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Coenzyme B12-dependent glycerol dehydratase (GDHt) catalyzes the dehydration
reaction of glycerol in the presence of adenosylcobalamin to yield 3-hydroxypropanal
(3-HPA), which can be converted biologically to versatile platform chemicals such as
1,3-propanediol and 3-hydroxypropionic acid. Owing to the increased demand for
biofuels, developing biological processes based on glycerol, which is a byproduct of
biodiesel production, has attracted considerable attention recently. In this review, we will
provide updates on the current understanding of the catalytic mechanism and structure
of coenzyme B12-dependent GDHt, and then summarize the results of engineering
attempts, with perspectives on future directions in its engineering.
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INTRODUCTION

Glycerol dehydratase (GDHt; EC 4.2.1.30) catalyzes the dehydration reaction of glycerol yielding
3-hydroxypropanal (3-HPA) that can be biologically converted into 1,3-propanediol (1,3-PD) or
3-hydroxypropionic acid (3-HP) by additionally expressing 1,3-propanediol dehydrogenase or
aldehyde dehydrogenase, respectively, in microorganisms (Pawelkiewicz, 1965; Schneider et al.,
1970; Stroinski et al., 1974; Toraya, 2000a; Huang et al., 2002; Liu et al., 2016; Park et al., 2017).
1,3-PD is used as a monomer for synthesizing polyethers, polyurethanes, and polyesters (Koutinas
et al., 2014; Garlapati et al., 2016; Liu et al., 2016). 3-HP is a versatile platform chemical that can be
converted into acrylic acid, acrylonitrile, and malonic acid (Valdehuesa et al., 2013; Chen and Liu,
2016; Kalantari et al., 2017). In addition, 3-HPA has an inhibitory effect on the growth of a wide
variety of bacteria and therefore, prevents food spoilage, making it a suitable food preservative
(Vollenweider and Lacroix, 2004). In particular, owing to the increase in the demand for biofuels,
biological processes based on glycerol, a byproduct of biodiesel production, have been a recent
focus of research (Da Silva et al., 2009; Ganesh et al., 2012; Cremonez et al., 2015; Ferrero et al.,
2015). Besides glycerol, GDHt is also involved in the dehydration reaction of 1,2-propanediol to
produce propanal, and the dehydration of 2,3-butanediol to yield butanone (Toraya et al., 1976;
Chen et al., 2015).
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Glycerol dehydratase are categorized on the basis of
their reliance on coenzyme B12 (adenosylcobalamin (AdoCbl):
coenzyme B12-independent GDHt and coenzyme B12-dependent
GDHt (Yamanishi et al., 2002; Liao et al., 2003a; O’Brien et al.,
2004). They share low sequence homology and are structurally
very distinct despite the surprisingly similar architecture of the
substrate-binding pockets (Liu et al., 2010; Martins-Pinheiro
et al., 2016). Only coenzyme B12-independent GDHt from
Clostridium butyricum has been experimentally characterized
(O’Brien et al., 2004). The coenzyme B12-independent GDHt
is extremely sensitive to oxygen and requires strict anaerobic
conditions for its activity (Raynaud et al., 2003). However, most
industrial microorganisms are cultured in the presence of oxygen,
and the enzyme has rarely been used for the production of
biochemicals so far. On the other hand, coenzyme B12-dependent
GDHts are relatively resistant to aerobic conditions (Jiang et al.,
2016), and have been utilized for bioconversion of glycerol (Liu
et al., 2016). However, the complex cofactor, coenzyme B12, often
undergoes chemical modifications during the reaction, resulting
in catalytically inactive forms, and needs to be added in media
for maintaining the enzyme activity. The dehydration reaction
catalyzed by coenzyme B12-dependent GDHt has been reported
as the rate-limiting step for the bioconversion of glycerol into
1,3-PD or 3-HP (Ahrens et al., 1998; Yuanyuan et al., 2004).

Coenzyme B12-dependent GDHt and its applications have
previously been reviewed in several papers (Jiang et al.,
2016; Liu et al., 2016; Jers et al., 2019). With increasing
interest in the enzyme, studies on its biochemical features
and engineering of the biocatalyst have recently been reported.
In this review, we will provide updates on the current
understanding of the structure and catalytic mechanism of
B12-dependent GDHt, and in particular, describe its catalytic
mechanism obtained through computational studies. To date,
only limited attempts have been made to engineer coenzyme B12-
dependent GDHt probably because of its multimeric structure
and complicated reaction mechanism involving radicals. We
summarize the findings from site-directed mutagenesis studies as
well as recently reported engineering attempts. We also provide
perspectives on the future directions in engineering coenzyme
B12-dependent GDHt.

DEHYDRATION REACTION CATALYZED
BY COENZYME B12-DEPENDENT GDHT

The overall reaction of GDHt is shown in Figure 1. The binding
of a substrate such as glycerol induces conformational changes
in the enzyme, which lengthens the bond between the Co atom
and the adenosyl moiety of AdoCbl from 1.95–2.2 Å to 2.5 Å,
followed by breakage of the C-Co bond (Toraya et al., 1977;
Mancia et al., 1996; Shibata et al., 1999; Liao et al., 2003a).
The adenosyl radical rotates alongside its glycosidic bond and
abstracts the hydrogen atom from the substrate, resulting in
the formation of a substrate radical (Frey, 1990, 2001; Mancia
and Evans, 1998; Frey and Reed, 2000). Next, the OH group
in the second carbon migrates to the terminal carbon, and a
new radical is formed at the second carbon. The potassium ion

present at the active site of the enzyme plays an important role
in the OH migration during the catalysis (Shibata et al., 1999;
Kamachi et al., 2007). The resulting 1,1-diol is unstable and is
readily converted into an aldehyde group by releasing H2O. Next,
the hydrogen atom is abstracted back to the substrate radical
from 5′-deoxyadenosine, resulting in an aldehyde product and
adenosyl radical.

THE STRUCTURE OF COENZYME
B12-DEPENDENT GDHT

The crystal structures of the coenzyme B12-dependent GDHt
from Klebsiella pneumoniae (KpGDHt) in the presence or
absence of a substrate have been reported (Yamanishi et al., 2002;
Liao et al., 2003a). KpGDHt exists as a dimer of αβγ-heterotrimer,
(αβγ)2, and the dimerization is induced by the interaction of two
α-subunits (Figure 2A). The β- and γ-subunits are separately
bound to the α-subunit. AdoCbl resides between the α- and
β-subunits of each αβγ -heterotrimer.

The α-subunit possesses the triosephosphate isomerase barrel
(TIM) structure, where the substrate and the essential cofactor
K+ are bound (Figure 2B). In the absence of a substrate,
the potassium ion is hexacoordinated with amino acids at
the active site and a water molecule (Liao et al., 2003a). The
interaction is specific, and the K+ ion is unlikely to be exchanged
with other monovalent cations such as NH+4 (Shibata et al.,
1999). Binding the substrate breaks the bond with water, and
the K+ ion is instead heptacoordinated with two OH groups
of the substrate and five oxygen atoms from residues at the
active site (Gluα 171, Glnα 142, Gluα 222, Glnα 297, and Serα
363) (Figure 2C; Yamanishi et al., 2002). Structural changes
take place during the dissociation of the product from the
enzyme, which leads to the positioning of the cofactor in its
apo conformation (Yamanishi et al., 2002; Liao et al., 2003a;
Toraya, 2003, 2014).

A crack formed between the 10th and 11th β strands of the α-
subunit has been assumed to be the path of substrate entry to the
active site (Figure 3; Shibata et al., 1999). Three Asn and three
Gln residues located around the crack possibly facilitate the entry
of neutral hydrophilic compounds into the active site. The β-
subunit forms the binding pocket for AdoCbl with the α-subunit,
and the Rossmann fold-like structure in the central part of the
β-subunit plays an important role in the interaction with the
lower axial ligand of cobalamin (Liu et al., 2016). The γ-subunit is
located far from the active site of the α-subunit and AdoCbl, and
its role has been assumed to support the barrel structure of the
α-subunit and the overall structure of coenzyme B12-dependent
GDHt (Toraya, 2000a).

Cobalamin derivatives are one of the most complex organic
cofactors in nature. AdoCbl, the active form of cobalamin for
coenzyme B12-dependent GDHt, resides in the pocket formed at
the interface of the α- and β-subunits (Banerjee and Ragsdale,
2003; Maddock et al., 2015). Cobalamin has a complex structure
consisting of cyclic tetrapyrroles, called corrin ring, with the
cobalt atom at its center. The ring carries one nucleotide-
derived tail comprising the dimethylbenzimidazole (DBI) group
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FIGURE 1 | Adenylcobalamin B12 and the essential features of the dehydration reaction by coenzyme B12-dependent GDHt, including hydrogen abstraction, OH
migration, loss of H2O, and hydrogen back-abstraction.

in addition to four propionamide, three acetamide, and eight
methyl groups (Abeles and Dolphin, 1976; Banerjee, 1999;
Figure 1). These peripheral groups interact with the residues
in the α/β interface, which maintains the cofactor in a proper
position for the radical-based catalysis (Figure 4; Shibata et al.,
2018). The crystal structure of KpGDHt reported by Yamanishi
et al. has cyanocobalamin, an analog of AdoCbl (Rétey, 1990;
Yamanishi et al., 2002). The cyanocobalamin-KpGDHt complex
structure provides information regarding how the peripheral
groups of the corrin ring interact with the amino acid residues
of the binding pocket (Shibata et al., 1999; Toraya, 2000a, 2014).
Recently, the same group illustrated the complex structure of
coenzyme B12-dependent diol dehydratase (DDHt) with AdoCbl
(Shibata et al., 2018); coenzyme B12-dependent DDHt has nearly
the same structure and catalytic mechanism as coenzyme B12-
dependent GDHt (Toraya, 1994). This is the first complex
structure including AdoCbl that shows how the native cofactor
interacts with the enzyme. The adenosyl group of AdoCbl
interacts with Thrα 172 and Serα 224 whereas the ribose moiety is
stabilized by two hydrogen bonds through the acetamide group
of corrin and Serα 224. The substrate-free and substrate-bound
structures exhibited the outward and inward shifts of the α-
acetamide group, which was suggested to be linked to the opening
and closing of a plausible channel for the passage of substrate and
product (Shibata et al., 2018).

INACTIVATION AND REACTIVATION OF
COENZYME B12-DEPENDENT GDHT

Studies on coenzyme B12-dependent GDHts have shown reaction
inactivation by glycerol (substrate-bound) or oxygen (apo-form),
both of which are involved in the failure to regenerate AdoCbl
in the catalytic cycle, yielding a tightly bound catalytically
incompetent cobalamin at the active site of the enzyme
(Figure 5A). The latter inactivation, known as physiological
inactivation, is due to the cleavage of the partially activated
Co-C bond via binding of oxygen to the bond, whereas
in the former case, known as mechanism-based inactivation,
irreversible homolysis occurs during the glycerol dehydration
reaction (Toraya et al., 1976; Bachovchin et al., 1977; Toraya and
Abeles, 1980; Toraya, 2000a; Tobimatsu et al., 2000; Seifert et al.,
2001; Yamanishi et al., 2012).

The inactive cobalamin can be replaced with catalytically
competent cobalamin by GDHt reactivase (Figure 5B) (Honda
et al., 1980; Mori and Toraya, 1999). The structure of
GDHt reactivase represents two αβ-heterodimers along with a
hexacoordinated Mg2+ ion bound at the interface of the α- and
β-subunits (Liao et al., 2003b). The α-subunit of GDHt reactivase
contains four domains: the ATPase domain resembling those
of molecular chaperons GroEL and Hsp70, the insert domain,
the linker domain, and the swiveling domain (Figure 6A).
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FIGURE 2 | The three-dimensional structure models of KpGDHt (PDB ID 1IWP). (A) The dimeric form of KpGDHt. The α-, β-, and γ-subunits are shown in blue, red,
and green color, respectively. The structures are shown by the ribbon or surface representation. (B) A topological diagram of the TIM barrel. The barrel β-sheets are
shown in purple color. The substrate (shown by the stick model) and the K+ ion (yellow sphere) are present at the active site. (C) A zoom-in view of the active site
residues interacting with the substrate and the K+ ion. The figures were created using PyMOL.

Interestingly, the structure of the β-subunit of GDHt reactivase
is similar to that of the β-subunit of GDHt (Figure 6B).
The β-subunit swap hypothesis was proposed as a reactivation
mechanism because of the structural features (Bennett et al.,
1995; Toraya and Mori, 1999; Liao et al., 2003b; Shibata
et al., 2005). ATP hydrolysis by GDHt reactivase destabilizes
the structure of the α-subunit, which facilitates its β-subunit
dissociation from the swiveling domain of the α-subunit. Owing
to their structural similarity, the β-subunit of GDHt reactivase
binds to the α-subunit of GDHt replacing its β-subunit, during
which the inactivated coenzyme B12 is released from GDHt
(Yamanishi et al., 2002).

MOLECULAR UNDERSTANDING OF THE
DEHYDRATION REACTION

Coenzyme B12-dependent GDHt and coenzyme B12-dependent
DDHt are isofunctional enzymes; they have the same catalytic

mechanisms and are very structurally similar with a slight
difference in substrate specificities. These extreme similarities
suggest that these two enzymes possibly evolved from a common
ancestor (Poznanskaja et al., 1979; Toraya, 1994, 1999, 2000b;
Yamanishi et al., 2002; Liao et al., 2003a; Liu et al., 2010).
Thus, catalytic mechanisms are discussed based on previous
studies on DDHt and GDHt hereinafter. In a pioneering
study on coenzyme B12-dependent DDHt from K. pneumoniae
(KpDDHt), Bachovchin et al. reported two binding modes of
glycerol, the pro-S and pro-R conformations, depending on the
position of the abstracted hydrogen (Figures 7A,B; Bachovchin
et al., 1977). The dehydration reaction occurred dominantly
when the substrate was bound in the pro-R conformation,
whereas the inactivation reaction was preferable in the pro-S
conformation. Doitomi et al. (2014) analyzed the three steps of
substrate transformation (hydrogen abstraction, OH migration,
and hydrogen re-abstraction) for both the pro-R and pro-S
conformations using quantum mechanics/molecular mechanics
methods. The C3-OH group in the pro-S conformation was
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FIGURE 3 | A schematic diagram of the secondary structures of the α-(A), β-(B), and γ-(C) subunits of coenzyme B12-dependent GDHt. The α-helices are shown
as red cylinders and the β-strands as turquoise arrows.

FIGURE 4 | The binding mode of cobalamin in the KpGDHt active site. (A) Residues of the α-subunit interacting with the cobalamin molecule. (B) Residues of the
β-subunit interacting with the cobalamin molecule. The B12 molecule is shown by the cyan stick model. The figures were created using PyMOL.
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FIGURE 5 | General mechanism of inactivation and reactivation of coenzyme B12-dependent GDHt. (A) Side reactions leading to the inactivation of coenzyme
B12-dependent GDHt. (B) The mechanism of reactivation via cofactor exchange by GDHt reactivase. E: apoenzyme; AdoCbl: adenosylcobalamin; S: substrate; P:
product; RF: reactivase; AdoH: 5′-deoxyadenosine; Cbl: cobalamin or damaged cofactor (Modified with permission from Bilicì et al., 2019).

FIGURE 6 | (A) Three-dimensional structure of GDHt reactivase αβ heterodimer (PDB ID: 1NBW). The ATPase, linker, swiveling, and insert domains of the α-subunit
are colored red, yellow, magenta, and blue, respectively. The β- subunit is colored green. (B) Superimposition of the β-subunit of GDHt (cyan) and the β-subunit of
GDHt reactivase (green). The B12 molecule is shown by the stick model. The figures were created using PyMOL.

oriented toward Ser301 of the α-subunit, and the hydrogen bond
between them was suggested to increase the activation energy
for the migration of the C2-OH group. Therefore, inactivation
could take place prior to hydrogen recombination. In another
computational study, Biliæ et al. also reported the interaction
of the two conformations of glycerol at the active site of

KpDDHt with respect to the orientation of the C3-OH group.
The OH group in the pro-S conformation was oriented toward
Ser301 of the α-subunit, and that in the pro-R conformation
was oriented toward Asp335 (Figures 7C,D; Bilicì et al., 2019).
An attempt was made to introduce mutations into coenzyme
B12-dependent DDHt to favor its interaction with the pro-R
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FIGURE 7 | Glycerol in the pro-S (A,C) and pro-R (B,D) conformations at the active site of coenzyme B12-dependent DDHt. (A,B) Hydrogen abstracted in the first
catalytic step are shown by arrows. (C,D) The C3-OH group of glycerol is oriented toward Ser301 in the pro-S conformation while toward Asp335 in the pro-R
conformation (Modified with permission from Bilicì et al., 2019).

conformation of glycerol (Yamanishi et al., 2012), which will be
described later.

ENGINEERING OF COENZYME
B12-DEPENDENT GDHT

Improvement in Catalytic Activity
One approach to engineering enzymes is to introduce mutations
at their active sites when the structures are available, in particular
for the residues to interact with substrates (Yagonia et al.,
2015; Lee et al., 2019). In addition, understanding the catalytic
mechanism may provide useful insights into how a particular
amino acid residue functions in enzymatic reactions. A study
was reported on site-directed mutagenesis of the residues at the
active site of coenzyme B12-dependent DDHt from K. oxytoca
(KoDDHt) (Kawata et al., 2006). Substitution into Ala was made
for Glnα 141, Glnα 296, Serα 362, Hisα 143, Gluα 170, and
Gluα 221; Gluα 170 was further mutated to Asp, Gln, or His.
Aspα 335 was mutated to Asp, Gln, and His, or Asn. All the

mutations at Gluα 170, Gluα 221, and Aspα 335 abolished the
activity of KoDDHt. Other variants also showed a decrease in
activity compared to the wild-type (Table 1). These residues
exhibited a lack of tolerance to mutagenesis, which demonstrates
their important role in catalysis (Wilke et al., 2005). Yamanishi
et al. identified two residues, Serα 301 and Glnα 335, of
KoDDHt that play an important role in differentiating the two
conformations of glycerol, the pro-S and pro-R conformations
(Yamanishi et al., 2012); previous studies have demonstrated
that glycerol in the pro-S conformation induces a mechanism-
based inactivation (Toraya et al., 1976; Bachovchin et al., 1977).
Substituting each of these residues with alanine showed a lower
inactivation rate than the wild-type enzyme, but their enzyme
activities decreased at the same time. This result suggests that
the hydrogen bond interactions between the substrate 3-OH
group and the active site residues have an important role in
mechanism-based inactivation.

Mutations that are far from the active site sometimes result
in improvement in enzyme activity, in addition to other physical
properties such as stability and solubility (Guan et al., 2004;
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TABLE 1 | Kinetic parameters of active site variants of coenzyme B12-dependent diol dehydratase.

Mutants kcat (s−1) Km (mM) kcat/Km (M−1. s−1) × 10−6 kinact (min−1) kcat/kinact × 10−4 References

1,2-PDO Glycerol 1,2-PDO Glycerol 1,2-PDO Glycerol 1,2-PDO Glycerol 1,2-PDO Glycerol

Wild-type 304 173 0.06 1.2 5.1 0.14 0.025 1.15 0.73 0.009 Yamanishi et al., 2012

S301A 247 90 0.38 1.2 0.65 0.08 0.052 0.22 0.28 0.025

Q336A 109 30 0.57 1.7 0.19 0.02 0.058 0.081 0.11 0.022

S301A/Q336A 98 67 2.4 0.84 0.04 0.08 0.36 0.66 0.016 0.006

Q141A 150 – 0.04 – 1.5 – 0.26 – 3.5 – Kawata et al., 2006

Q296A 170 – 0.1 – 0.017 – 0.56 – 1.8 –

S362A 105 – 10 – 1.3 – 0.018 – 35 –

H143A 5.1 – 0.08 – – – 1.8 – 0.017 –

E170D 5.3 – – – – – 0.036 – 0.8 –

E170Q 0.08 – – – – – 0.054 – 0.009 –

TABLE 2 | Kinetic parameters of coenzyme B12-dependent glycerol dehydratase variants.

Mutants SA* (U† mg−1) Km (mM) Mutants SA (U mg−1) Km (mM)

1,2-PDO Glycerol 1,2-PDO Glycerol 1,2-PDO Glycerol 1,2-PDO Glycerol

1Wild-type 86 300 0.24 0.60 1Q42F 190 2500 0.19 2.61
1 I498A 180 550 0.95 0.58 1Q42G 94 200 0.65 0.6
1 I498C 99 180 0.24 0.60 1Q42H 88 920 0.55 0.66
1 I498D 27 78 1.00 1.50 1Q42I 100 500 0.64 1.07
1 I498M 130 310 0.012 0.50 1Q42K 43 730 0.27 2.80
1 I498N 170 230 0.09 0.55 1Q42L 5 900 0.77 0.40
1 I498P 49 120 1.90 0.90 1Q42M 190 440 0.24 1.18
1 I498S 93 83 0.37 0.67 1Q42N 45 910 0.19 0.60
1 I498T 83 66 3.30 0.52 1Q42P 77 1400 0.31 0.70
1 I498V 120 310 0.17 0.59 1Q42R 26 110 0.14 0.44
1 I498W 38 37 0.19 0.62 1Q42S 11 930 0.45 0.48
1Q42A 20 140 0.75 1.80 1Q42T 96 280 1.38 0.82
1Q42C 90 380 1.13 1.22 1Q42V 18 150 1.54 1.30
1Q42D 180 590 0.19 1.94 1Q42W 270 980 0.54 0.57
1Q42E 18 80 0.19 0.62 1Q42Y 22 270 0.19 1.03
2F60E 125 – 0.2 0.6 2Y525E 90 – 0.2 0.7

*SA = Specific activity – the number of enzyme units divided by the amount of enzyme; †One unit (U) is the amount of enzyme that consumes 1 µmol substrate per
minute; 1Data from Qi et al., 2012; 2Data from Qi et al., 2009.

Morley and Kazlauskas, 2005; Shukla et al., 2017). These
variants are usually detected by screening the libraries generated
via random mutagenesis. The substitutions can induce subtle
changes at the active sites, possibly via the interaction network
of the residues or structural dynamics, which has been reported
to be related to enzyme activities (Mesecar et al., 1997; Whittle
and Shanklin, 2001; Han and Shin, 2019). Qi and colleagues
applied a directed evolution approach to a KpGDHt library
generated via a random mutagenesis method for improving
catalytic activity and stability. The authors found two variants,
Ile498Val of the α-subunit and Gln42Leu of the β-subunit, which
demonstrated improved thermal and pH stability compared to
the wild-type enzyme; the two positions were located far from
the active site (Qi et al., 2009). Variants with a moderate increase
in the catalytic efficiency toward glycerol were found in site-
saturation libraries focusing on Ileα 498 and Glnβ 42. Ile498Ala
and Gln42Phe mutations increased the activity of glycerol by

1.8- and 8-fold, respectively (Qi et al., 2009). The two residues
were then subjected to saturation mutagenesis. Interestingly,
three variants, all of which have mutations at position 42 of the
β-subunit, exhibited substantially improved catalytic efficiency
(kcat/Km) toward both glycerol and 1,2-propanediol (Table 2).
Another attempt was made to engineer KpGDHt by introducing
mutations using the PopMuSiC program (Kwasigroch et al.,
2002), a computer-aided rational design program that predicts
the thermodynamic stability changes caused by mutations (Qi
et al., 2012). This study reported that the Tyr525Glu mutation
in the α-subunit increased the catalytic activities of glycerol
and 1,2-propanediol by 2- and 1.8-fold, respectively, whereas
the α-Phe60Glu mutation showed opposite effects on the two
substrates, increased the activity of 1,2-propanediol but decreased
the activity of glycerol. These studies suggest that positions that
are distant from the active site of the enzyme could be important
targets for engineering.
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FIGURE 8 | Fusion of the α- and β-subunit of coenzyme B12-dependent GDHt. (A) Diagrammatic representation of the wild-type coenzyme B12-dependent GDHt.
Their N- and C-termini of the α-, β-, and γ-subunits are indicated. (B) The three different linkers are shown in the box between the C-terminus of the α-subunit and
the N-terminus of the β-subunit. The mutation of the stop codon (TAA) of the α-subunit into a Gln codon (CAA) resulted in the third linker; the Gln position was
underlined in the sequence.

The Fusion of α- and β-Subunits
The β-subunit of KpGDHt is prone to dissociate from the
enzyme complex during purification (Yamanishi et al., 2002).
This problem could be circumvented through the fusion of
the α- and β-subunits via a peptide linker; the C-terminus
of the α-subunit is located close to the N-terminus of the β-
subunit (Figure 8; Wang et al., 2009; Maddock et al., 2017).
Wang et al. fused the α- and the β-subunits of KpGDHt using
a 20-residue linker of (Gly4Ser)4, and the engineered enzyme
exhibited comparable catalytic activities (kcat/Km) to the wild-
type enzyme (Wang et al., 2009). Maddock et al. adopted a
linker of G(PT)4T(PT)7G from endoglucanase A of Cellulomonas
fimi, and the enzyme unexpectedly showed a 20◦C increase in
the optimal temperature for the activity toward 1,2-propanediol
(Maddock et al., 2017). In an attempt to engineer KpGDHt to
improve its resistance to inactivation, an interesting variant was
isolated which has a mutation at the stop codon (TAA) of the
α-subunit to CAA (Gln), resulting in the fusion of the α- and β-
subunits (Gibson et al., 2013). The fused enzyme showed a slower
inactivation rate than the wild-type enzyme in an assay using
the cell lysate.

Alternation of Substrate Specificity
KpGDHt has a promiscuous activity to dehydrate 2,3-butanediol
to butanone, as there is no known enzyme for the reaction (Zhang
et al., 2014; Chen et al., 2015). Butanone is an industrial solvent,
used in the manufacture of paints, wood coatings, adhesives,
inks, and pharmaceuticals. Maddock et al. reported that the
catalytic efficiency (kcat/Km) of KpGDHt toward 2,3-butanediol

was several hundred-fold lower than that toward 1,2-propanediol
(Maddock et al., 2017). They applied strategies of combinatorial
active site saturation and consensus-guided mutagenesis to
improve the activity of KpGDHt toward meso-2,3-butanediol. It
had been hypothesized that starting from a more stable protein
would increase the rate of success in the protein engineering
based on the observation that stable proteins are more resistant
to mutations (Gummadi, 2003; Bloom et al., 2006). Maddock
et al. (2017) used a fused enzyme, in which the α- and β-
subunits of KpGDHt were linked via a Pro-rich linker showing
much higher stability than the wild-type enzyme, as a template
for generating libraries and found that a single point mutation
(α-Thr200Ser) resulted in a four-fold increase in the catalytic
efficiency of KpGDHt toward meso-2,3-butanediol by screening
over 5,500 variants.

PERSPECTIVES ON THE ENGINEERING
OF COENZYME B12-DEPENDENT GDHT

Coenzyme B12-dependent GDHt is the key enzyme in the
biological conversion of glycerol into 1,3-PD or 3-HP, and it
has been utilized in developing processes producing them. The
enzyme, however, has a critical drawback of losing its activity
resulting from the modification of AdoCbl, and its reactivation
needs the action of GDHt reactivase involving the consumption
of ATP. Supplementation of coenzyme B12 in media is necessary
even for microorganisms naturally synthesizing the cofactor to
attain high productivity. Therefore, engineering an enzyme that
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is resistant to inactivation should be an important research
direction in applying coenzyme B12-dependent GDHts for
industrial processes. Structural and computational studies have
demonstrated that the conformation of glycerol plays a role
in GDHt inactivation (Bachovchin et al., 1977; Bilicì et al.,
2019). Mutations were introduced at the active site of coenzyme
B12-dependent DDHt to favor its interaction with the pro-R
conformation, and the variants showed slower inactivation rates
than the wild-type enzyme even though their activities decreased
(Yamanishi et al., 2012). The results suggest some possibilities to
improve resistance to inactivation by engineering the substrate-
binding site of coenzyme B12-dependent GDHts.

An engineered enzyme in which the α- and β-subunits were
fused via a linker displayed a higher resistance to inactivation
than the wild-type enzyme (Gibson et al., 2013). The result
suggests that linking the two subunits is an alternative strategy
to engineer the enzyme particularly for resisting inactivation.
However, the result was demonstrated in an assay using cell
lysate, and the fused enzyme needs further characterizations
before a conclusion can be drawn. In particular, how fusion affects
reactivation by GDHt reactivase remains unknown. Linkers to
connect the two proteins can affect the properties of the fused
proteins (Reddy Chichili et al., 2013; Morales-Luna et al., 2018;
Rullán-Lind et al., 2018). A few linkers have been utilized so
far, and only the case mentioned above was investigated with
respect to inactivation. Systematic studies on the linkers to
connect the two subunits can yield engineered variants more

resistant to inactivation. The study by Liu and colleagues revealed
that some bacterial species, such as Mesorhizobium loti and
Mycobacterium smegmatis, express GDHt enzymes in the form
of an αγ-heterodimer where the α-subunits have additional
sequences homologous to the β-subunit of KpGDHt (Liu et al.,
2010). These enzymes would be candidates for application in the
bioconversion of glycerol.
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