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Microscopic image analysis plays a significant role in initial leukemia screening and
its efficient diagnostics. Since the present conventional methodologies partly rely on
manual examination, which is time consuming and depends greatly on the experience of
domain experts, automated leukemia detection opens up new possibilities to minimize
human intervention and provide more accurate clinical information. This paper proposes
a novel approach based on conventional digital image processing techniques and
machine learning algorithms to automatically identify acute lymphoblastic leukemia
from peripheral blood smear images. To overcome the greatest challenges in the
segmentation phase, we implemented extensive pre-processing and introduced a three-
phase filtration algorithm to achieve the best segmentation results. Moreover, sixteen
robust features were extracted from the images in the way that hematological experts
do, which significantly increased the capability of the classifiers to recognize leukemic
cells in microscopic images. To perform the classification, we applied two traditional
machine learning classifiers, the artificial neural network and the support vector machine.
Both methods reached a specificity of 95.31%, and the sensitivity of the support vector
machine and artificial neural network reached 98.25 and 100%, respectively.

Keywords: automated leukemia detection, blood smear image analysis, cell segmentation, leukemic cell
identification, acute leukemia, image processing, machine learning

INTRODUCTION

Leukemia is a term describing a group of hematological malignancies that are manifested by the
tumourous proliferation or increased life span of immature white blood cells (WBCs) in the bone
marrow (American Dental Association [ADA], 2012). Leukocytes are highly differentiated for their
specialized functions, and they play an essential role in the immune system (Rogers, 2011). The
malignancy of this disease varies from non-malignant to highly aggressive forms, and the immature
cells are not able to fulfill their normal function (Serfontein, 2011). The excessive production
of these type of cells, denoted as blasts or leukemic cells crowds out healthy leukocytes in the
bone marrow and suppresses normal hematopoiesis, causing difficulties in fighting infections,
transporting oxygen and controlling bleeding (Daniels and Nicoll, 2012). Clinically, leukemia is
categorized on the basis of the rapidity of the disease progression to acute and chronic forms.
Whereas the acute form of leukemia develops quickly and the number of leukemic cells increases
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rapidly, chronic leukemia progresses slowly over time, and
the more mature leukocytes can carry out some of their
normal functions (Serfontein, 2011). According to the type of
affected cell from which the malignancy develops, leukemia
is further divided into myelogenous and lymphoid forms
(Manisha, 2012). Acute lymphoblastic leukemia (ALL), which
is the only form we consider in this paper, is the second most
common type of leukemia in adults and the most common
type of childhood malignancy, accounting for approximately
one-third of all pediatric cancers (Rose, 2013). Heterogeneous
malignancy is caused by genetic alterations and chromosomal
mutations of lymphocyte progenitor cells at an early phase
of cell differentiation (Rose, 2013). The excessive production
of these cells, called lymphoblasts, which do not develop into
mature B and T lymphocytes, gradually displaces normal cells
in the bone marrow and may spread to essential organs such
as the liver, lymph nodes, spleen, and central nervous system
(Katz et al., 2015).

The diagnosis of ALL requires a broad spectrum of
information derived from several modalities, including
morphology, cell phenotyping, cytochemistry, cytogenetics,
and molecular genetics (Inaba et al., 2013). Despite technological
advances in medicine, morphology remains the frontline
hematological diagnostic technique. The observation of excessive
leukemic cell buildup and morphological anomalies in cellular
structures during the visual examination of peripheral blood
smears arouses the first suspicion of leukemia. Because
manual microscopic examination is a time-consuming
process that requires a considerable amount of experience
and is prone to humane error (Inaba et al., 2013), such an
automated inspection is needed, which would standardize the
examination process and circumvent the drawbacks of this
diagnostic technique.

To minimize human intervention and overcome the
abovementioned limitations, several computerized methods
have been explored. Most of these methods utilize conventional
image processing and machine learning techniques, which
involve mainly segmentation, feature extraction, and
classification methods. Especially the segmentation and
feature extraction phases are considered the most significant
and challenging tasks (Neoh et al., 2015). The main reason
lies in the large variety of blood smear images, taken
under different conditions, and the potential morphological
differences between blast cells. Although some of these
proposed methods were found to be faster and more cost
effective than manual examination, their impact and accuracy
remain insufficient (Shafique and Thesin, 2018). Whereas,
Wang et al. (2019) achieved a detection speed of 14 to
100 milliseconds by utilizing convolution neural networks
and GPU, most proposed methods produce false-negative
errors and achieve overall accuracy in the range of 93–98%
(Bagasjvara et al., 2016).

In this study, we propose a novel combination of techniques
to overcome the most challenging parts of the detection process
and present detailed insights into the greatest shortcomings of
the existing classification methodologies, such as the overfitting
and the reliability of particular classifications. To improve our

segmentation phase, we introduce extensive pre-processing based
on the proposed color transformation and design a three-
phase filtration that ensures the elimination of surrounding
blood components and artifacts without disrupting particular
regions of leukocytes. After the whole segmentation process,
involving seven stages, a robust set of features is extracted
from all segmented regions. Extracting morphological and
texture features from specific cell regions in a similar way
to the visual interpretation of a domain expert heightens the
performance of the selected classifiers. The final recognition
of ALL from peripheral blood smear images is accomplished
by an artificial neural network (ANN) and optimized support
vector machine (SVM).

LITERATURE REVIEW OF THE
PREVIOUSLY PROPOSED
METHODOLOGIES

Extensive research has recently been conducted to explore
the possibilities for the automated detection of leukemia
from microscopic blood smear images (Alsalem et al., 2018).
Most previously proposed methods employ sequential image
pre-processing, cell segmentation, feature extraction, and cell
classification (Bodzas, 2019). The main aim of the pre-processing
phase is to enhance the image quality for subsequent processing.
Many authors have enhanced blood smear images by converting
them to another color domain, which highlights the particular
features of the objects and therefore increases the efficiency of
region detection (Aljaboriy et al., 2019). For example, Putzu
et al. (2014) and Hariprasath et al. (2019) stated that the
identification of WBCs is possible with conversion to the CMYK
color model. The reason is that leukocytes have a higher contrast
in the Y component since the yellow color is present in all
elements except WBCs.

On the other hand, Moradiamin et al. (2015) converted
images from the RGB color space to HSV, which reduced the
correlation between the color channels in comparison to RGB
and enabled the three H, S, and V channels to be dealt with
separately. They additionally complemented this with a pre-
processing phase with histogram equalization, which reduced
the effect of different lightening conditions. After nucleus
segmentation by the fuzzy C-means clustering algorithm, the
authors extracted five geometrical and 72 statistical features.
The dimensionality of the feature set was reduced by principal
component analysis to eight features, which were subsequently
applied to the SVM classifier.

A different approach was introduced by Kazemi et al. (2016)
by implementing selective median filtering in combination
with conversion to the CIEL∗a∗b model, in which the
perceptual difference between colors is proportional to the
Cartesian distance. In simple terms, the formula CIEL∗a∗b
takes the XYZ tristimulus values and the white reference to
produce correlates to the luminence, chroma, and hue elements
(Fairchild, 2005). To extract the nucleus of WBCs, color-
based clustering segmentation with additional morphological
filtering was implemented. The set of features, including
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irregularity, the Hausdorff dimension, shape, color, and texture,
was extracted from a whole image containing multiple nuclei. By
applying a two-class SVM, they were able to achieve an overall
accuracy of 96%.

In addition to the clustering segmentation method, many
authors have used thresholding-based techniques to segment
WBCs. In particular, Joshi et al. (2013) reported the usage of
Otsu’s global thresholding on an enhanced greyscale image. To
differentiate blasts in a microscopic blood smear image, they
extracted the area, perimeter, and circularity from the equivalent
binary image and employed the K-nearest neighbor decision
algorithm for classification.

Due to the absence of spatial information, threshold
techniques cannot always produce relevant and precise results.
Hence, they are often combined with mathematical morphology
or other image processing techniques. For instance, Wang
et al. (2008) proposed a segmentation algorithm that combined
adaptive thresholding with an edge-based technique and seeded
watershed to recognize cell nuclei in different cycle phases.
Moreover, unlike other studies using off-line learning algorithms,
the authors in this study deployed an online SVM classifier, which
removed the support vectors from the older model and assigned
weights to the new samples according to their importance to
accommodate changing conditions.

Concerning feature extraction and classification, recent
research has shown that the most preferred methodologies
use a combination of morphological and texture features
with supervised learning algorithms. In particular, SVM and
multilayer perceptron have provided higher accuracy than
methods using other classifiers (Aljaboriy et al., 2019). For
instance, research by Neoh et al. (2015) extracted a total of
80 feature descriptors containing color, shape, and texture
information to compare the classification performance of the
SVM and multilayer perceptron. Both classifier results reached
a similar accuracy, over 95%, with slightly higher accuracy for the
multilayer perceptron classifier.

MATERIALS AND METHODS

The main goal of this work is to develop a fully automated system
for ALL detection that can be applied to complete blood smear
images containing multiple WBCs. The solution presented in
this paper is based on conventional image processing techniques
and comprises four main stages, which are described in the
following subchapters.

Blood Smear Image Dataset
The proposed system was trained as well as tested on a local
dataset, which was provided by the Department of Haemato-
oncology at the University Hospital Ostrava. The anonymized
dataset consists of 18 microscopic blood smear images obtained
from patients without pathological findings and 13 blood smear
images from patients with diagnosed ALL. On average, six
blood smear images with a resolution of 4,080 × 3,072 were
captured per patient. Since WBCs are distributed unevenly, with
a predominance of large cells on the border and smaller cells

in the center of the blood smear, systematic data acquisition
was required (Bodzas, 2019, p. 45). This was carried out by
the meander inspection pattern, which allowed microscopic
images to be captured from different consecutive locations,
particularly from both edges and the center of the blood smear.
All slides in the dataset were stained with Giemsa stain and were
captured under the same lighting conditions by an Olympus
CX43 microscope under a magnification of 50 times with an oil
immersion objective lens and an effective magnification of 500
(Bodzas, 2019, p. 45).

The manual examination of blood smear images was
conducted by local domain experts. During this visual
examination, the hematology specialists used several
morphological criteria to distinguish between lymphoblasts and
normal cells. The most significant criteria included the nucleus
position and shape, chromatin structure, presence of nucleoli,
nucleocytoplasmic ratio, size of the cell, and color or structure
of the cytoplasm. Following the WHO classification system,
ALL is divided into B-lymphoblastic leukemia/lymphoma,
T-lymphoblastic leukemia/lymphoma, and acute leukemias of
ambiguous lineage. Because, from a morphological point of view,
there are no reproducible criteria to distinguish between B and T
lineage lymphoblastic leukemia, ALL subtype classification is not
considered in this study (Chiaretti et al., 2014).

Pre-processing
During the acquisition process, numerous variable factors, such
as different illumination conditions, staining time, blood film
thickness and film defects, may introduce undesirable visual
artifacts or cause different color distributions among the images
(Díaz and Manzanera, 2009). To deal with potential microscopic
image artifacts and enhance the contrast of the individual blood
elements, we introduced a pre-processing method based on the
standard arithmetic operations followed by gamma correction
and contrast enhancement algorithms. The proposed color
transformation is described by the following formula

g
(
x,y
)
= [(L− 1)− B]− { [(L− 1)− G] 0.5} (1)

where g(x, y) is the transformed image, L is the number of
distinct gray levels in the image and B and G are the blue and
green color spaces. Using arithmetic operations on the individual
color spaces enhanced the blood smear images and allowed
finer differentiation of the leukocytes, even for cells with scanty
cytoplasm (Bodzas, 2019, p. 46).

Leukocyte Segmentation
After applying the pre-processing step, the segmentation phase
was performed. The segmentation phase, which is concerned
with extracting individual object components carrying pivotal
information, is considered the most essential and challenging
task. The aim of this task is to reduce the computational
complexity of the subsequent steps, and to reduce the size of
the high-resolution images, which heavily burden the storage
capacity of the hospital’s server (Chen et al., 2020). From a
morphological point of view, leukemic cells can be distinguished
from mature leukocytes by having a large nucleus with finely
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dispersed chromatin, moderate and non-granular cytoplasm,
and one or more prominent nucleoli (Wiernik, 2001). The
challenging process in this work comprises two main steps:
leukocyte localization and region extraction, which separates the
specific cell components (nucleus and cytoplasm). The entire
segmentation process, divided into these two main parts, is
shown in Figure 1.

The most precise segmentation results of the leukocyte
localization phase were achieved by an algorithm involving four
fundamental stages, which can be seen in the diagram above.
The main aim of this phase was to remove the background and
the surrounding blood components and to separate any touching
cells. The first step of this challenge is the conversion of the image
into a binary format, which was performed by the histogram-
based thresholding segmentation method. Due to the sensitive
pre-processing phase, thresholding reduced the background and
part of the erythrocytes, while the full size of the WBCs was
retained. Considering that erythrocytes usually have the shape
of a biconcave disk with an inclination to overlap each other
and that platelets lie in a different color spectrum, the process
of thresholding often results in an image with additional noise.
To eliminate the residual parts of the cell components and blood
film defects from the image, we present a three-phase filtration
(Bodzas, 2019, pp. 47–48).

The first phase of the three-phase filtration is focused on the
removal of small objects, which is performed by the modified
morphological opening operation using a disk-shaped small
structuring element (Bodzas, 2019, p. 48). The modification of
this operation lied in the uneven ratio between the number
of iterations of the dilatation and the erosion parts of the
closing operation (in particular, using the ratio 8:1). Using
different iteration ratios allows the regions containing the WBCs
to be preserved without a considerable reduction of the cell,

FIGURE 1 | The proposed segmentation algorithm.

and effectively removes smaller objects, such as the remaining
parts of the erythrocytes and the platelets resistant to the
thresholding operation. The first phase of the proposed algorithm
is complemented with the second filtration step, which is
based on connected component labeling followed by histogram-
based filtration.

This second phase of filtration is described by the following
equations, where x and y are image coordinates that belong to
the set of natural numbers, Ci denotes the cumulative sum of the
same valued pixels in the image array and I ∈ < 0, n > , where n
is the number of distinct gray levels in the image.

fx,yi=
{

1 fx,y=i
0 else

(2)

Ci =
∑

x

∑
y

fx,y (i) (3)

To remove all small objects in the image, we calculate the set S
(see Eq. 4), where each value of i that satisfies the condition of
“being small” is included. Based on the histogram evaluation, we
select a threshold value Ts of 4,000. Values of i that do not satisfy
the condition are excluded.

Si =

{
i Ci > Ts
0 else

(4)

The output image g(x,y) is constructed from the input image
f (x,y) in such a way that only the pixels with a nominal intensity
belonging to a subpart of the set S are distributed to the output
image, while the rest are set to 0. Thus, we ensure that the
least commonly occurring intensity numbers are removed from
the image.

gx,y =

{
fx,y fx,y /∈ S
0 else

(5)

Applying the second filtration step helps to smooth the image and
remove all objects of small and medium size that are resistant
to our opening operation. The last phase of the proposed three-
phase filtration process is focused on the elimination of large
blood film artifacts, which usually arise during the staining
process. Since large artifacts such as precipitated stains and
crushed cells have a very distinct texture and color spectrum,
the mean particle color derived from the histogram is applied
in combination with the particle area (Bodzas, 2019, p. 48).
Using the histogram of a green color space, where the WBCs are
more contrasted, prevents filtering of normal cells and cells with
size abnormalities. The process of the localization of leukocytes,
including the fundamental steps, is shown in Figure 2.

The blast cells tend to aggregate in clumps. The presence of
such adjacent cells in an image often introduces high inaccuracy
in the subsequent image processing stages. In particular, shape-
based features such as the perimeter and area are highly
dependent on the segmentation results. In clinical practice, to
minimize the risk of miscounting, domain experts usually avoid
adjacent cells or, in specific cases, solely examine clumps where
the cytoplasm and nucleus are clearly identifiable. Each clearly
detectable clump or adjacent cell in the image should therefore
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FIGURE 2 | Localization of white blood cells. (A) Original blood smear image. (B) Pre-processing results. (C) Thresholding segmentation results. (D) Application of
the three-phase filtration with image labeling.
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FIGURE 3 | The particular segmentation results of the blast cell (top) and normal leukocyte (bottom). (A) Segmented cell. (B) Segmented nucleus. (C) Segmented
cytoplasm.

be identified and then separated into individual cells. For the
identification of adjacent cells and cell clumps, the total particle
area computation and morphological erosion, in combination
with particle counting, are implemented. Morphological erosion
is, in this case, used to separate touching objects that can be
subsequently counted. Since the blast cells are nearly round and
the touching edge length is smaller than the radius of either
object, the touching cells can be separated well without concern
that the objects will be eroded into nothing. After detecting the
adjacent cells, the cells are separated by applying the Sobel edge
detection technique, which specifies the approximate region of
the splitting boundary (Bodzas, 2019, p. 49).

Single-cell sub-image extraction was performed in this work
by an automatic image crop using the bounding rectangle
size, which is the smallest rectangle containing a particular
component. Once the single leukocytes had been identified and
cropped into single-cell sub-images, we finally proceeded to the
second segmentation stage (region extraction), which focuses on
the extraction of the nucleus and the cytoplasm into individual
parts. Thus involves the following steps: nucleus localization,
nucleus extraction, and extraction of the cytoplasm. To localize
the nucleus, we employed equalization in the luma plane and
performed color thresholding to extract the saturation channel
from the HSL space, where the border of the nucleus seemed
to be the most prominent. The process of nucleus extraction
was accomplished by multiplying the original sub-image with the
obtained binary image. Finally, the separated nucleus was used to

obtain the cytoplasm by subtracting the nucleus from the original
image. The results of the region extraction algorithm are shown
in Figure 3.

Features Extraction
In general, the extracted features describe the texture or shape
information obtained from the segmented pattern and thereby
help to reduce the dimensionality of the image to produce a
result that is more informative and less redundant than the
original image (Wan and Mak, 2015). In this phase, we aimed
to extract the descriptive information from an image in the way
that domain experts do. The proper selection of the features
is considered the second most challenging step in the field
of automated identification of leukemic cells. To construct an
effective feature set, several published articles and their feature
selection methods were studied. In this work, we implemented
sixteen widely used features, of which nine had morphological
characteristics and seven had statistical characteristics (Bodzas,
2019, p. 51). Another approach to extract features is the use of a
convolution neural network model, which extracts a collection of
feature vectors (Gao et al., 2019). In contrast to our approach, this
feature space does not carry fully comprehensible information,
and therefore cannot be interpreted in deep detail.

Morphological Features
According to hematology experts, the shape of the nucleus has
proven to be a good measure for immature cell recognition. Apart
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from rudimentary measures such as the nucleus and cytoplasm
area and nucleus perimeter, the following shape descriptors
were considered.

Nuclear-cytoplasmic ratio
The ratio of the area of the cell nucleus to the cytoplasm area. This
measure is a pivotal feature for the assessment of the maturity
of the cell and, in turn, the prediction of cell malignancy. In
general, the size of the nucleus decreases with increasing degree
of leukocyte maturity.

Nucleus compactness
The extent to which the shape is compact. Depending on the
maturity and the type of the WBC, the shape of the nucleus varies
greatly. Mature cells usually have multi-lobed nuclei with lobes
connected by thin strands or bands. Furthermore, in specific
cases, the nucleus can have kidney bean or horseshoe-shaped
contours. By contrast, leukemic cell nuclei are generally ovoid or
round in shape and exhibit higher overall compactness than the
nuclei of to mature cells. The compactness measure is given by
the following formula (Chan et al., 2010).

Compactness =
Perimeter2

Area
(6)

Nucleus form factor
A measure of shape irregularities independent on the object’s
size. In general, a circular nucleus has the greatest area to
perimeter ratio, and this measure is equal to 1 for a perfect
circle. Consequently, for the nuclei of leukemic cells, this ratio
converges to a value of 1, while the nuclei of normal cells which
depart from roundness have a lower value. The form factor is
defined as

Form factor =
4∗π∗Area
Perimeter2 (7)

Nucleus eccentricity
Nucleus eccentricity indicates the deviation from a circular shape.
This measure is calculated as the ratio of the length and width of
the minimal bounding rectangle of the region of interest. Unlike
the form factor, this measure takes into account the elliptic shapes
or circular lobes of the nucleus.

Nucleus elongation
Nucleus elongation indicates abnormal bulging. This measure is
calculated as the ratio of the maximum and minimum distance
from the center of gravity to the boundary. This feature highlights
WBCs with a multi-lobed elongated nucleus.

Nucleus solidity
Nucleus solidity defines the degree to which the shape is convex
or concave and is computed as the ratio of the area and the convex
hull area (Ahmed et al., 2016).

Statistical Features
Other indispensable descriptors used for the identification of
blast cells are based on changes in the nuclear chromatin pattern
reflecting DNA formation and on cytoplasmic changes. To
capture the crucial information of the structural arrangement of
the nucleus and the entire cell, two types of statistical measures

were used. The first-order statistical measures are based on the
histogram of the greyscale image, e.g., the cytoplasm and the
nucleus mean color, and the second-order statistical measures
are derived from the gray level co-occurrence matrix (GLCM),
which carries information about the spatial relationships of the
image pixels. The second-order statistical features selected in
this study are defined by the equations below, where P(i, j)
is the element of the normalized GLCM at the coordinates i
and j, Ng denotes the number of distinct gray levels and µx,µy
and σx,σy represent the means and standard deviations of the
normalized gray level co-occurrence matrix, respectively (Bodzas,
2019, pp. 52–53).

Nucleus energy
A measure of the local textural uniformity of gray levels,
defined as

Energy =
Ng−1∑
i, j=0

(
Pi,j
)2 (8)

Cell contrast
Cell contrast measures the number of local variations in the
GLCM. This measure is given by the relation.

Contrast =
Ng−1∑
n=0

n2


Ng−1∑
i=1

Ng−1∑
j=1

P(i, j)

 ,
∣∣i− j

∣∣ = n (9)

Nucleus correlation
Nucleus correlation represents the linear dependency of gray tone
values in the GLCM. The correlation measure is given by the
following formula.

Correlation =

∑
i
∑

j(i, j)P(i, j)− µxµy

σxσy
(10)

Cell dissimilarity
Cell dissimilarity calculates the mean of the gray level difference
distribution of a region and is given by the relation.

Dissimilarity =
Ng−1∑
i=0

Ng−1∑
j=0

∣∣i− j
∣∣ P(i, j) (11)

Cell entropy
Cell entropy measures the randomness or complexity of texture.
The entropy can be calculated using the following formula
(Batchelor and Waltz, 2001; Nailon, 2010; Ahmed et al., 2016).

Entropy = −
∑
i=0

∑
j=0

P(i, j) log P(i, j) (12)

All selected features were validated by using the statistical
hypothesis testing method, which determined whether the
samples representing the normal and blast cells came from the
same population, or in other words, whether the distribution was
the same for both classes. Since the analyzed data did not have a
normal distribution, the median and median absolute deviation
(MAD) were the proper measures to describe the observations in
the dataset. In general, the analyzed features can be considered
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to be separable in the case of sufficiently different median values
and low values of MAD that describe how spread out the data
are. In this work, we used the Mann–Whitney U test to evaluate
the statistically significant differences between the two observed
groups. Table 1 shows the resulting probabilities (p-values) that
the distributions, or in simple terms, the changes in the median
values of the two classes, are not significantly different (Bodzas,
2019, p. 54).

According to Table 1, 15 features seem to be highly unique,
with great differences between the normal and leukemic cells.
Even though nucleus eccentricity results with a much lower
probability, this feature is statistically significant and plays an
essential role in the subsequent classification phase. Owing
to the high variability of the features, which encompass a
wide range of cell attributes from morphological to textural,
there should not be a concern of misclassification in case
of blasts with variable sizes or normal cells with size-
related anomalies.

Classification
Depending on the selected classifier, the efficiency and
performance of the features may vary slightly. The classification
step that classifies the input data into one of the predefined
classes was carried out in this work by the two most popular
supervised learning algorithms, an SVM and an ANN. To

TABLE 1 | To show that the medians of the two datasets are different by the
two-tailed Mann–Whitney hypothesis test, we employed the methodology of proof
by contradiction, where the truth of a statement is determined by assuming that
the null hypothesis is false.

Features Normal cell Leukemic cell U test

Median MAD Median MAD p-value

Morphological

Cytoplasm area 11985.00 4894.53 4022.00 1799.24 <<0.001

Cell area 20011.00 6031.12 16255.00 2830.51 <<0.001

N/C ratio 0.75 0.21 3.15 1.15 <<0.001

Nucleus perimeter 521.00 112.64 412.00 58.51 <<0.001

Nucleus compactness 30.71 14.14 13.13 2.47 <<0.001

Nucleus form factor 0.41 0.19 0.96 0.18 <<0.001

Nucleus elongation 6.97 7.12 1.62 0.31 <<0.001

Nucleus eccentricity 0.49 0.23 0.42 0.18 0.007

Nucleus solidity 0.84 0.09 0.96 0.02 <<0.001

Statistical

Nucleus energy 0.74 0.05 0.61 0.04 <<0.001

Cell contrast 1.85 0.16 1.53 0.13 <<0.001

Cell entropy 7.37 1.42 5.15 1.20 <<0.001

Nucleus correlation 0.82 0.08 0.89 0.05 <<0.001

Cell dissimilarity 0.56 0.08 0.40 0.07 <<0.001

Cytoplasm mean color 2.34 0.92 0.73 0.34 <<0.001

Nucleus mean color 0.37 0.20 0.57 0.22 <<0.001

In our case, the defined null hypothesis states that there is no significant difference
between the observed groups. The selection of a confidence level of 95% therefore
signifies that the resulting p-values less than 0.05 are considered statistically
significant. This indicates that there is strong evidence against the null hypothesis,
as there is less than a 5% likelihood that the null hypothesis is correct.

achieve the best classification results, we utilized the whole
range of dataset samples to determine the optimal parameters
of both classifiers. The SVM as well as ANN classifiers are
designed to work with the same input vector of features
that we computed.

SVM Model Selection
SVM is a non-linear, non-parametric discriminative classifier
based on the Vapnik–Chervonenkis theory. In simple terms,
SVM tries to separate the data of unknown samples by finding
an optimal line or hyperplane, which represents the largest
margin between the classes. In the simplest two-dimensional
space, this hyperplane is a line dividing a plane into two
parts. Since most of the data cannot be linearly separable
in a two-dimensional space, SVM projects these non-linear
samples into a higher dimensional feature space by using
different kernel functions (Kazemi et al., 2016). Due to this
relative flexibility, SVM distinctively affords balanced predictive
performance, even in studies with a limited sample size
(Pisner and Schnyer, 2020).

To select an appropriate SVM classification model, we tested
various kernel functions, including the most frequent linear
kernel and a set of non-linear kernels, namely, Gaussian,
polynomial, and radial basis function kernels. For each kernel
function, we found the maximum value of the accuracy by
tuning the SVM parameters using optimization techniques.
To evaluate the model’s performance, we employed the
10-fold cross-validation methodology, which produced the
best out-of-sample estimates with a low bias and modest
variance (Bodzas, 2019, p. 59). This approach involved the
random division of the dataset into 10 groups called folds
of approximately equal size. During the cross-validation
process, the first fold is treated as a validation set while the
method is fit on the remaining ninefold. The whole cross-
validation process is then repeated 10 times, and each fold
is used as the validation set once (James et al., 2013). As
shown by the experimental results in Table 2, the highest
classification accuracy was achieved by using the polynomial
kernel function.

Neural Network Selection
ANN is a classification technique, that uses several computing
units to imitate neurons in the human brain. All units are
connected with each other via a weighted link, which
determines the prominence of the respective input to the
output. Each neuron in a structure performs a weighted
sum of all inputs and finds the output using an activation
function. This activation function decides whether the

TABLE 2 | Cross validation accuracy of different classification models.

Kernel function Accuracy [%]

Linear 88.38

Polynomial 98.34

Gaussian 95.02

RBS 97.51
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information is relevant or should not pass to the subsequent
unit. The whole process of learning is based on altering the
values of weights and biases depending on the calculated
loss function between the actual and desired output
(Zayegh and Bassam, 2018).

Due to the fact that there are no specific guidelines on
how to determine the optimal neural network architecture
parameters, in particular the number of hidden layers and
neurons, we decided to select these parameters through a trial-
and-error process. During this process, several architectures
with different numbers of neurons and hidden layers were
tried experimentally. The number of neural units in the
first and last layers depends on the number of given inputs
and desired outputs. In this paper, we consider 16 input
neurons, where each neuron represents one of the extracted
features, and two output neurons, for the leukemic and
normal classes. In this phase, we additionally split the dataset
into a training and validation set in the conventional ratio
of 80:20. To prevent overfitting and concentration of the
neural network into one domain, we trained the neural
network on randomly chosen samples. Furthermore, we used
identical learning rates for each learning cycle and repeated
the learning process for 50 and 500 learning iterations for
each training image. The overall performance of the particular
neural network models is summarized in Table 3 (Bodzas,
2019, p. 66).

The process of neural network topology verification revealed
an increasing accuracy with the number of hidden layers in the
case of using 50 learning iterations. We also noticed an increase
of the neural network accuracy in architectures with a higher
number of neurons in particular layers. On the other hand,

TABLE 3 | Experimental evaluation of the accuracy of different artificial neural
network architectures.

Number of neurons in hidden layers Accuracy
[%] 50 LI*

Accuracy
[%] 500 LI*

1st layer 2nd layer 3rd layer 4th layer

50 – – – 92.38 99.58

90 – – – 92.14 99.53

100 – – – 92.67 99.53

500 – – – 90.43 99.32

50 30 – – 93.14 99.90

70 50 – – 93.89 99.69

100 100 – – 91.28 99.69

400 200 – – 93.56 99.91

200 400 – – 91.46 98.77

100 100 100 – 91.87 98.52

200 100 200 – 90.91 99.80

500 300 100 – 94.44 99.91

500 400 300 – 92.34 99.49

100 100 100 100 91.17 99.44

700 500 300 100 95.49 99.91

*Learning iterations. Experimental evaluation of the accuracy of different artificial
neural network architectures, with highlighted best performing setups.

training the neural network with a higher number of hidden
layers and neurons, and 500 learning iterations, achieved greater
precision and ability to classify the data correctly. In particular,
the ANN models with a large difference in the number of neurons
between consecutive hidden layers reached the highest accuracy,
99.91% (Bodzas, 2019, p. 68).

Classification Model Implementation
To perform the classification phase, we selected the best-
performing models for both classifiers. Before the classification,
all computed features were normalized by the min–max
algorithm, which mapped the entire range of values to the
range <0, 1>. For the binary SVM classification, we selected
the C-SVM model, which utilizes a regularization parameter to
penalize misclassifications during the separation of the classes.
The best results of this classification model were achieved by
applying the polynomial kernel function with a gamma value and
regularization parameter of 1 and a degree parameter of 5. The
tolerance of the maximum gradient of the quadratic function that
was used to compute the support vectors was tuned to 0.001. In
addition, to improve the functionality of this classification model,
we implemented shrinking heuristics, which helped to reduce
the number of variables used in the classification computation
and therefore accelerated the optimization. The selected ANN
model comprised two hidden layers with a descending number
of neurons in particular layers (400, 200). The hidden layers of
the neural network were fully connected layers without any inner
modifications and utilized the sigmoid neuronal function for
triggering. The initial weights for the proposed neural network
were selected by the Xavier initialization process, which decreases
the chance that the gradients will explode or vanish too quickly.
The final process of training the architecture was performed
by mean-squared error–based back-propagation and a stochastic
gradient descent optimizer. Our neural network was trained
with 8,333 epochs with a constant learning rate and randomly
chosen samples. Moreover, during the learning process, when
the measured error rate became saturated, the neural network
was iteratively fine-tuned by changing the learning rate from
0.002 to 0.0001.

EXPERIMENTAL VERIFICATION AND
RESULTS

In the final analysis, 241 extracted sub-images of 128 normal
WBCs and 113 leukemic cells were used to evaluate the
proposed system. Since we have to deal with a lack of medical
data, we assigned 50 percent of the dataset to the training
subset, which was used to build the prediction model, and
the remaining fifty percent of the data to test the proposed
model. To verify the proportional distribution of specific
classes between the training and testing sets, we evaluated the
fundamental statistical parameters for the chosen features (see
Table 4).

Each output of the selected classifier in this work, presents
a particular probability, with which the cell belongs to the
leukemic and normal class. Since the output probabilities given
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TABLE 4 | The separation of the dataset into a training and testing set was
performed in a way that ensured the even distribution of the whole range of blood
cell types.

Feature Statistical parameter Training set Testing set

Form factor Number of samples 120 121

Maximum value 1,21 1,21

Minimum value 0,19 0,14

Mean 0,70 0,73

Standard deviation 0,30 0,32

Contrast Number of samples 119 120

Maximum value 3,37 3,35

Minimum value 2,17 2,13

Mean 2,67 2,64

Standard deviation 0,24 0,25

To verify that the split did not affect the statistical distribution, the maximum,
minimum, mean, and standard deviation were compared between the two sets.
Since all the statistical parameters of the two selected features seem to be well
balanced, the final classification should not be burdened with significant errors.

TABLE 5 | Summarization of all correct and incorrect classifications.

SVM ANN

Disease
positive

Disease
negative

Disease
positive

Disease
negative

Test positive 56 3 57 3

Test negative 1 61 0 61

Overall accuracy: 96.72% Overall accuracy: 97.52%

by the SVM model take into account only the probability of
the corresponding class, we computed the absolute complement
of the outputs to obtain an inversely proportional set. To
assess the outputs of both classifiers, the winner-take-all
principle was implemented in the last phase. This means
that only the classification outputs with the highest score
were considered to be the final results. The performance of
both algorithms was subsequently estimated by constructing
the confusion matrices for both implemented classifiers (see
Table 5).

Namely, the specificity, sensitivity, accuracy, F1 score and
error rate metrics of the proposed strategy were assessed using
the following formulas, where TP stands for the number of true
positives, TN stands for the number of true negatives and FP
and FN denote the numbers of first and second error types (false
positives and false negatives, respectively) (Chen et al., 2019).

Accuracy =
TN+ TP

TP+ FN+ FN+ FP
(13)

Sensitivity =
TP

TP+ FN
(14)

Specificity =
TN

TN+ FP
(15)

F1 =
Sensitivity ∗ Specificity
Sensitivity+ Specificity

=
2TP

2TP+ FP+ FN
(16)

ERR =
FP+ FN

TP+ FP+TN+ FN
(17)

The sensitivity and specificity represent warnings from two
different standpoints. Whereas sensitivity indicates how
often positive predictions are correct, specificity denotes
the percentage of successful negative predictions. In the
medical field, reaching 100% specificity is not reasonable.
This value of this type of measure is reached in medical
practice by the assumption that no patients have a positive
diagnosis and that therefore, the test will never make an
FN error. However, high values of specificity are required
in cases where the main goal is to limit the number of
false negatives. To achieve a better overview of diagnostic
efficiency, we took into account the F1 score metric,
which combines both sensitivity and specificity (Tharwat,
2018). Table 6 shows the comparison of the implemented
classifiers in terms of their prediction performance (Bodzas,
2019, p. 70).

Examples of specific classification results highlighting
all incorrectly classified cells are presented in Table 7. Two
cases of incorrect classifications were caused by a flawed
segmentation phase (incorrectly classified cells D and E).
Nevertheless, the ANN, due to its ability to accept relatively
small errors, identified one of those cells correctly with
an accuracy of 98.19%. Even though the ANN proved to
have a better performance, in the case of the incorrectly
classified cell C, we notice overfitting, which is the major
drawback of this methodology. On the contrary, overfitting
is not seen in the results obtained by the SVM algorithm,
which achieved better identification results in this sample.
The main reason lies in the evenly distributed portions of
similar cells among the learning and training sets and the
small degree parameter, which decreased the flexibility of
the decision boundary and therefore prevented overfitting.
Other practical problems are often caused by missing
image samples in the datasets. Such missing samples in
the training set are sometimes indispensable for making
correct predictions. This can be seen in case B among the
incorrect classifications, where the lack of banded neutrophils
resulted in an accuracy of 0% for both classifiers. Whereas
all incorrect ANN classifications were related to the first kind
of error, of predicting a positive diagnosis when the actual
condition was negative, the SVM in one sample (A) resulted
in the worst-case scenario (a type II error) by predicting
disease absence.

It should also be noted that even though the remaining
cells were classified correctly, some results do not achieve a
classification probability higher than 95%, and therefore, there

TABLE 6 | Performance measures for selected supervised classifiers.

Accuracy Sensitivity Specificity F1 Error rate

SVM 96.72 98.25 95.31 96.55 3.28

ANN 97.52 100.00 95.31 97.44 2.48

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 10 August 2020 | Volume 8 | Article 1005

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-01005 August 26, 2020 Time: 16:37 # 11

Bodzas et al. Automated Identification of Leukemic Cells

TABLE 7 | The classification probabilities of selected samples.

A B C D E

Incorrectly classified cells

Type Blast cell Normal WBC Normal WBC Normal WBC Normal WBC

SVM accuracy 24.15 0.00 95.90 0.00 21.61

ANN accuracy 96.87 0.01 24.13 0.19 98.19

Blast cells

SVM accuracy 93.74 98.80 94.29 100.00 91.47

ANN accuracy 99.90 99.88 78.09 100.00 99.94

Normal cells

SVM accuracy 85.63 87.13 90.30 83.09 97.98

ANN accuracy 98.03 98.57 58.48 85.45 100.00

The first four rows (A–E) show examples of all incorrectly classified samples with the false positive and false negative classifications highlighted, and the rest of the rows
(A–E) show the probability results of the selected examples of correct classifications.

is a high probability of the presence of overfitted areas in the
vicinity of these cells.

CONCLUSION AND FUTURE
PROSPECTS

In this work, we propose a method for the automated
identification and classification of blast cells from microscopic
peripheral blood smear images. This study introduces a novel
combination of image processing methodologies and proposes
extensive pre-processing to achieve high classification accuracy.
In particular, the selected combination of 16 features carrying
morphological and statistical information demonstrated an
excellent ability to distinguish between cancerous and non-
cancerous blood cells. We selected most of the features on the
basis of their similarity with the visual information, on which
the domain experts focus during manual examination. These
features were extracted from 241 WBCs segmented from 31
peripheral blood smear images from a local dataset. To perform
the classification, we selected the two most popular classifiers
in the literature, the ANN and the SVM algorithm. The neural
network model yielded better results, reaching a sensitivity
of 100% and an overall accuracy of 97.52%. Unlike previous
studies, we also presented some of the specific classification
probabilities of the correctly identified cells and conducted a

reverse analysis to identify the pivotal classification failures.
These observations indicated that even when the published
accuracies reach the highest values, a classification method may
not provide clarity or sufficiently high reliability, and therefore,
further examination is required.

One of the greatest problems we encountered was a lack of
medical data and extensive datasets. In particular, expanding
the learning set of the data would reduce overfitting and
increase the probability of particular classifications. Moreover,
the classification errors caused by incomplete datasets with
missing cell samples would be suppressed. It should be noted that
many authors have verified their proposed systems by employing
small local and publicly unavailable datasets. Due to this fact,
it was impossible to compare our findings with the results
obtained by the previously proposed algorithms. Furthermore,
this has a negative impact on the possibility of reproducing
recent trends and converging toward better technical solutions.
The results obtained in this work indicate that future research
should be mainly devoted to the development of a more
robust segmentation algorithm with the possibility of adaptive
parameter adjustment, which would unify the functionality of the
system under diverse conditions. Moreover, researchers should
focus on improving particular classification probabilities and
minimizing false negative classifications. Such a system could
be then used as a medical support tool that would facilitate
manual examination and save tremendous time. Using the
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results of particular classifications with a defined high decision
limit will allow us to achieve higher identification reliability.
Nevertheless, cells with lower probability should be still verified
by hematological specialists.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Ethics Committee of FN Ostrava, University
Hospital Ostrava. The participants provided written informed
consent to participate in this study.

AUTHOR CONTRIBUTIONS

AB conceived and designed the study and drafted the manuscript.
JZ coordinated the study and provided useful suggestions.
PK performed searches, analyses, interpretations, and edited
the manuscript. AB and PK developed machine learning
algorithms. All authors contributed to the article and approved
the submitted version.

FUNDING

This work was supported by the European Regional Development
Fund in the Research Centre of Advanced Mechatronic Systems
project, Project Number CZ.02.1.01/0.0/0.0/16_019/0000867
within the Operational Program Research, Development and
Education. This work was also supported by the Student
Grant System of VSB Technical University of Ostrava, grant
number SP2020/151.

REFERENCES
Ahmed, A. S., Morsy, M., and Abou-Elsoud, M. E. A. (2016). Microscopic digital

image segmentation and feature extraction of acute Leukemia. Int. J. Sci. Eng.
Appl. 5, 228–233. doi: 10.7753/IJSEA0505.1001

Aljaboriy, S., Sjarif, N., and Chuprat, S. (2019). Segmentation and detection of acute
leukemia using image processing and machine learning techniques: a review.
AUS 26, 511–531. doi: 10.4206/aus.2019.n26.2.60

Alsalem, M. A., Zaidan, A. A., Zaidan, B. B., Hashim, M., Madhloom, H. T., Azeez,
N. D., et al. (2018). A review of the automated detection and classification
of acute leukaemia: Coherent taxonomy, datasets, validation and performance
measurements, motivation, open challenges and recommendations. Comput.
Methods Programs 158, 93–112.

American Dental Association [ADA] (2012). The ADA Practical Guide to Patients
with Medical Conditions, ed. L. L. Patton (New York, NY: Wiley).

Bagasjvara, R. G., Candradewi, I., Hartati, S., and Harjoko, A. (2016). Automated
detection and classification techniques of Acute leukemia using image
processing: A review. Paper Presented at the 2nd International Conference on
Science and Technology-Compute, Yogyakarta. 35–43. doi: 10.1109/ICSTC.2016.
7877344

Batchelor, B. G., and Waltz, F. M. (2001). Intelligent machine vision: techniques,
implementations, and applications. New York, NY: Springer.

Bodzas, A. (2019). Diagnosis of Malignant Haematopoietic Diseases based on the
Automation of Blood Microscopic Image Analysis. Master’s thesis, Technical
University of Ostrava, Ostrava, CZ.

Chan, Y. K., Tsai, M. H., Huang, D. C. H., Zheng, Z. H., and Hung, K. D.
(2010). Leukocyte nucleus segmentation and nucleus lobe counting. BMC
Bioinformatics 11:558. doi: 10.1186/1471-2105-11-558

Chen, J., Ying, H., Liu, X., Gu, J., Feng, R., Chen, T., et al. (2020). A transfer
learning based super-resolution microscopy for biopsy slice images: the joint
methods perspective. IEEE/ACM Trans. Comput. Biol. Bioinform. (in press).
doi: 10.1109/TCBB.2020.2991173

Chen, T., Xu, J., Ying, H., Chen, X., Feng, R., Fang, X., et al. (2019). Prediction
of Extubation Failure for Intensive Care Unit Patients Using Light Gradient
Boosting Machine. IEEE Access. 7, 150960–150968. doi: 10.1109/ACCESS.2019.
2946980

Chiaretti, S., Zini, G., and Bassan, R. (2014). Diagnosis and Subclassification of
Acute Lymphoblastic Leukemia. Mediter. J. Hematol. Infect. Dis. 6:e2014073.
doi: 10.4084/MJHID.2014.073

Daniels, R., and Nicoll, L. H. (2012). Contemporary Medical Surgical Nursing, 2nd
Edn. New York, NY: Cengage Learning.

Díaz, G., and Manzanera, A. (2009). “Automatic Analysis of Microscopic Images
in Hematological Cytology Applications,” in Biomedical Image Analysis and

Machine Learning Technologies: Applications and Techniques, eds F. A. González
and E. Romero (Landisville, PA: Yurchak Printing Inc), 167–196.

Fairchild, M. D. (2005). Color Appearance Models, 2nd Edn. Chichester: John Wiley
& Sons.

Gao, W., Zhu, Y., Zhang, W., Zhang, K., and Gao, H. (2019). A hierarchical
recurrent approach to predict scene graphs from a visualion-oriented
perspective. Comput. Intellig. 35, 496–516. doi: 10.1111/coin.12202

Hariprasath, S., Dharani, T., and Santh, M. (2019). Detection of acute lymphocytic
leukemia using statistical features. Paper Presented at the 4th International
Conference on Current Research in Engineering Science and Technology,
Trichy. Available online at: http://www.internationaljournalssrg.org/uploads/
specialissuepdf/ICCREST/2019/ECE/IJECE-ICCREST-P102-JRCE1119.pdf

Inaba, H., Greaves, M., and Mullighan, C. G. (2013). Acute lymphoblastic
leukaemia. Lancet 381, 1943–1955. doi: 10.1016/S0140-6736(12)62187-4

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An Introduction to
Statistical Learning: With Applications in R. New York, NY: Springer.

Joshi, M. D., Karode, A. H., and Suralkar, S. R. (2013). White blood cells
segmentation and classification to detect acute Leukemia. Int. J. Emerg. Trends
Technol. Computer Sci. 2, 147–151.

Katz, A. J., Chia, V. M., and Schoonen, W. M. (2015). Acute lymphoblastic
leukemia: an assessment of international incidence, survival, and disease
burden. Cancer Causes Control 26, 1627–1642. doi: 10.1007/s10552-015-0657-6

Kazemi, F., Najafabadi, T., and Araabi, B. (2016). Automatic Recognition of
Acute Myelogenous Leukemia in Blood Microscopic Images Using K-means
Clustering and Support Vector Machine. J. Med. Signals Sens. 6, 183–193.

Manisha, P. (2012). Leukemia: a review article. Int. J. Adv. Res. Pharm. Bio Sci. 2,
397–407.

Moradiamin, M., Samadzadehaghdam, N., Kermani, S., and Talebi, A. (2015).
Enhanced recognition of acute lymphoblastic leukemia cells in microscopic
images based on feature reduction using principle component analysis. Front.
Biomed. Technol. 2:128–136.

Nailon, W. H. (2010). “Texture analysis methods for medical image
characterisation,” in Biomedical Imaging, ed. Y. Mao (London: Intech
Publishing), 75–100.

Neoh, S., Srisukkham, W., Zhang, L., Todryk, S., Greystoke, B., Lim, C., et al.
(2015). An intelligent decision support system for leukaemia diagnosis using
microscopic blood images. Sci. Rep. 5:14938. doi: 10.1038/srep14938

Pisner, D. A., and Schnyer, D. M. (2020). “Chapter 6 - Support vector machine,”
in Machine Learning, eds A. Mechelli and S. Vieira (Cambridge, MA: Academic
Press), 101–121.

Putzu, L., Caocci, G., and Di Ruberto, C. (2014). Leucocyte classification for
leukaemia detection using image processing techniques. Artif. Intellig. Med. 62,
179–191. doi: 10.1016/j.artmed.2014.09.002

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 12 August 2020 | Volume 8 | Article 1005

https://doi.org/10.7753/IJSEA0505.1001
https://doi.org/10.4206/aus.2019.n26.2.60
https://doi.org/10.1109/ICSTC.2016.7877344
https://doi.org/10.1109/ICSTC.2016.7877344
https://doi.org/10.1186/1471-2105-11-558
https://doi.org/10.1109/TCBB.2020.2991173
https://doi.org/10.1109/ACCESS.2019.2946980
https://doi.org/10.1109/ACCESS.2019.2946980
https://doi.org/10.4084/MJHID.2014.073
https://doi.org/10.1111/coin.12202
http://www.internationaljournalssrg.org/uploads/specialissuepdf/ICCREST/2019/ECE/IJECE-ICCREST-P102-JRCE1119.pdf
http://www.internationaljournalssrg.org/uploads/specialissuepdf/ICCREST/2019/ECE/IJECE-ICCREST-P102-JRCE1119.pdf
https://doi.org/10.1016/S0140-6736(12)62187-4
https://doi.org/10.1007/s10552-015-0657-6
https://doi.org/10.1038/srep14938
https://doi.org/10.1016/j.artmed.2014.09.002
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-01005 August 26, 2020 Time: 16:37 # 13

Bodzas et al. Automated Identification of Leukemic Cells

Rogers, K. (Ed.) (2011). Blood: Physiology and Circulation. Edinburgh: Britannica
Educational Publishing.

Rose, M. (2013). Oncology in Primary Care, 1st Edn. Philadelphia: Lippincott
Williams & Wilkins.

Serfontein, W. (2011). Cancer Diagnosed: What Now? 2nd Edn. Bloomington:
Xlibris.

Shafique, S., and Thesin, S. (2018). Acute lymphoblastic leukemia detection
and classification of its subtypes using pretrained deep convolutional neural
networks. Technol. Cancer Res. Treatment 17:1533033818802789. doi: 10.1177/
1533033818802789

Tharwat, A. (2018). Deep belief networks and cortical algorithms: A comparative
study for supervised classification. Appl. Comput. Inform. 15, 81–93. doi: 10.
1016/j.aci.2018.08.003

Wan, S., and Mak, M. W. (2015). Machine Learning for Protein Subcellular
Localization Prediction. Boston: De Gruyter.

Wang, M., Zhou, X., Li, F., Huckins, J., King, R., and Wong, S. (2008).
Novel Cell Segmentation and Online SVM for Cell Cycle Phase
Identification in Automated Microscopy. Bioinformatics. 24, 94–101. doi:
10.1093/bioinformatics/btm530

Wang, Q., Bi, S., Sun, M., Wang, Y., Wang, D., and Yang, S. (2019). Deep learning
approach to peripheral leukocyte recognition. PLoS ONE. 14: e0218808. doi:
10.1371/journal.pone.0218808

Wiernik, P. H. (2001). Adult Leukemia (Atlas of Clinical Oncology). Hamilton: BC
Decker Inc.

Zayegh, A., and Bassam, N. (2018). “Neural Network Principles and Applications,”
in Digital Systems, Ed. R. J. Tocci (London: Pearson), doi: 10.5772/intechopen.
80416

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Bodzas, Kodytek and Zidek. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 13 August 2020 | Volume 8 | Article 1005

https://doi.org/10.1177/1533033818802789
https://doi.org/10.1177/1533033818802789
https://doi.org/10.1016/j.aci.2018.08.003
https://doi.org/10.1016/j.aci.2018.08.003
https://doi.org/10.1093/bioinformatics/btm530
https://doi.org/10.1093/bioinformatics/btm530
https://doi.org/10.1371/journal.pone.0218808
https://doi.org/10.1371/journal.pone.0218808
https://doi.org/10.5772/intechopen.80416
https://doi.org/10.5772/intechopen.80416
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

	Automated Detection of Acute Lymphoblastic Leukemia From Microscopic Images Based on Human Visual Perception
	Introduction
	Literature Review of the Previously Proposed Methodologies
	Materials and Methods
	Blood Smear Image Dataset
	Pre-processing
	Leukocyte Segmentation
	Features Extraction
	Morphological Features
	Nuclear-cytoplasmic ratio
	Nucleus compactness
	Nucleus form factor
	Nucleus eccentricity
	Nucleus elongation
	Nucleus solidity

	Statistical Features
	Nucleus energy
	Cell contrast
	Nucleus correlation
	Cell dissimilarity
	Cell entropy


	Classification
	SVM Model Selection
	Neural Network Selection
	Classification Model Implementation


	Experimental Verification and Results
	Conclusion and Future Prospects
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References


