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Epileptiform discharges are of fundamental importance in understanding the physiology

of epilepsy. To aid in the clinical diagnosis, classification, prognosis, and treatment

of epilepsy, it is important to develop automated computer programs to distinguish

epileptiform discharges from normal electroencephalogram (EEG). This is a challenging

task as clinically used scalp EEG often contains a lot of noise and motion artifacts.

The challenge is even greater if one wishes to develop explainable rather than

black-box based approaches. To take on this challenge, we propose to use a multiscale

complexity measure, the scale-dependent Lyapunov exponent (SDLE). We analyzed

640 multi-channel EEG segments, each 4 s long. Among these segments, 540 are

short epileptiform discharges, and 100 are from healthy controls. We found that

features from SDLE were very effective in distinguishing epileptiform discharges from

normal EEG. Using Random Forest Classifier (RF) and Support Vector Machines (SVM),

the proposed approach with different features from SDLE robustly achieves an accuracy

exceeding 99% in distinguishing epileptiform discharges from normal control ones. A

single parameter, which is the ratio of the spectral energy of EEG signals and the

SDLE and quantifies the regularity or predictability of the EEG signals, is introduced to

better understand the high accuracy in the classification. It is found that this regularity is

considerably greater for epileptiform discharges than for normal controls. Robustly having

high accuracy in distinguishing epileptiform discharges from normal controls irrespective

of which classification scheme being used, the proposed approach has the potential to

be used widely in a clinical setting.

Keywords: EEG, epileptiform discharges, power spectral density (PSD), scale-dependent Lyapunov exponent
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1. INTRODUCTION

Epilepsy is a common disorder of the brain (Li et al., 2019).
Approximately 8–10% of people would experience an epileptic
seizure during their lifetime (Gavvala and Schuele, 2016). In
adults, the risk of the recurrence of seizure within the 5 years
following a new-onset or a second seizure is 35 and 75%,
respectively (Gavvala and Schuele, 2016). These percentages are
even higher in children, with 50% of the recurrence within the
5 years following a single unprovoked seizure, and 80% after
two unprovoked seizures (Camfield and Camfield, 2015). In the
United States in 2011, about 1.6 million seizure patients made
emergency department visits; approximately 25% of these visits
were for new-onset seizures (Gavvala and Schuele, 2016). The
exact incidence of epileptic seizures in low-income and middle-
income countries is unknown, however it is speculated to exceed
that in high-income countries (Ba-Diop et al., 2014).

Electroencephalography (EEG) provides a continuous
measure of cortical function with excellent time resolution,
and thus remains the primary diagnostic test of brain
function, especially in those with epileptic seizures, even
though new functional imaging procedures such as functional
MRI (fMRI), single-photon emission computed tomography
(SPECT), and positron emission tomography (PET) have
been increasingly used for assessing anatomical changes in
the brain. EEG is especially valuable in investigating patients
with known or suspected seizures or encephalopathy. Seizures
are however infrequent events in the majority of patients
in an outpatient setting, making recording of ictal EEG
time-consuming and labor intensive. So far, the mainstay of
diagnosis remains to detect interictal (i.e., between seizures)
epileptiform discharges. Therefore, epileptiform discharges are
of fundamental importance in understanding the physiology of
epilepsy. To aid in the clinical diagnosis, classification, prognosis,
and treatment of epilepsy, it is critical to develop automated
computer programs to distinguish epileptiform discharges from
normal EEG.

Many methods have been developed to study EEG. Simple
but important features of EEG include the amplitude values
(Toet et al., 2005) and the Power Spectral Density (PSD)
(Gao et al., 2007). Using wavelet transform is also a popular
approach (Adeli et al., 2003; Subasi, 2007; Faust et al.,
2015; Chen et al., 2017). Clinically, however, neurologists
still rely heavily to visually examine the long continuous
EEG signals. Unfortunately, this approach is time-consuming
and prone to error due to human fatigue. This issue has
motivated much effort to develop automated algorithms to
detect epileptiform discharges or other features from EEG
(Sharmila and Geethanjali, 2019). Among the notable works
along this line are to use entropy (Nicolaou and Georgiou,
2012; Arunkumar et al., 2016, 2017) and complexity measures
(Gao et al., 2011, 2012b; Martis et al., 2015; Medvedeva
et al., 2016; Pratiher et al., 2016; Sikdar et al., 2018).
The majority of the works published are however based on
electrocorticogram (ECoG), which is invasively obtained by
directly attaching electrodes to the cerebral cortex (Wang
et al., 2019). Clinically, the more widely available form of

EEG is the non-invasive scalp EEG. Compared with ECoG,
scalp EEG signals are much poorer in terms of signal-to-noise
ratios (Haufe et al., 2018). Scalp EEG recordings also contain
various kinds of artifacts (Islam et al., 2016; Brienza et al.,
2019), including eye movements (e.g., blinks), muscle activities
(e.g., swallowing, head movements), and the heartbeat (Kappel
et al., 2017). These noise and artifacts exacerbates greatly the
difficulty in automatically detecting epileptiform discharges from
normal controls. Although machine learning based approaches
(Mirowski et al., 2008; Shen et al., 2009; Antoniades et al.,
2016; Kuswanto et al., 2017; Ullah et al., 2018; van Putten
et al., 2018; Subasi et al., 2019) can partly solve some of these
problems, overall, the problem remains largely open, especially
with regard to the development of explainable non-black-box
based approaches.

In this paper, we propose to use scale-dependent Lyapunov
exponent (SDLE) to develop a readily explainable approach
to automatically detect epileptiform discharges from normal
controls. SDLE is a multiscale complexity measure developed
to unambiguously distinguish chaos from noise, and more
fundamentally to automatically characterize the defining
parameters/properties of complex data (Gao et al., 2006, 2007).
SDLE stems from two important concepts, the time-dependent
exponent curves (Gao and Zheng, 1993, 1994a,b; Gao, 1997)
and the finite size Lyapunov exponent (Torcini et al., 1995;
Aurell et al., 1996, 1997). SDLE was first introduced in Gao
et al. (2006, 2007), and has been further developed in Gao
et al. (2009, 2012a) and applied to characterize ECoG (Gao
et al., 2011), HRV (Hu et al., 2009, 2010), financial time series
(Gao et al., 2013), Earth’s geodynamo (Ryan and Sarson, 2008),
precipitation dynamics (Fan et al., 2013), sea clutter (Hu and
Gao, 2013), THz imagery (Blasch et al., 2012), and randomness
(Li et al., 2016). We will show that the proposed approach is
very accurate in distinguishing epileptiform discharges from
normal controls.

The remainder of the paper is organized as follows. In
section 2, we briefly describe the EEG data and analysis methods.
In section 3, we present analysis results. In section 4, we
summarize our findings.

2. MATERIALS AND METHODS

2.1. Data
The scalp EEG data analyzed here were clinically obtained at
the First Affiliated Hospital to Guangxi Medical University.
The studies involving human participants were reviewed and
approved by the ethics committee of the First Affiliated Hospital
to Guangxi Medical University. The participants provided their
written informed consent to participate in this study. Fifty-nine
epilepsy patients underwent a 3-h video-EEG monitoring with
19-channel EEG recording with electrodes placed on the scalp
under the international 10–20 system at 256 Hz sampling rate.
The electrode impedances were kept below 10K�. The 19 scalp
electroencephalographic electrodes were arranged according to
the names Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3,
Pz, P4, T6, O1, and O2. Since the information yielded by an EEG

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 2 September 2020 | Volume 8 | Article 1006

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Li et al. Distinguishing Epileptiform Discharges Using SDLE

channel is essentially the difference of electrical activity between
two electrodes in the time-domain (Pardey et al., 1996; Lopez
et al., 2016), the amplitude, frequency, and synchronization of
the brain waves and background will change (Seeck et al., 2017;
Vanherpe and Schrooten, 2017), depending on which montage
is chosen (e.g., earlobe reference, averaged reference, or bipolar;
Christodoulakis et al., 2013; Geier and Lehnertz, 2017; Rana et al.,
2017; Acharya and Acharya, 2019; Rios et al., 2019). In this work,
we choose the widely used earlobe reference.

All epileptiform discharges were annotated by an experienced
clinical neurophysiologist based on the average montage with an
analog bandwidth of 0.1∼70 Hz and a notch filter of 50 Hz. EEG
signals were segmented into 4 s epochs, with each epoch assigned
a random number. The collected epochs were transformed into
European Data Format (EDF) for further analysis. In total, there
were 532 EEG recordings of epileptiform discharges and 100
healthy controls, each 4 s long, from all the participants. Among
the 532 short epileptic discharges, there were 69 spike waves,
82 sharp waves, 174 spike and slow wave complexes, 72 sharp
and slow wave complexes, 64 polyspike complexes, 77 polyspike,
and slow wave complexes and 2 spike rhythmic discharges. Note
the numbers for these seven epileptiform discharges sum up
to 540, which is slightly larger than 532. The reason is a few
discharges were considered to simultaneously belong to more
than 1 of the 7 different epileptiform discharges. For convenience
of referencing, the definitions for these 7 epileptiform discharges
are given below, together with the number of cases analyzed for
each type indicated in the parentheses immediately following
each terminology. Examples of their waveforms are shown in
Figure 1.

• Spike wave (69): the most basic paroxysmal EEG activity, with
a duration of 20∼70ms; amplitude varies but typically>50 uV
(Kane et al., 2017).

• Sharp wave (82): a transient wave similar to the spike and
clearly distinguishable from background activity; its time limit
is 70∼200 ms (5∼14 Hz), amplitude is between 100 and 200
uV , and the phase is usually negative.

• Spike and slow wave complex (174): pattern consisting of a
spike followed by a slow wave (classically the slow wave being
of higher amplitude than the spike); may be single or multiple
(Kane et al., 2017).

• Sharp and slow wave complex (72): pattern consisting of a
sharp followed by a slow wave (classically the slow wave being
of higher amplitude than the sharp); may be single or multiple
(Kane et al., 2017).

• Polyspike complex (64): a sequence of two or more spikes.
• Polyspike and slow wave complex (77): pattern with two or

more spikes associated with one or more slow waves.
• Spike rhythm (2): a rare pattern of widespread 10∼25Hz spike

rhythm outbreak, with an amplitude of 100∼200 uV and the
highest voltage in the frontal area, lasting more than 1 s.

Recall that a few epileptiform discharge waveforms were
considered to simultaneously belong to more than 1 of these
7 different epileptiform discharges. Because of this, we will not
pursue the issue of further characterizing the differences among
the 7 epileptiform discharges here.

FIGURE 1 | Typical waveforms of the 7 major epileptiform EEG, where (A-G),

denotes spike wave, spike and slow wave complex, sharp wave, sharp and

slow wave complex, polyspike complex, polyspike and slow wave complex,

spike rhythm discharges, respectively.

2.2. Computation of Power Spectral
Density (PSD)
PSD of EEG can be readily obtained by taking Fourier transform
of the EEG signal, computing the square of the amplitude of the
transform to obtain the power, and finally plotting the power
against the frequency. In clinical applications, brain waves are
often categorized into five bands: delta (0.5∼ 3Hz), theta (4∼7
Hz), alpha (8∼13 Hz), beta (14∼30 Hz), and gamma (>30 Hz),
respectively. To obtain the energy of these waves, one only needs
to integrate the PSD curve over the respective wave band. In this
work, we integrate the PSD curve for frequencies between 0.5 and
25 Hz for the 10 electrodes with the strongest signals, and then
take the average.

2.3. Computation of the SDLE
As with the estimation of PSD, for each subject, we picked up 10
strongest EEG signals from 19 electrodes, computed SDLE from
each one of the 10 EEG signals, and took the average.

To compute SDLE, we first need to reconstruct a phase space
from the EEG signals. Denote the signal as x(i), i = 1, · · · , n, we
construct vectors

Vi = [x(i), x(i+ L), ..., x(i+ (m− 1)L)], (1)
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where m is called the embedding dimension and L the delay
time. In practice, m and L have to be chosen properly. This
is the issue of optimal embedding. For example, to reconstruct
the phase plane of a harmonic oscillator from a sinusoidal
signal, the optimal delay time is 1/4 of the period (Gao et al.,
2007). Extensive works have been done to optimally determine
m and L. Two of the most systematic and most extensively
tested approaches are a statistical method called the false nearest
neighbor method (Kennel et al., 1992) and a dynamical method
based on time-dependent exponent curves developed by Gao
and Zheng (1993, 1994a,b). The basic idea of the latter is to
choose L in such a way that the motion in the reconstructed
phase space is as uniform as possible (in the case of a harmonic
oscillator, the reconstructed phase plane is an ellipse, which
becomes a circle when L is 1/4 of the period; motion on the circle
is the most uniform when compared with motions on ellipses).
This is achieved by requiring divergence characterized by time-
dependent exponent curves be a minimum when L is varied, and
the divergence does not become much larger when m is further
increased. This is the method that is employed here. For the
EEG signals analyzed in this work, which was sampled with a
sampling frequency of 256 Hz, we found L = 1 is optimal. With
larger sampling frequency, L also has to be larger. For example,
when the sampling frequency is 1,024 Hz, L then needs to be
4. As our EEG signal is not that long (4 s, or 1,024 points),
we also found that m = 2 worked very well. After the phase
space is reconstructed, we consider an ensemble of trajectories.
We denote the initial separation between two nearby trajectories
by ǫ0, and their average separation at time t and t + 1t by ǫt
and ǫt+1t , respectively. The trajectory separation is schematically
shown in Figure 2. Note ǫt+1t is not necessarily larger than ǫt .
We then examine the relation between ǫt and ǫt+1t , where 1t is
small. When 1t → 0, we have,

ǫt+1t = ǫte
λ(ǫt)1t , (2)

where λ(ǫt) is the SDLE given by

λ(ǫt) =
ln ǫt+1t − ln ǫt

1t
. (3)

With the above definition, we can readily compute SDLE using
the vectors defined by Equation (1). Specifically, we check
whether pairs of vectors (Vi,Vj) satisfy the following Inequality:

ǫi ≤ ‖Vi − Vj‖ ≤ ǫi + 1ǫi, i = 1, 2, 3, · · · , (4)

where ǫi and 1ǫi are prescribed small distances. Geometrically,
a pair of ǫi and 1ǫi defines a shell, with the former being the
diameter of the shell and the latter the thickness of the shell
(which reduces to a ball with radius 1ǫk when ǫk = 0; in a 2-
D plane employed here, a ball is a circle described by (xi − a)2 +
(xi+1−b)2 = r2, where (a, b) is the center of the circle, and r is the
radius). We then monitor the evolution of all such vector pairs
(Vi,Vj) within a shell and take the ensemble average over the

FIGURE 2 | A schematic showing two arbitrary trajectories in a general

high-dimensional space, with the distance between them at time 0, t, and

t+ δt being ǫ0, ǫt, and ǫt+δt, respectively.

indices i, j. Since we are most interested in exponential or power-
law functions, we assume that taking logarithm and averaging can
be exchanged, then Equation (3) can be written as

λ(ǫt) =
ln

〈

‖Vi+t+1t − Vj+t+1t‖
〉

− ln
〈

‖Vi+t − Vj+t‖
〉

1t

≈

〈

ln ‖Vi+t+1t − Vj+t+1t‖ − ln ‖Vi+t − Vj+t‖
〉

1t
(5)

where t and 1t are integers in units of the sampling time, the
angle brackets denote the average over indices i, j within a shell.

Note
〈

‖Vi+t+1t−Vj+t+1t‖
〉

and
〈

‖Vi+t−Vj+t‖
〉

amount to ǫt+1t

and ǫt , respectively. For EEG signals, the most relevant scaling
law for SDLE is

λ(ǫ) ∼ −γ ln ǫ, (6)

where γ determines the speed of loss of information.
To make the computation of SDLE readily repeated by

other researchers, and more importantly, to enable different
researchers to readily compare their results, we recommend to
use the size of the first shell by 1/

√
10 of the standard deviation of

the EEG signal, and successive shells shrink by a factor of 1/
√
2.

Altogether, we used four shells, and then took the average of the
four SDLE curves.

2.4. Random Forest Classifier (RF)
Random forest (RF) is a learning technique for classification
based on ensembles (Cutler et al., 2012). It is not affected by
overtraining, does not require normalization of the input data,
and has high accuracy. It uses many separate classification trees.
Each tree is obtained through a separate bootstrap sample from
the data set and classifies the data. A majority vote among the
trees provides the final result.
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The objective of the RF classifier used here is to classify
which of the two classes an EEG signal belongs to: normal or
epileptiform discharges. The inputs to the RF classifier are the
PSD and a feature extracted from the SDLE curve. Following
usual practice, we have randomly taken one-third of the total data
as testing data and two-thirds of the data for training the model
in this paper.

2.5. Support Vector Machine (SVM)
Support Vector Machine (SVM) is a popular machine learning
method for pattern classification (Cristianini and Shawe-Taylor,
2000). It has been widely used in biomedical applications. It aims
to find a hyperplane in an N-dimensional space (N, the number
of features) that maximizes the distance between two classes of
points. Hyperplanes are decision boundaries that help classify the
data points. Data points falling on either side of the hyperplane
can be attributed to the two different classes. The dimension
of the hyperplane depends upon the number of features. If the
number of input features is 2, then the hyperplane is just a line.
If the number of input features is 3, then the hyperplane is a
two-dimensional plane. When the number of features exceeds
3, it becomes difficult to imagine the shape of the hyperplane,
nevertheless, it can be readily computed.

2.6. Evaluation of Performance
The consistency between the diagnosis by the neurologists
and machine classification needs to be quantified. This can be
accomplished by computing the receiver operating characteristic
(ROC) curve and many statistics derived from the ROC curve.
A good understanding of these metrics can be based on the
confusion matrix, which is a table with two rows and two
columns that reports the number of false positives (FP), false
negatives (FN), true positives (TP), and true negatives (TN).
From them we can define three major metrics:

sensitivity =
TP

TP + FN
(7)

specificity =
TN

TN + FP
(8)

accuracy =
TP + TN

TP + FP + TN + FN
(9)

Note that the sensitivity is also called true positive rate (TPR) and
1− specificity is also called false positive rate (FPR).

The ROC is a plot of TPR vs. FPR using different threshold
values as a sweeping variable. The ROC is a good way to
characterize imbalanced data sets, as it does not suffer from
class imbalance. The area below the ROC is called area under
curve (AUC). Its value takes from 0 to 1. A value of AUC being
0.5 means the classification model has no predictive ability at
all. On the other hand, when the value of AUC reaches 1, the
prediction ability is 100%. This is equivalent to the ROC being
a unit step function.

3. RESULT

We mentioned that for each subject, to compute the SDLE
curves, we chose from the 19 electrodes 10 strongest EEG signals,

computed the SDLE curves from each EEG signal, then took
the average. For each EEG signal, we reconstructed a phase
space with m = 2, L = 1, then computed 4 ln ǫt vs. t curves
corresponding to 4 shells, with the diameter of the largest shell
being 1/

√
10 of the standard deviation of the EEG signal, and

successive shells shrinking by a factor of 1/
√
2. Eight typical

ln εt vs. t curves for epileptiform discharges and normal EEG
corresponding to these four shells were shown in Figure 3. For
simplicity, we call these error growth curves. Note the classic
algorithm of computing the Lyapunov exponent amounts to
assuming ǫt ∼ ǫ0e

λ1t , where λ1 is the largest positive Lyapunov
exponent, and estimating λ1 by (ln ǫt−ln ǫ0)/t (Wolf et al., 1985).
This clearly is inappropriate here since ln ǫt does not increase
with t linearly. In other words, small variations in EEG signals did
not really grow exponentially. This difficulty is readily overcome
with SDLE, since the latter is the local slopes of such error
growth curves, which are always well-defined. The SDLE curves
corresponding to the error growth curves of Figure 3were shown
in Figure 4. There are 4 SDLE curves here, corresponding to 4
shells chosen. The left-most curve corresponds to the smallest
shell, while the right-most curve corresponds to the largest shell
(they often are indistinguishable on larger scales). The most
salient feature of these SDLE curves is the scaling behavior
described by Equation (6).

It would be desirable to combine the 4 SDLE curves into
a single curve. The most rigorous way to estimate the SDLE
at a specific scale ǫ∗ is to first interpolate each SDLE curve
to that scale so that it has a value there, then average the 4
SDLE curves at ǫ∗ using the number of pairs of vectors in each
shell as the weights. For simplicity, one could also first align
the 4 SDLE curves with the left-most curve, and then simply
take the arithmetic average (in cases where the 4 curves are
indistinguishable, then this alignment operation is unnecessary).
To make the proposed method easier to reproduce, we adopted
this simplified approach here. For the purpose of distinguishing
epileptiform discharges from normal controls, we focused on
three SDLEs λ(ǫ1), λ(ǫ2), and λ(ǫ3) at three specific scales ǫ1, ǫ2,
and ǫ3, and their average, which was denoted as λ(ǫ). The three
scales ǫ1, ǫ2, and ǫ3 were specifically indicated in Figures 3A, 4A.
These scales correspond to the smallest, intermediate, and
boundary scales where the scaling law of Equation (6) holds.

To appreciate how well SDLEs can be used to distinguish
epileptiform discharges from normal controls, we formed scatter
plots with PSD and SDLEs, where PSD was obtained using
Fourier transform, as we explained earlier. The scatter plots with
PSD and λ(ǫ1), PSD and λ(ǫ2), and PSD and λ(ǫ) were shown
in Figures 5–7, respectively. We observe that in all these three
cases, the separation between all seven types of epileptiform
discharges and the normal control was excellent. Therefore, we
can expect that the classification accuracy will be very high.
Below, we specifically evaluate the performance of these three
algorithms, which use PSD and λ(ǫ1), PSD and λ(ǫ2), and PSD
and λ(ǫ), respectively.

To compute the classification accuracy, we employed RF and
SVM. We randomly took two-thirds of the data as the training
data and the remaining one-third of the total data as the testing
data. The class distribution of the samples in the training and
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FIGURE 3 | Typical ln εt vs. t curves for epileptiform discharges and normal EEG, where the four curves correspond to four different shells, with the diameter of the

largest shell being 1/
√
10 of the standard deviation of the EEG signal, and successive shells shrinking by a factor of 1/

√
2. (A–H) illustrates the different between the

seven types of epileptiform discharges (spike wave, spike and slow wave complex, sharp wave, sharp and slow wave complex, polyspike complex, polyspike and

slow wave complex, spike rhythm discharges) and normal EEG.

testing data set is summarized in Table 1. The test performance
of the classifier can be determined by computing the metrics
defined in section 2.6. The confusion matrix in Table 2 for
Algorithm 1, which used PSD and λ(ǫ1), showed that 1 out of 34
normal subjects was classified incorrectly by the two classification
algorithms RF and SVM as the epileptiform discharge, and 1 out
of 180 epileptiform discharges was classified incorrectly as the
normal subject by RF and SVM. Algorithm 2, which used PSD

and λ(ǫ2), was even better, which only misclassified 1 out of 180
epileptiform discharges as a normal subject by the RF, but without
any other errors (the classification accuracy remained the same
as that for Algorithm 1 when SVM is used). Algorithm 3, which
used PSD and λ(ǫ), was also excellent, which only misclassified
1 out of 34 normal subjects as an epileptiform discharge, but
without any other errors for both RF and SVM. These were
also summarized in Table 2. With these confusion matrices, we
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FIGURE 4 | Typical λ(ǫ) vs. ln ǫ curves for epileptiform discharges and normal EEG. The four curves represented in four different colors correspond to the error growth

curves shown in Figure 3. (A–H) illustrates the different between the seven types of epileptiform discharges (spike wave, spike and slow wave complex, sharp wave,

sharp and slow wave complex, polyspike complex, polyspike and slow wave complex, spike rhythm discharges) and normal EEG.

computed Sensitivity, Specificity, and Accuracy of these three
algorithms. They were listed in Table 3. We find that all the three
algorithms are excellent, with their accuracy all exceeding 99%,
for both classification schemes RF and SVM.

The amazing performance of these methods can be further
corroborated by the unit step function like ROC curves shown
in Figure 8. To facilitate comparison of our algorithms with that
of Anh-Dao et al. (2018), which achieved a high AUC of 0.945,
we also listed the AUC for the three algorithms proposed here in
Table 3. The AUC of the three algorithms proposed here ranges

from 0.9727 to 0.9980, and therefore, are all considerably better
than that of Anh-Dao et al. (2018).

4. CONCLUSION AND DISCUSSION

In this paper, we have proposed to employ SDLE for
distinguishing epileptiform discharges from normal EEGs, with
the aim of being able to use them conveniently in a clinical
setting. We found that SDLE computed from scalp EEG
signals was mainly characterized by a scaling law described by
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FIGURE 5 | Scatter plots with PSD and λ(e1), where (A–G), illustrates the different between the seven types of epileptiform discharges (spike wave, spike and slow

wave complex, sharp wave, sharp and slow wave complex, polyspike complex, polyspike and slow wave complex, spike rhythm discharges) and normal EEG. These

plots highly suggest the classification accuracy will be very high.

Equation (6). When the scale parameters were confined to where
this scaling law held, SDLE was very effective in distinguishing
epileptiform discharges from normal EEG. Using RF and SVM,
the proposed approach with different features from SDLE
was found to robustly achieve an accuracy exceeding 99% in
distinguishing epileptiform discharges from normal control ones.

What is the reason that the choice of concrete classification
schemes such as RF or SVM is not critical for the proposed
approach to have high accuracy in distinguishing epileptiform

discharges from normal control ones? It has to be because
of the excellent separations revealed by the scatter plots
shown in Figures 5–7. To better understand the explainability
of the proposed approach, we need to understand better
the meaning of the SDLE. The definition of SDLE is
equivalent to

ln ǫt = ln ǫ0 +
∫ t

0
λ(ǫt)dt. (10)
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FIGURE 6 | Scatter plots with PSD and λ(e2), where (A–G), illustrates the different between the seven types of epileptiform discharges (spike wave, spike and slow

wave complex, sharp wave, sharp and slow wave complex, polyspike complex, polyspike and slow wave complex, spike rhythm discharges) and normal EEG. These

plots highly suggest the classification accuracy will be very high.

Letting ǫTdb = 2ǫ0, we find the error doubling time Tdb given by

ln 2 =
∫ Tdb

0
λ(ǫt)dt. (11)

As the first approximation, we may consider 1/λ(ǫ) to
be proportional to the error doubling time (Gao et al.,
2009). This understanding motivates us to combine the two
parameters PSD and SDLE into a single parameter such as

PSD/λ(ǫ1). Since on average PSD is larger but λ(ǫ1) (as
well as λ(ǫ2) and λ(ǫ), as shown in Figures 5–7 is smaller
for epileptiform discharges than for normal control ones,
we can expect that this ratio will be on average larger for
epileptiform discharges. In fact, this ratio can be regarded as a
measure of the regularity or predictability of EEG signals, since
large PSD stems from synchronized firing of neurons, while small
SDLE highlights slow divergence and thus considerable regularity
and predictability.
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FIGURE 7 | Scatter plots with PSD and λ(ǫ), where (A–G), illustrates the different between the seven types of epileptiform discharges (spike wave, spike and slow

wave complex, sharp wave, sharp and slow wave complex, polyspike complex, polyspike and slow wave complex, spike rhythm discharges) and normal EEG. These

plots highly suggest the classification accuracy will be very high.

TABLE 1 | Class distribution of the samples in the training and testing data sets.

Classes Training set Testing set Total

Normal controls 66 34 100

Epileptiform discharges 360 180 540

Total 426 214 640

Now the question is whether such a single parameter can
effectively distinguish normal control ones from epileptiform
discharges. For this purpose, we have computed the probability

density distribution (PDF) for PSD/λ(ǫ1) of the epileptiform
discharges and the normal control ones. The results are shown
in Figure 9 as the blue and the red curves, respectively. The
overlapping of the blue and the red curves defines a right and
a left tail for the blue and the red curves; the corresponding
probabilities for them are 1.39 and 4.19%, as indicated in the
plot. They correspond to the probability that a normal control
one may be misclassified as an epileptiform discharge and vice
versa. As the classification accuracy with the scheme based on
a single parameter will not be higher than that based on two
parameters, we can readily understand that the probabilities of
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1.39 and 4.19% are the lower bounds that a normal control may
be misclassified as epileptiform discharges, and vice verse. This is
surely consistent with the probabilities shown inTable 3 (the case
for Algorithm 1). As these misclassification probabilities are very
low, we thus can be confident that the proposed approach will
always be very accurate in distinguishing epileptiform discharges

TABLE 2 | Confusion Matrix for the testing data of 180 epileptiform discharges

and 34 normal controls: Algorithms 1, 2, 3 use PSD and λ(ǫ1), PSD and λ(ǫ2),

PSD and λ(ǫ), respectively.

Classifier Algorithms Result Epileptiform

discharges

Healthy

controls

RF Algorithm 1 Epileptiform discharges 179 1

Healthy controls 1 33

Algorithm 2 Epileptiform discharges 179 1

Healthy controls 0 34

Algorithm 3 Epileptiform discharges 180 0

Healthy controls 1 33

SVM Algorithm 1 Epileptiform discharges 179 1

Healthy controls 1 33

Algorithm 2 Epileptiform discharges 179 1

Healthy controls 1 33

Algorithm 3 Epileptiform discharges 180 0

Healthy controls 1 33

TABLE 3 | Classification performance measures.

Classifier Algorithms Sensitivity (%) Specificity

(%)

Accuracy

(%)

AUC

RF Algorithm 1 99.44 97.06 99.07 0.9784

Algorithm 2 99.44 100.00 99.53 0.9980

Algorithm 3 100.00 97.06 99.53 0.9953

SVM Algorithm 1 99.44 97.06 99.07 0.9766

Algorithm 2 99.44 97.06 99.07 0.9727

Algorithm 3 100.00 97.06 99.53 0.9953

from normal control ones, no matter what classification schemes
are used for classification.

It is interesting to note that if we choose SDLE corresponding
to larger scales, such as ǫ3 indicated in Figures 3A, 4A, an
algorithm based on PSD and λ(ǫ3) would be slightly worse
than the three algorithms discussed here, but still slightly
better than that of Anh-Dao et al. (2018). This suggests
the importance of properly selecting the scale for analysis.
On the other end, if we use a three parameter method,
for example, using PSD, λ(ǫ), and ǫ∞ (which characterizes
the size of an attractor and amounts to the largest scale
in Figure 3), then the accuracy in distinguishing epileptiform
discharges from normal controls can be further improved to
100%. The reason is that ǫ∞ contains information independent
of PSD and SDLE. However, we had not further pursed
the issue of improving the accuracy here, since the high
accuracy achieved by the easily explainable algorithms presented
is already more than satisfying. Overall, our analysis highly

FIGURE 9 | The probability density distribution (PDF) for the ratio PSD/λ(ǫ1) of

the epileptiform discharges (red curve) and normal control ones (blue curve).

The overlapping of the blue and the red curves defines a right and left tail for

the blue and red curves, respectively; the corresponding probabilities for them

are 1.39 and 4.19%, as indicated in the plot.

FIGURE 8 | The ROC curves for the testing data: (A–C) are for algorithms using PSD and λ(ǫ1), PSD and λ(ǫ2), and PSD and λ(ǫ), respectively.
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suggests that the proposed approach is very promising to be
used clinically.

It is worth noting that the epileptiform discharges analyzed
here were provided by our collaborators at Guangxi Medical
University in two batches: in the first batch, which was about
2/3 of the data analyzed here, the accuracy was similar to that
reported here. Then another 1/3 of the data were given to us to
further examine whether the accuracy remained as high. It was
yes. Nevertheless, the data analyzed here were still quite limited.
It would be interesting and important to further validate the
proposed approaches with more data in different clinical sets.

Brain activities involve spatial-temporal coordinated
dynamics of numerous neurons in different regions of the brain,
i.e., involve numerous functional brain networks. To better
characterize the synergistic effects among the brain networks, it
is important to construct brain networks based on multi-channel
EEG signals. Closely related to this network issue is to infer
the localization of each type of epileptiform discharges, which
is of great clinical importance. These issues have not been
pursued in this work, which is obviously a serious limitation
of the current study. In the near future, we will examine
these issues systematically, especially from the viewpoint of
synthesizing network analysis with nonlinear analysis based on
complexity science.
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