTM (Stryker), a cement employed in
clinics to augment screws in cancellous bone (approved in the
EU only) in both ex vivo (Kainz et al., 2014; Ruddy et al.,
2018) and in vivo (Larsson et al., 2012) studies. This and other
calcium cement-based products, such as BoneSaveTM (Stryker),
BoneSource R© (Stryker) and Norian SRS R© (Synthes), have built
their path into the clinic and have improved the mechanical
stability of screws and outcomes in the treatment of poor quality
bone (Van der Stok et al., 2011). However, limitations exist and
there is still room for improvement (Van der Stok et al., 2011;
DeKeyser et al., 2019; McCoy et al., 2019). Specifically, there
is a major clinical need in bone surgery to attach the implant
to bone and/or bone to bone, whilst improving biomechanical
properties and promoting de novo osteoinduction (Sánchez-
Fernández et al., 2019). However, there is a gap in the clinical
translation of an adhesive biomaterial to meet this specific
need. Surgical adhesives, such as cyanoacrylates, have been
investigated and shown good mechanical properties in vitro
(Kandalam et al., 2013), but they lack the osteoinductive potential
and their degradation products induce local and systemic
toxicity (Hochuli-Vieira et al., 2017; Sánchez-Fernández et al.,
2019). Other adhesives, such as fibrin-based glues, present poor
mechanical properties (Noori et al., 2017; Sánchez-Fernández
et al., 2019). To fill this unmet need, functionalized bone cements
have been developed, such as the OsSticTM (GPBio), which is
a bioceramic glue composed of tricalcium phosphate combined
with phosphoserine, an amino acid. The amino acid triggers rapid
(minutes) bonding, providing a strong fixation between tissues
and biomaterials (Pujari-Palmer et al., 2018). This occurs through
a hierarchical organization of an organic/inorganic interphase,
where phosphoserine acts as a nucleation initiator, forming
a fibrillar network and allowing the aggregation of calcium
phosphate. This bone adhesive technology has already proved
its safety and effectiveness in initial pre-clinical in vivo tests
(Procter et al., 2019) and seems to have a clear pathway to clinical
translation, considering that it combines a clinically used material
(calcium in bone cements) and an amino acid, whose mechanism
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of action has been interpreted (Pujari-Palmer et al., 2018). Should
further in vivo studies confirm the initial positive results, this is
an assured pathway (combining materials with successful clinical
history) to effective clinical translation to address a significant
unmet clinical need.

TISSUE GRAFTS AS BONE GRAFT
AUGMENTATION DEVICES IN
DENTISTRY – COMMERCIAL
DEVELOPMENT CHALLENGES

Bone grafting is an extensive practice in dentistry with an
increasing trend, where implant failure due to the poor
fixation or loosening of the implanted grafts is a common
complication (Liaw et al., 2015; Kang et al., 2019). To reduce
these complications, containment materials are employed to
increase the contact interface with the graft and to facilitate
cellular in-growth and targeted high quality bone formation,
which results in a better fixation and stabilization of the bone graft
material (Larsson et al., 2016). Initially, non-resorbable synthetic
polymers, such as polytetrafluoroethylene, were employed with
this goal, however, they require a second surgical intervention
for removal, which unavoidably increases patients’ distress and
expenditure. This encouraged the employment of decellularised
tissue scaffolds (Elgali et al., 2017). The significant advantages
of decellularised scaffolds include high cytocompatibility and
remodeling potential, which promote osteointegration and
regeneration of surrounding soft tissue (Vignoletti et al., 2014;
Elgali et al., 2017). Tissue grafts employed in this clinical
scenario include allografts (e.g., decellularised pericardia and
skin) (Adibrad et al., 2009) or xenografts (e.g., processed porcine
and bovine dermis) (Wessing et al., 2017; Arunjaroensuk et al.,
2018), which are extensively and successfully employed in other
fields, including wound healing or hernia repair (Slater et al.,
2013; Brett, 2015; Chen and Liu, 2016). Examples of these
products include CreosTM Xenoprotect (Nobel BiocareTM) or
BioGuide R© (Geistlich), which have proved to promote bone gain
and implant support in 46 patients undergoing dental surgery
(Wessing et al., 2017).

For the clinical translation of these products in dentistry,
special attention must be paid to their source and processing. The
raw material (i.e., the tissue graft) requires extensive screening
to reduce the risk of disease transmission in both allografts
and xenografts, as regulated by FDA in the recognized standard
ASTM F2212-11 or CE with EU Regulation 722/2012 and ISO
22442-2015, still valid also under the new European Medical
Device Regulation EU 2017/745. In addition, processing of these
materials (debriding, decellularization, crosslinking, etc.) must
be carried out under strict cGMP or ISO standards to ensure
safety, reproducibility, and scalability of the process. Examples
of these standards of processing and source control include
the 2014 FDA Guidance: Medical Devices Containing Materials
Derived from Animal Sources (except for in vitro diagnostic
devices), FDA’s Quality System Regulations 21 CFR 820 and the
Quality Management System standard for medical devices ISO

13485-2016. Another point of stress is the sterilization of these
products, which must ensure concurrently maximum safety and
minimum risk of infection upon implantation (Delgado et al.,
2014), in an already susceptible to infection location, the human
mouth. All this processing steps must be accompanied with
the preservation of the structure and composition of the graft
(Delgado et al., 2015; Liaw et al., 2015); after all, these properties
rationalize their use and offer them a competitive advantage
over synthetic materials. Should these commercial development
requirements be met, tissue grafts would have their niche ensured
in the clinical translation of dentistry as augmentation systems.

BIOHYBRID GRAFTS –
NATURE-INSPIRED BONE SUBSTITUTES

Advances in bone tissue engineering have resulted in a constant
decline in the use of autografts, the gold standard in clinical
practice (Miller and Chiodo, 2016; Zorica et al., 2016; Klifto
et al., 2018; Haugen et al., 2019), and a parallel increase in
artificial scaffolds (Morris et al., 2018; Haugen et al., 2019;
Stark et al., 2019). However, the new products are far from
optimal as low fusion rates and adverse effects have been reported
(Zorica et al., 2016; Haugen et al., 2019). To overcome these
limitations, nature-inspired bio-hybrid bone grafts (e.g., calcium-
phosphate/poly-ε-caprolactone particles (Neufurth et al., 2017),
silicon carbide/collagen scaffolds (BioSiC) (Filardo et al., 2014),
poly(N-acryloyl 2-glycine)/methacrylated gelatin hydrogels (Gao
et al., 2019) have been developed. These materials combine the
mechanical properties of tailored synthetic polymers and the
bioactive element of natural polymers or minerals. A successful
example in the clinical translation is a bovine-derived mineral
matrix reinforced with resorbable poly(lactic-co-caprolactone)
block copolymer embedding RGD-exposing collagen fragments
onto its surface (SmartBone R©, IBI) (Pertici et al., 2014). Its
design follows the “safety by design” paradigm, that is now
considered one of the pillars of the new European Medical
Devices Regulation. This means that each single component used
is sourced in its medical-grade supply form, and its role in the
overall mechanism of action is well established and supported by
clinical evidences. However, such design must be accompanied by
an extensive characterization (e.g., composition, microstructure,
mechanical performance, cytocompatibility, preclinical model
assessment) to show the safety and efficacy of the device
according to international standards (e.g., ISO and ASTM). Also,
production under an ISO13485:2016 standard is required to
reach the clinic and market scalability. More relevantly, under
the new Medical Devices Regulation, and also having in mind
that the very ultimate goal is to improve patients’ health, clinical
performance of innovative products, without existing equivalent
products in the market, has to be evaluated during the pre-market
approval process (Haugen et al., 2019).

In the case of SmartBone R©, such a path resulted in a
fully positively characterized material in vitro (Pertici et al.,
2014, 2015), in vivo (Pertici et al., 2015) and in clinical trials
(Abuelnaga et al., 2018; Ferracini et al., 2019), ultimately granting
device certification (i.e., CE marking), which was complemented
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with a post-marketing surveillance in its clinical applications
related to bone regeneration in various skeletal disorders.
Many other bio-hybrid composites are following the same path
with positive results in vitro and in vivo (Ceccarelli et al.,
2017) and in preliminary clinical trials, like in the case of
hydroxyapatite/collagen scaffolds (Kon et al., 2011). However,
the number of successful bone substitutes in clinical translation
remains very low, considering the number of research studies
(e.g., 9,313 papers appear in PubMed; terms searched: “bone” and
“scaffold” in Title/Abstract). The key to survive the “med-tech
valley of death” is in an evidence-based approach from start to
finish. This spans from identifying and understanding the unmet
clinical need through to measurable clinical outcomes that prove
the market differentiation value of the biohybrid medical device
to both patient and payer.

ENHANCING BONE REGENERATION
WITH BIOACTIVE MATERIALS

Among bone autografts and substitutes, “bioactivated materials”
with growth factors are considered as combination products or
drugs in FDA and EMA terms, respectively. Alternative to growth
factors have been developed with formulations containing cells
or gene constructs that are capable of stimulating reparative
osteogenesis with different regulatory status, for example, falling
into the category of Advanced Therapy Medicinal Products
(ATMPs) in Europe (Ho-Shui-Ling et al., 2018).

Bone regeneration is a multi-step process spatiotemporally
coordinated by an array of growth factor signaling pathways (De
Witte et al., 2018). Bone morphogenetic proteins (BMPs) were
the first growth factors to be identified as osteoconductive and
osteoinductive, in other words, being able to differentiate stem
cells toward osteoprogenitor cells and promote scaffold bone
tissue ingrowth (Evans, 2013). Since their FDA approval in the
early 2000s, BMP-2 and BMP-7 remain the most commonly used
growth factors for bone graft functionalization and constitute
the active molecules of two major devices: Infuse R© (Medtronic)
and Osigraft R© (Olympus), respectively (Evans, 2013). These
two collagen-based bone grafts have repeatedly shown to
promote bone ingrowth in FDA approved clinical spine and
tibia trauma indications (Friedlaender et al., 2001; Govender
et al., 2002). However, Osigraft R© production was discontinued
and the off-label use of Infuse R© has resulted in reported
complications (Simmonds et al., 2013; Vukicevic et al., 2014).
The BMP solution component must exclusively be used with a
legally approved carrier/scaffold component and for the legally
approved indication. This highlights the importance of a new or
improved technology that will allow for a controlled release of the
bioactive cargo, to support the regulatory approval of extended
clinical uses (Geiger et al., 2003; Chatzinikolaidou et al., 2010;
Carragee et al., 2011).

Despite promising results in research for “smart” formulations
to support improved control over growth factor release to
bone regeneration sites, the reality is that most of these
ambitious materials never go beyond the animal study stage
(Bessa et al., 2010; De la Riva et al., 2010; Webber et al., 2015).

Indeed, such products have to compete with autografts and
demineralized bone matrix (DBM), in terms of bone repair
or fusion efficacy, particularly when they are processed to
maintain the osteoinductive and osteoconductive properties
of the native bone matrix (Miron and Zhang, 2012). Most
of the activated devices that made it to the clinics in the
past decade are based in allografts or collagen/tricalcium
phosphate scaffolds. This is the case of OsteoAMP R© (Bioventus
Surgical) and Augment R© bone graft (Wright Medical Group),
the former made of an allogeneic-derived matrix, especially
treated to preserve a cocktail of native growth factors and the
latter composed of a collagen/tricalcium phosphate composite
combined with platelet-derived growth factor (PDGF-BB). Both
devices promoted bone ingrowth without the need of autograft
harvesting in two clinical trials with patients undergoing
transforaminal lumbar or lateral interbody fusion and ankle or
hindfoot arthrodesis, respectively (DiGiovanni et al., 2013; Roh
et al., 2013; Krell and DiGiovanni, 2016).

The short-lived activity of growth factors in medical devices
may be a concern for optimal clinical efficacy (Jabbarzadeh
et al., 2008). A sophisticated new approach able to circumvent
this limitation is based on the exogenous delivery of plasmid
DNAs from gene-activated matrices to the host cells in the
site of bone defects, to induce the endogenous production of
reparative growth factors. In a recent clinical trial, a combination
product based on a collagen-hydroxyapatite medical device and
a plasmid DNA encoding for vascular endothelial growth factor-
A (VEGF-A), showed to promote bone ingrowth in maxillofacial
bone defects without causing adverse effects (Bozo et al., 2016).
Similarly, Histograft (Russia) has developed an octacalcium
phosphate scaffold carrying VEGF-A coding plasmid that has
completed a clinical trial (NCT03076138).

Taken together, devices with bioactive molecules have proven
to match or increment the regenerative capabilities of traditional
bone grafts. However, the flow of technology from benchtop
to clinic appears to be slow, since any new bioactive candidate
should strictly comply with regulatory requirements, notably in
terms of safety and efficacy (Vukicevic et al., 2014). The 510(k)
process of FDA allows devices characterized as “substantially
equivalent” to an existing approved device to enter fast into
the market. However, bioactive scaffolds with poorly defined
degradation products require significant effort to establish safety,
substantially increasing time and cost associated with preclinical
and clinical assessment (Webber et al., 2015; Ho-Shui-Ling et al.,
2018). The design of a bioactive molecule(s) delivery system that
can serve as a scaffold for cell attachment and matrix deposition,
whilst promoting the active migration of cells, angiogenesis,
and osteogenic cell differentiation, all in the right time and
amount, appears as a mission impossible, unless more elegant,
yet regulatory compliant systems, are developed (Abbah et al.,
2015; Thomas et al., 2016). It is also time to realize that a
single molecule approach is unlikely to result in functional repair
and regeneration (Pugliese et al., 2018). However, regulatory
approval of multi-cargo delivery systems is rather onerous,
which encourages the use of cell therapies, considering that cells
can act as a factory of trophic/bioactive molecules at the site
of implantation.
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BIOMATERIAL AND STEM CELLS
COMBINING TECHNOLOGIES

Cell-based strategies for bone tissue engineering have a long
trajectory in the research stage but have minimally contributed
to current clinical practices (Mishra et al., 2016). Indeed, the
introduction of cells as a component in tissue engineering entails
important economic and safety concerns; the former is related to
the logistics, technology and human resources necessary and the
latter is related to possible immunogenicity, teratoma formation
and disease transmission risks (Webber et al., 2015). As a result
of the second, only those therapies that involve minimal ex vivo
manipulation of autologous cells are FDA approved, whilst
those that follow the traditional tissue engineering paradigm
(in vitro expansion of autologous/allogeneic cells and ex vivo
development of a cell-based construct), present a more tortuous
regulatory pathway that commonly results in the abandonment
of the technology, in the best scenario, after clinical trials
(Jager et al., 2010).

Cell source in bone tissue engineering is a matter of debate,
where the type of stem cell chosen for in vitro and in vivo
experimentation notably differs in the literature (Gao et al.,
2017). Bone marrow stromal cells (BMSCs), however, have been
the preferred choice in clinical studies due to their intimate
involvement in bone physiology and pathology, osteogenic
potency, and anti-inflammatory properties (Zheng et al., 2019).
Cell therapy for bone regeneration using freshly extracted BMSCs
is a technique with 30 years of history. The first reported clinical
study using bone marrow aspirates dates from 1991 (Connolly
et al., 1991). In 2003, composite grafts of DBM serving as
scaffolds and autologous bone marrow showed similar results as
compared to autografts in the spinal fusion of 77 patients (Price
et al., 2003). The same type of scaffold-cell graft showed positive
results when implanted in the unicameral bone cysts of 23
patients (Rougraff and Kling, 2002). Further work showed that a
collagen/hydroxyapatite composite (Healos R©, DePuy) incubated
for 20 min with autologous bone marrow aspirate promoted
similar posterolateral spine fusion rates as bone autografts,
avoiding any autograft-related donor-site morbidity (Neen et al.,
2006). Similarly, the use of tricalcium phosphate scaffolds pre-
incubated for 2 h with bone marrow aspirate, showed positive
results in the spine fusion of 41 patients, 34.5 months after the
procedure (Gan et al., 2008).

Despite the issues related to the ex vivo expansion of
autologous stem cells prior to implantation, the use of this
technique might also entail considerable benefits. For instance,
cell expansion substantially increments cell numbers and allows
for the ex vivo treatment of cells with growth factors or other
biochemical/biophysical stimuli to increment their therapeutic
potential (Cigognini et al., 2013). In a recent study, ex vivo
expanded autologous adipose-derived stem cells (ADSCs) seeded
on bioactive glass or β-tricalcium phosphate scaffolds and, in
some cases, pre-incubated with BMP-2, showed integration of
the constructs and tissue formation in 10 out of 13 patients
suffering from large cranio-maxillofacial hard-tissue defects
(Sandor et al., 2014). Furthermore, a clinical study performed
in 2017 utilized a cocktail of expanded autologous BMSCs,
periosteal progenitor cells and endothelial progenitor cells on

a fibrin hydrogel-DBM composite, to restore critical-sized bone
defects of 47 casualties with complicated gunshot bone wound.
X-ray examination determined that within 4–6 months post-
operatory, 90.4% of the treated defects regained native integrity
(Vasyliev et al., 2017).

Taken together, tissue engineering approaches and, more
precisely, the use of stem cells in combination with biomaterials
has proven, in most of the clinical studies, to match or
surpass the clinical outcomes of autografts. The extra step of
in vitro cell expansion entails numerous risks and cost-related
burdens but, if well designed, can increment the therapeutic
outcomes. The major impediment of cell-based technologies
for their clinical translation is and will be the costs and risks
associated, making the address of these issues, at an early stage
of research, fundamental.

CONCLUSION

Despite the huge scientific efforts to develop safe and functional
bone substitutes, bone tissue grafts remain the gold standard in
clinical practice. The prevalence and market size of bone repair
and regeneration encourage the development of therapeutic
technologies to overcome limitations of bone tissue grafts and
fill clinical gaps in a wide spectrum of applications (e.g., from
traumatology to dentistry). Yet again, only few products have
demonstrated safety and efficacy in clinical setting. Their success
has been largely attributed to the precise understanding of the
mechanism of action of the various device components and their
compliance with regulatory frameworks. In fact, this is key in
translating new concepts from lab-bench to bedside, overcoming
regulatory hurdles, and normative framework changes, whilst
providing a safe and functional therapy.
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