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Extracellular vesicles (EVs) are heterogeneous nanoparticles actively released by cells
that comprise highly conserved and efficient systems of intercellular communication.
In recent years, numerous studies have proven that EVs play an important role in
the field of bone tissue engineering (BTE) due to several advantages, such as good
biosafety, stability and efficient delivery. However, the application of EVs therapies in
bone regeneration has not been widely used. One of the major challenges for the
application of EVs is the lack of sufficient scaffolds to load and control the release of
EVs. Thus, in this review, we describe the most advanced current strategies for delivering
EVs with various biomaterials for the use in bone regeneration, the role of EVs in bone
regeneration, the distribution of EVs mediated by biomaterials and common methods of
promoting EVs delivery efficacy with a focus on biomaterial properties.

Keywords: extracellular vesicle, tissue scaffold, bone regeneration, tissue engineering, regenerative medicine

INTRODUCTION

Extracellular vesicles (EVs) are membrane-encapsulated heterogeneous particles actively released
by cells that comprise highly conserved and efficient systems of intercellular communication.
EVs have progressed from the original conception as “platelet dust” to a powerful tool with
broad biological functions. EVs have become a widespread topic of interest in tissue homeostasis,
immune modulation, and metastasis of tumors (Wiklander et al., 2019). The distinct origins of
EVs biogenesis account for differences in the markers and contents in EVs, and the compositions
of EVs are a reflection of the physiological and pathological state of the host cells and change
depending on the stress state and microenvironment (Andaloussi et al., 2013). It has been reported
that mesenchymal stem cell (MSC)-derived EVs showed compatible regenerative potential when
compared with MSCs (Jong et al., 2014; Zhang et al., 2016; Crivelli et al., 2017; Presen et al.,
2019; Yang et al., 2020). Thus, as a potential alternative for tissue engineering, EVs are even more
attractive than stem cell transplantation due to several advantages, such as good biosafety, stability,
and efficient delivery (Eleuteri and Fierabracci, 2019). However, one of the major challenges of
the use of EVs therapies in bone tissue engineering (BTE) is that free EVs do not allow durable
retention at defect sites, since it is difficult for EVs to achieve sustained aggregation and controlled
release without proper scaffold support; in addition, they are not able to escape from clearance by
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the immune system, which led to the consideration of scaffolds
as carriers for loading EVs (Pinheiro et al., 2018; Zhang K.
et al., 2018). To date, there have been an increasing number of
studies of biomaterial-mediated EV therapies, in which diverse
scaffolds with modifications of their properties have shown great
potential for loading and controlling the release of EVs. Although
several recent reviews have focused on EV application in tissue
regeneration as well as the involved mechanisms of EVs (Chen
et al., 2017; Silva et al., 2017; Taverna et al., 2017; Keshtkar et al.,
2018; Li Q. et al., 2018; Chu et al., 2019), our review specifically
focuses on the controlled release of EVs loaded in scaffolds and
provides a discussion of the existing and potential modifications
of EVs delivery systems for BTE (Figure 1).

CURRENT STATE OF TISSUE
ENGINEERING-BASED BONE
REGENERATION

Trends in Bone Tissue Engineering
Repair of bone defects has historically been a challenge for both
patients and doctors. Over the past few decades, therapeutic
strategies for bone defect repair have been evolutionarily updated.
The traditional clinical treatments of bone deficiency mainly
utilize bone grafting. However, autograft treatment is limited
by bone volume, poor availability, donor site damage and other
complications (Deng et al., 2018; Zhang Y. et al., 2018), while
allografts frequently lead to an increase in the risks of disease
transmission, vascularization problems, and immunological
rejection (Einhorn and Gerstenfeld, 2015; Vanderstappen et al.,
2015). To overcome these problems, BTE, which involves
scaffolds, bioactive substances and cells/tissues with osteogenic
potential (Wong et al., 2010), has been adapted as a more feasible
and sustainable treatment approach for bone regeneration.

Cells employed in BTE play crucial roles in bone regeneration
but facing challenges in their use as well. Characterized by
their capacities for self-renewal and multipotent differentiation,
stem cells are recognized as a well-accepted option in the field
of cell-based therapy (Vizoso et al., 2017). Among all types
of stem cells, MSCs have attracted considerable attention for
their capacity to regulate cell and tissue homeostasis without
the risk of cellular immunological rejection or tumor formation,
and they have been broadly used in BTE (Le Blanc et al.,
2008; Liu et al., 2011; Akiyama et al., 2012; Gomzikova and
Rizvanov, 2017; Shi et al., 2017; Chen et al., 2018). However,
the inherent risks of the functional engraftment of tissues and
uncontrolled differentiation as well as obstacles such as poor
transport efficiency to target tissues remain ongoing challenges
for MSC therapies (Fischer et al., 2009; Liu Z. et al., 2018).

Extracellular Vesicles Represent an
Alternative to Stem Cells in Bone
Regeneration
Extracellular vesicles, which are a type of nanometer-scale
(30–2000 nm) heterogeneous particles, are vesicular particles
released into the extracellular space by various cell types and

act as protective carriers for DNA fragments, messenger RNAs
(mRNAs), proteins, and lipids (Malda et al., 2016; Geeurickx
et al., 2019). Characterized by excellent biocompatibility, long-
term stability, and low immunogenicity, EVs have attracted
extensive interest, especially in the field of bone tissue remodeling
(Liu M. et al., 2018).

According to their diameters, morphology, and biological
characteristics, EVs can be further classified into three broad
subpopulations, exosomes, microvesicles (MVs), and apoptotic
bodies (ABs) (Table 1; Andaloussi et al., 2013; Kalra et al.,
2016; Shao et al., 2018). Exosomes (40–120 nm) are cup-shaped
vesicles derived from the endolysosomal pathway and are formed
from multivesicular bodies when multivesicular bodies fuse with
the cytoplasmic membrane. MVs (50–1000 nm) are formed
through budding of the membrane and shuttle local cytosolic
biomolecules. Larger ABs (500–2000 nm) are released during the
cell apoptotic process and contain cell debris, organelles, and
nuclear particulates derived from karyorrhexis (Figure 2).

EVs can be derived from various types of MSCs. It has been
reported that EVs show features similar to those of their parent
MSCs, such as immunomodulatory and regenerative potential,
and the low number of limitations for cell-free therapies make
EVs an impressive option for tissue regeneration (Crivelli et al.,
2017; Lou et al., 2017; Erten and Arslan, 2018). EVs could
pass through capillaries more easily than MSCs, whose sizes
in the circulation are too large for passage, and a proportion
of EVs can even integrate into the perivascular niche (Toma
et al., 2009). The dose of infused MSCs could diminish quickly
post-transportation, whereas EVs remain at a relatively high
concentration (Phinney and Pittenger, 2017). Moreover, EVs
show significant osteogenic inductive potential, and EVs derived
from umbilical cord mesenchymal stem cells were reported to be
able to enhance the osteogenic capacity of pluripotent stem cell-
derived MSCs, bone marrow mesenchymal stem cells (BMMSCs),
human adipose mesenchymal stem cells, and other stem cells (Jia
et al., 2019; Presen et al., 2019; Xu et al., 2019). These results
have led to an increasing number of studies on EVs in bone
regeneration medicine.

APPLICATION OF EVS IN BTE

The Cargoes of EVs Facilitate Bone
Regeneration
EVs contain essential biomolecules, including lipids, membrane
proteins, and other cell-specific proteins as well as several
types of nucleic acids (Riazifar et al., 2017). The cargoes of
EVs related to bone formation can be divided into canonical
species and special species, as reviewed previously (Andaloussi
et al., 2013). Canonical species are involved in the biogenesis
or transport of vesicles, such as cytoskeletal proteins, specific
stress proteins, and enzymes. The special cargoes in bone-related
EVs, as a reflection of parent cell function, consist of specific
osteogenetic proteins and non-collagenous matrix proteins, such
as bone morphogenetic protein (BMP), alkaline phosphatase
(ALP), eukaryotic initiation factor 2 (eIF2), osteopontin (OPN),
osteocalcin (OCN), and osteonectin (ON) (Xiao et al., 2007).
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FIGURE 1 | General scheme of scaffold-delivered EVs therapies. The innovative bone regeneration strategy is based on the osteogenic effect of EVs and scaffolds.
Extracellular vesicles (EVs) are grouped into three categories (exosome, microvesicle, and apoptotic body), as indicated. The scaffolds described in existing studies
consist of ceramic, polymer, and composite biomaterials. Pore parameters (such as porosity and pore size), electrostatic interaction, and bioactive adhesion are
currently the main parameters that are modified to improve delivery efficiency.

TABLE 1 | Characteristics of three major subtypes of EVs.

EV Size Shape Marker Origin

Exosome 40–120 nm Round Tetraspanins, Alix, TSG101, PDCD6IP, flotillin, MFGE8 Endolysosomal pathway

Microvesicle 50–1000 nm Irregular Integrins, MMPs, selectins, CD40 Plasma membrane

Apoptotic body 500–2000 nm Heterogeneous Phosphatidylserine, genomic DNA Plasma membrane, endoplasmic reticulum

EVs also contain cargoes related to osteoclast differentiation,
such as receptor activator of nuclear factor kappa-B (RANK)
and receptor activator of nuclear factor kappa-B ligand (RANKL)
(Deng et al., 2015; Huynh et al., 2016; Li D. et al., 2016).
MicroRNAs (miRNAs) are another essential component of
EVs, and miRNAs contributing to osteogenic capability include
miR−196a, miR−27a, miR−206, miR-24, miR-143-3p, miR-10b-
5p, miR-199b, and miR-218 (Liu M. et al., 2018). Moreover,
mRNAs, as another essential component transported in EVs,
are also involved in transcription (BDP1, TAF7L, and SOX11)
and kinase activity (LPAR1 and ZEB2) (Qin et al., 2016, 2017;
Morhayim et al., 2017; Lv et al., 2019).

EV-Mediated Bone Regeneration
EVs are involved in the bone repair and regeneration process
(Stroncek and Reichert, 2008), including the regulation
of immune environments, enhancement of angiogenesis,
differentiation of osteoblasts and osteoclasts, and promotion of
bone mineralization.

EVs function as immunomodulatory messengers to mediate
immune stimulation or suppression (Silva et al., 2017).
EVs derived from MSCs (MSC-EVs) deliver several immune
modulators, including programmed death ligand-1 (PDL-1),
galectin-1, and TGF-β, which were reported to exert tolerogenic
effects similar to those of MSCs (Mokarizadeh et al., 2012).
Furthermore, various MSC-EVs could differentially regulate the
expression of CD45RA on CD4+ or CD8+ T cells, resulting in
a shift in the frequency of T cell subsets (Kordelas et al., 2019).
M2 macrophages, which have an anti-inflammatory phenotype,

are responsible for immune regulation and tissue remodeling.
Studies have been performed to certify that MSC-EVs can
polarize monocytes toward the M2 phenotype (Zhang et al., 2014;
Chu et al., 2017).

EVs could also improve bone regeneration by enhancing
angiogenesis. A recent study showed that UCMSC-derived
exosomes accelerated angiogenesis and bone repair by promoting
endothelial cell proliferation, migration and tube formation
(Zhang et al., 2019). Exosomes secreted from iPSC-MSCs were
proven to play a role in critical-sized bone defect repair in
osteoporotic rats, and osteonecrosis prevention in the femoral
head via the enhancement of angiogenesis and osteogenesis was
also observed (Zhang et al., 2016; Liu X. et al., 2017a).

Studies revealed that EVs were able to promote the
differentiation of osteoclasts, osteoblasts and BMMSCs, helping
to maintain the balance of bone metabolism (Deng et al., 2015;
Liu J. et al., 2017; Xie Y. et al., 2017). As was observed previously,
bone remodeling was found to be performed continuously by
osteoclasts via mineralized bone resorption and by osteoblasts
via bone matrix synthesis. Both osteoblasts and osteoclasts can
regulate bone homeostasis through paracrine signaling mediated
by EVs (Ge et al., 2015; Li Q. et al., 2018). It was also proven that
miRNAs of osteoclast-derived exosomes exerted inhibitory effects
on bone formation (Li D. et al., 2016). Moreover, EV-associated
senescence was shown to disrupt the balance of bone metabolism
(Davis et al., 2017; Park et al., 2017).

Additionally, bone mineralization is also an essential process
in bone generation, during which a specialized type of EVs
known as the matrix vesicles that are present in the growth
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FIGURE 2 | Schematic representation of extracellular vesicles (EVs). EVs are released from cells through outward budding of the plasma membrane (microvesicle
pathway), exocytosis (exosome pathway), or apoptosis by dying cells (apoptotic body pathway). Adapted from Kalra et al. (2016).

plate of developing bone has been shown to play an important
role and has attracted increasing attention. Matrix vesicles are
considered the initial site of the mineral formation of the newly
formed bone matrix via hydroxyapatite deposition (Golub, 2009).
Calcium and phosphate are transported to initiate formation as
well as accumulation of hydroxyapatite crystals in matrix vesicles,
and then these crystals are released into the extravesicular
fluid to guide calcification following collagen calcification (Chu
et al., 2019). In addition, osteoblast-derived EVs were reported
to mediate mineralization dynamically along with alterations
in vesicle morphology and content, leading to developmental
changes during matrix organization (Davies et al., 2019).

In brief, although the underlying mechanisms of the
osteogenic effects of EVs remain unclear, EVs have been
shown to play a role in cellular signaling and the molecular
transport of bone by regulating the immune microenvironment,
promoting angiogenesis, balancing bone metabolism, and
participating in mineralization. Furthermore, their protective
effects in hypoxic and ischemic conditions (Figure 3;
Hugel et al., 2005; Liu X. et al., 2017a; Jin et al., 2019), and

endogenous MSC recruitment in bone regeneration cannot be
ignored (Furuta et al., 2016).

The Challenges of EVs Therapy
The abilities of EVs to carry and protect various encapsulated
molecules make them a promising option for therapeutic
applications. Currently, EVs therapy attempts have included
the treatment of cancer, neurodegenerative disorders, and
cardiovascular disease and tissue repair and regeneration.
However, in EVs therapy, species specificity, immunogenicity and
unpredictable effects have contributed to difficulties not only in
terms of reproducibility, stability and purity but also safety and
toxicity testing.

For either local or systemic delivery, one major obstacle for
the usage of EVs is that naked EVs fail to attain a suitable
concentration for therapeutic needs. Off-target effects, short-
term retention in the tissue site, and accumulation in non-
targeted organs are also inevitable (Imai et al., 2015; Gualerzi
et al., 2017; Mollaei et al., 2017). Thus, increased doses of EVs
have been considered to resist the weakening effects. However,
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FIGURE 3 | Illustration of bone-related EVs. EVs play roles in communication between cells related to bone formation. Various miRNAs and proteins in EVs derived
from osteoblasts, osteoclasts, osteocytes, monocytes, macrophages and dendritic cells are involved in enhancing or inhibiting osteogenic activity. Adapted with
permission from Jin et al. (2019).

syngeneic exosome injection caused the rapid asphyxiation of
mice due to the overaccumulation of EVs in the lungs despite
all the other positive effects (Smyth et al., 2015). Furthermore,
studies with the aim of facilitating EVs tropism provide another
possible solution, but it also remains a challenge to determine
the surface proteins responsible for the binding of ligands to
different targets. In order to overcome these challenges, a range
of sufficient scaffolds for loading, protecting, and controlling the
release of EVs are in needed.

APPLICATIONS OF BIOMATERIAL-EV
DELIVERY SYSTEMS IN BTE

Since naked EVs are vulnerable when transplanted in vivo and
difficult to target to bone defect sites, the approach of loading
EVs with biomaterial systems possesses tremendous advantages,
as shown in the schematic illustration in Figure 4. In fact,
EVs delivered by biomaterials are the promising tools for bone
regeneration. They could be adhered by gels, bound actively to
molecular linkers or attached to the surfaces of biomaterials to
permit the controlled release of EVs (Silva et al., 2017).

Several studies have indicated that enhanced bone
regeneration was achieved by scaffold-mediated EVs therapies in
bone defect models by using bioceramic, polymer, and composite
scaffolds (Table 2; Qin et al., 2016; Zhang et al., 2016, 2019;

Li W. et al., 2018; Chen et al., 2019; Wu et al., 2019; Yang
et al., 2020). The exosome/β-TCP combination systems were
embedded into the defect in a rat critical-sized calvarial bone
defect model, leading to better osteogenesis ability than the
use of β-TCP scaffolds alone (Figure 5; Zhang et al., 2016),
and Wu et al. (2019) also achieved similar results with an
exosome/β-TCP system in alveolar bone regeneration. In
another study, Li W. et al. (2018) achieved the accelerated
restoration of calvarial bone defects in a mouse model by
integrating exosomes derived from human adipose-derived stem
cells (hASCs) with polydopamine (PDA)-coated poly (lactic-
coglycolic acid)/(PLGA) scaffolds, which resulted in timed
release and enhanced bioactivities. This in vitro cell-free system
showed that stimulated osteoinductive effects were favorable in
improving the proliferation, migration and homing of MSCs
in new bone. Qin et al. (2016) constructed an EVs delivery
system with a commercially available hydrogel (HyStem-HP)
to accelerate bone regeneration in a rat critical-sized calvarial
bone defect model. BMMSC-EVs were demonstrated to enter
osteoblasts and deliver osteogenic miRNAs by endocytosis and
thus to modulate osteogenesis-related gene marker expression
and hence differentiation in vitro, and hydrogels loaded with
EVs enhanced bone formation in vivo, where miR-196 might
be involved in bone regeneration. It is interesting to note that
the role of osteogenesis-relevant molecules has been determined
to improve the efficacy of EVs therapies. Chen et al. (2019)
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FIGURE 4 | Schematic illustration of the EV/scaffold study design for bone defect repair. An injectable HAP-embedded in situ cross-linked HA-ALG hydrogel system
was synthesized to facilitate controlled delivery and mechanical support of EVs. The exosomes were isolated from hUCMSCs and then incorporated into the
HA-ALG hydrogel scaffold system in a rat model of calvarial bone defects in vivo to reveal bone regeneration and angiogenesis effects. Reproduced with permission
from Yang et al. (2020). hUCMSCs, human umbilical cord mesenchymal stem cells; HAP, hydroxyapatite; HA-ALG, hyaluronic acid-alginate; HA-ADH, hyaluronic
acid- adipic dihydrazide; ALG-CHO, aldehyde-modified alginate; SD rats, Sprague Dawley rats.

used commercial hydrogels (Glycosan Biosystems) embedded
with hAD-MSC-derived EVs that overexpressed miR-375
to evaluate the effect on bone regeneration. The engineered
hydrogel displayed a slow and sustained exosome release
process, and in vivo studies showed that exosomes (miR-
375) loaded with hydrogel promoted bone regeneration in
calvarial defects in a rat model. In the study carried out by
Zhang et al. (2019), effects on angiogenesis and bone repair
were observed in a rat model of femoral fracture by applying
hydrogel (HyStem-HP) incorporating uMSC-derived exosomes.
The positive effects of uMSC-derived exosomes on enhancing
bone fracture repair may be attributed to the upregulation
of HIF-1α and the control of VEGF gene expression during
angiogenesis. However, the effect of exosomes on enhancing
osteoblast differentiation was not observed in a subsequent
in vitro study. Qayoom et al. (2019) also proposed the role
of EVs in a femur neck canal defect model in osteoporotic
rats as a biological carrier facilitating bone formation and
controlling the dosage of BMP. They used nano cements to
deliver BMPs, exosomes, and bisphosphonates, which improved
biomechanical strength in the defect. Recently, Yang et al. (2020)
isolated hUCMSC-derived exosomes and fabricated an injectable
HAP-incorporating in situ cross-linked hyaluronic acid-alginate
(HA-ALG) hydrogel scaffold to realize the controlled delivery
of exosomes as well as the physical support of defects. The
release rate of exosomes from the system was approximately
71.2%, and the integration of exosomes and the hydrogel
also resulted in a bone reparative effect in a rat calvarial
bone defect model.

Additionally, a demineralized bone matrix (DBM) with a
certain 3-dimensional (3D) structure with specific osteogenic

induction ability and tissue biocompatibility was fabricated.
Xie H. et al. (2017) functionalized DBM scaffolds with
BMMSC-derived MVs and demonstrated that increased
angiogenic and osteogenic effects were observed in a model of
ectopic subcutaneous bone formation in nude mice, whereas
decalcification could also cause a deficiency in mechanical
strength and stress (Marcos-Campos et al., 2012; Li et al.,
2013). Therefore, to achieve improved osteogenic properties,
modifications of EV/biomaterial osteogenic systems need to be
further explored.

METHODS FOR THE MODIFICATION OF
BIOMATERIALS TO FACILITATE EVS
APPLICATIONS IN BTE

Current modifications to improve the osteogenic effect of
EV/scaffold treatment can be broadly divided into two categories.
One category focuses on the process of loading EVs into
scaffolds to achieve efficient transportation to defect sites and
controlled release of EVs. The other category involves the
interaction between EV/scaffold and the microenvironment,
which would affect signal regulation and the proliferation and
differentiation of stem cells to repair bone injuries. It has been
widely accepted that the biological behaviors of cells as well as
those of tissues are associated with the design and properties
of biomaterials (Li et al., 2017). More importantly, some
functions of biomaterials are influenced by biological responses,
and the characteristics of biomaterials themselves would offer
biological cues to modulate cell behaviors and ultimately increase
tissue regeneration. Herein, we summarize modification methods
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TABLE 2 | Summary of the scaffold-mediated EVs delivery system for bone regeneration.

Source/type of EVs Carrier scaffolds Experiment procedure Findings References

EVs derived from
human BMMSCs

Hydrogel • In vitro
• In vivo: rat calvarial bone

defect

• BMSC-derived EVs regulate differentiation of
osteoblast and expression of osteogenic genes
in vitro.
• Bone formation is enhanced in vivo.
• Exogenous EVs enter the Golgi apparatus.

Qin et al., 2016

Exosomes derived from
human iPSC-MSCs

β-TCP scaffold • In vitro
• In vivo: rat calvarial bone

defect

• The exosomes internalized by hBMSCs could
profoundly enhance the proliferation, migration,
and osteogenic differentiation of hBMSCs.
• Osteogenesis of the exosomes + β-TCP

combination scaffold was promoted in vivo as
compared to β-TCP alone.

Zhang et al., 2016

MVs derived from rat
BMMSCs

Alginate-PCL scaffold • In vitro
• In vivo: a subcutaneous

bone formation model in
nude mice

• MSC-MVs enhance capillary network formation
of HUVECs in vitro.
• MVs+ alginate-PCL scaffold increased

vascularization and tissue-engineered bone
regeneration in vivo.

Xie H. et al., 2017

Exosomes derived from
hASCs

PLGA/pDA scaffold • In vitro
• In vivo: Hind limb ischemia

in murine model

• Exosomes could promote osteogenesis,
proliferation, and migration effects of hBMSCs.
• Exosomes were released from PLGA/pDA

scaffold under control.
• Osteoinductive effects and migration and

homing of MSCs were enhanced in vivo.

Li W. et al., 2018

Exosomes derived from
human BMMSCs

Calcium sulfate/
nanohydroxyapatite-based
NC

• In vivo:
• osteoporosis in femur neck

canal defect model

• NC work as a carrier to deliver drugs and other
bioactive molecules.
• A trend of promoted mechanical properties in

the NC + BMP + ZA group was shown.
• Exosomes enhance the bone formation in the

absence of BMP.

Qayoom et al., 2019

Exosomes derived from
hAD-MSCs

PLA-based
CaSi-DCPD-doped scaffold

• In vitro • The PLA-based scaffolds could adhere, keep
and release exosomes.
• The osteogenic properties of hAD-MSCs were

promoted by the EV-enriched scaffold.
• Mineral-doped scaffolds stimulated

osteogenesis of hAD-MSCs, and showed a
potential in regenerative bone healing.

Gandolfi et al., 2020

Exosomes derived from
human MSCs

3D collagen hydrogels • In vitro
• In vivo: athymic nude mice

• Exosomes derived from osteogenic hMSCs
trigger lineage specific differentiation of naive
hMSCs both in vitro and in vivo.
• Exosomes can bind to ECM proteins like type I

collagen and fibronectin.

Narayanan et al., 2016

Exosomes derived from
hPDLSCs

Collagen membrane
(Evolution), PEI-modified

• In vitro
• In vivo: rat calvarial bone

defect

PEI-EVs promoted osseointegration activity by
enhancing mineralization and vascular network.
• The system could induce bone regeneration.

Diomede et al., 2018a

Exosomes derived from
human gingival MSCs

3D-PLA scaffold,
PEI-modified

• In vitro
• In vivo: rat calvarial bone

defect

PEI-EVs play a role in activating local bone
induction.
• The system facilitates bone repair by enhancing

mineralization and vascularization.

Diomede et al., 2018b

β-TCP, tricalcium phosphate; PCL, alginate-polycaprolactone; MVs, microvesicles; HUVECs, human umbilical vein endothelial cells; hASCs, human adipose-derived stem
cells; PLGA/pDA, polydopamine-coating poly (lactic-co-glycolic acid); NC, nanocement; ZA, zoledronate; BMP, bone morphogenetic protein; hAD-MSCs, human adipose
mesenchymal stem cells; PLA, polylactic acid; CaSi, calcium silicate; DCPD, dicalcium phosphate dihydrate; hPDLSCs, human periodontal-ligament stem cells; PEI,
polyethylenimine.

described in recent studies to facilitate EVs delivery efficiency in
BTE in terms of three main aspects.

Pore Parameters
In EV-mediated cell-free therapy, appropriate pore parameters
are necessary to sustain the controlled release ability of scaffolds.
The pore sizes are relevant to cell migration and proliferation,
and the increase in porosity leads to enhanced permeability as

well as the loss of mechanical properties. Although there is still no
consensus on the specific optimal values of pore size or porosity,
a higher porosity (more than 90%) with a range of pore sizes
(10–200 µm) is recommended to maintain proper mechanical
properties (Boyan et al., 2002; Perez and Mestres, 2016). Liu
X. et al. (2017b) reported the use of EVs encapsulated in a
photoinduced imine crosslinking hydrogel glue and tested the
exosome retention ability of the exosome-complexed hydrogel
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FIGURE 5 | The enhanced osteogenic effect of exosome/β-TCP scaffolds. Exosomes derived from human-induced pluripotent stem cell-derived mesenchymal stem
cells were loaded with β-TCP, and the osteogenesis effect in a rat model of critical-sized calvarial bone defects was evaluated at 8 weeks post-operation. (A) The
different effects on repair of β-TCP alone or different concentrations of exosomes on three-dimensional reconstruction and sagittal images. (B,C) BV/TV and BMD
differed between groups. (D) The formation and mineralization effect of new bone at 8 weeks post-operation was identified via fluorochrome-labeling
histomorphometrical analysis. (E) Proportion of the fluorochrome area for all groups. The exosome/β-TCP system was shown to facilitate bone repair more
remarkably than pure β-TCP scaffolds. Reproduced from Zhang et al. (2016). β-TCP, tricalcium phosphate; Exo, exosome; BV/TV, the ratio of bone volume to tissue
volume; BMD, the bone mineral density.

tissue patch (EHG). Based on classical rubber theory, the pore
size of the hydrogel was theoretically 25 nm, which was smaller
than that of exosomes, allowing the majority of the exosomes
to be retained inside the scaffold. This indicated that EHG
could effectively retain exosomes inside the hydrogel, and over
1 × 1010 mL−1 of exosomes per day were released, resulting in
the acceleration of cartilage defect repair (Liu X. et al., 2017b).

Another study by Gandolfi et al. (2020) produced mineral-doped
PLA-based scaffolds enriched with EVs to evaluate the osteogenic
effects on hAD-MSCs. They showed a dynamic change after
depositing exosomes on the surface of the scaffold; as the PLA
matrix partially degraded, the formation of a calcium phosphate
layer partially filled the pores and led to a decrease in porosity,
which influenced the biological behavior of the hAD-MSCs.
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Electrostatic Interaction
Another attractive aspect of modifying EVs delivery systems is
based on electrostatic interactions. The charge and potential of
EVs membranes could affect their interactions with biomaterials
(Gerlach and Griffin, 2016). Studies have shown that the
average potential of exosomes is approximately 40 mV, and
the negatively charged phospholipid membranes of EVs are
responsible for their negatively charged status (Sokolova et al.,
2011; Charoenviriyakul et al., 2017). In addition, the charged
residues carried by the EVs glycocalyx also influence the
interaction of EVs with biomaterials through attraction or
repulsion (Gomes et al., 2015; Gerlach and Griffin, 2016). In
applications in bone regeneration, polyethylenimine (PEI), as a
positively charged biocompatible polymer with low toxicity and
high biological activity, has been exploited in the engineering
of negatively charged EVs (Werth et al., 2006). Diomede et al.
(2018b) employed PEI to enhance the adhesion of EVs onto
a 3D PLA biomaterial to regenerate bone defects induced in
rat calvaria. The results suggested that the number of EVs
inside the cells of the PEI-EV group was higher than that of
the non-engineered-EV group, which could be ascribed to the
use of cationic PEI to favor internalization via proteoglycan
binding. The team also designed a biocompatible osteogenesis
system composed of collagen membranes (Evolution [Evo])
and hPDLSCs enriched with PEI-EVs, and the similar results
indicated that PEI-EVs were involved in activating osteogenesis
(Diomede et al., 2018a).

Bioactive Adhesion
Bioactive adhesion between EVs and scaffolds is an important
factor in achieving ideal bone regeneration. MSC-EVs were
verified to express several adhesion molecules found in MSCs,
including CD44, CD29 (β1-integrin), CD73, and α4- and α5-
integrins (Bruno et al., 2009). Narayanan et al. (2016) found
that MSC-EVs could combine with extracellular matrix proteins
such as type I collagen and fibronectin, which are the two main
components of the ECM. Therefore, fibronectin-coated DBM
scaffolds were generated before loading EVs to enhance the
adherence of EVs to the biomaterials. EVs were shown to remain
adherent for a longer time and to be released evenly after several
washes with phosphate-buffered saline, and the proangiogenic
and pro-osteogenesis activities of the EV-modified scaffolds were
also verified (Xie H. et al., 2017). Likewise, PDAs employed
in tissue engineering have the specific ability to produce high
adherence in anchoring substances onto substrates (Ho and
Ding, 2014). Li W. et al. (2018) proved that the use of a cell-
free osteogenic system with PLGA/pDA scaffolds to immobilize
exosomes was effective in promoting the migration and homing
of hASCs and osteogenic induction in vivo.

LIMITATIONS AND FUTURE
PERSPECTIVES

EVs exert beneficial effects on bone regeneration, facilitating
osteogenesis and enhancing mineralization as well as

vascularization. As an emerging tool for cell-free therapies,
EVs have attracted great attention and have been tested in
numerous in vivo and in vitro studies. However, most clinical
trials of EVs have been focused on the treatment of cancer and
nervous system diseases (Chung et al., 2020), while few trials of
EVs in bone regeneration have been performed. To date, only
one clinical study (ClinicalTrials.gov, Identifier: NCT04281901)
of bone disease involving EVs has been performed, in which
extracellular vesicle-rich plasma (PVRP) was compared with
platelet-rich plasma (PRP) for the treatment of chronically
inflamed postsurgical temporal bone cavities. One of the reasons
that EV-involved BTE products are still far from ideal for use
in clinical applications and industrial production is that there
is currently no consensus on the best method of enrichment
and purification, and the effective concentration of EVs among
current studies in the field of regeneration have not been
clarified. Furthermore, as various biomaterials have been created,
the modification of scaffold design and production techniques
have tremendously boosted the efficiency of bone regeneration.
Therefore, EVs loaded in bioscaffolds have the considerable
potential to bypass a critical bottleneck of traditional therapies
for bone defects. Some potential evidence from fields besides
bone regeneration indicates that it is possible to control EVs
to be delivered by scaffolds via pH-response release systems
based on the Schiff base reaction (Cardoso et al., 2015; Wang
et al., 2019), the use of an electrospun nanofibrous reservoir
layer with hydrophobic properties and ionic interactions based
on the electrospinning technique (Mašek et al., 2017), and
aquaporin-mediated EVs deformability in water permeation
(Fuhrmann, 2020; Lenzini et al., 2020). Since the effects of
scaffolds loaded with EVs are influenced not only by the
active components and adhesion but also the degradation
rate, stress distribution and mechanical properties of scaffolds,
the standardization of manufacturing processes as well as the
application of regulations remain to be clarified. In conclusion,
a better understanding of the promise of EVs therapy will be
obtained when a body of evidence from preclinical and clinical
studies of biomaterial-mediated EVs therapies is carefully taken
into account.
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