
fbioe-08-529365 September 22, 2020 Time: 20:1 # 1

REVIEW
published: 25 September 2020

doi: 10.3389/fbioe.2020.529365

Edited by:
David Bogle,

University College London,
United Kingdom

Reviewed by:
Yu Lin,

Center for Devices and Radiological
Health (CDRH), United States

Lucia Marucci,
University of Bristol, United Kingdom

*Correspondence:
Roman S. Voronov
rvoronov@njit.edu

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal

Frontiers in Bioengineering and
Biotechnology

Received: 24 January 2020
Accepted: 31 August 2020

Published: 25 September 2020

Citation:
Nguyen TD, Kadri OE and

Voronov RS (2020) An Introductory
Overview of Image-Based

Computational Modeling
in Personalized Cardiovascular

Medicine.
Front. Bioeng. Biotechnol. 8:529365.

doi: 10.3389/fbioe.2020.529365

An Introductory Overview of
Image-Based Computational
Modeling in Personalized
Cardiovascular Medicine
Thanh Danh Nguyen1, Olufemi E. Kadri1,2 and Roman S. Voronov1,3*

1 Otto H. York Department of Chemical and Materials Engineering, Newark College of Engineering, New Jersey Institute
of Technology, Newark, NJ, United States, 2 UC-P&G Simulation Center, University of Cincinnati, Cincinnati, OH,
United States, 3 Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology,
Newark, NJ, United States

Cardiovascular diseases account for the number one cause of deaths in the world.
Part of the reason for such grim statistics is our limited understanding of the underlying
mechanisms causing these devastating pathologies, which is made difficult by the
invasiveness of the procedures associated with their diagnosis (e.g., inserting catheters
into the coronal artery to measure blood flow to the heart). Likewise, it is also difficult
to design and test assistive devices without implanting them in vivo. However, with
the recent advancements made in biomedical scanning technologies and computer
simulations, image-based modeling (IBM) has arisen as the next logical step in the
evolution of non-invasive patient-specific cardiovascular medicine. Yet, due to its novelty,
it is still relatively unknown outside of the niche field. Therefore, the goal of this
manuscript is to review the current state-of-the-art and the limitations of the methods
used in this area of research, as well as their applications to personalized cardiovascular
investigations and treatments. Specifically, the modeling of three different physics –
electrophysiology, biomechanics and hemodynamics – used in the cardiovascular IBM
is discussed in the context of the physiology that each one of them describes and
the mechanisms of the underlying cardiac diseases that they can provide insight into.
Only the “bare-bones” of the modeling approaches are discussed in order to make this
introductory material more accessible to an outside observer. Additionally, the imaging
methods, the aspects of the unique cardiac anatomy derived from them, and their
relation to the modeling algorithms are reviewed. Finally, conclusions are drawn about
the future evolution of these methods and their potential toward revolutionizing the non-
invasive diagnosis, virtual design of treatments/assistive devices, and increasing our
understanding of these lethal cardiovascular diseases.

Keywords: image-based modeling, personalized cardiovascular medicine, cardio electromechanics,
hemodynamics, thrombogenesis, simulation, biomechanics, heart
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INTRODUCTION: IMAGE-BASED
MODELING OF THE HEART

Heart disease is the leading cause of death in the U.S.,
with one person dying from it every 37 s, or about 647,000
each year (i.e., 1 in every 4 deaths), and amounting to a
$219 billion per year burden to the public health system
(CDC, 2019). Understanding it is very difficult, because it is
a complex interaction of biomechanics, electrophysiology and
non-Newtonian hemodynamics. This is further complicated
by the interaction with external medical devices (pacemakers,
pumps, etc.) that are commonly implanted in order to assist a
failing or dysfunctional heart. Moreover, the heart’s properties
(e.g., shape, structure, stiffness, electrical conductivity) that
play an important role in determining its pumping ability are
patient specific. Finally, it is difficult to extract information
about the physiological processes occurring in living hearts,
due to its constant motion, and the fact that invasive
probing can be life threatening. For these reasons, Image-
Based Modeling (IBM) – a patient-specific experimentally
constrained computational approach – is a lucrative way for
gaining novel insight into the cardiovascular diseases and
their treatments.

An illustrative example of the IBM’s usefulness is HeartFlow
Inc. – a company located in California, United States with
about 300 employees and backed by $467 million capital
investment (Craft, 2019). Their application is the diagnosis
of Coronary artery disease (CAD) – an impairment of blood
flow in the arteries that supply the heart, due to cholesterol
plaque buildup. The disease is one of the most misdiagnosed:
a recent study, which included data from more than 1,100
U.S. hospitals, found that over half of the more than 385,000
patients with suspected CAD underwent an invasive coronary
angiography (ICA) only to find out that they did not have
the disease (Patel et al., 2014). This is bad because ICA is
an invasive technique that in itself could lead to mortality,
because it uses catheters inserted into the femoral (groin) or
radial (wrist) arteries to measure pressure difference across a
coronary artery stenosis in order to check the likelihood of a
blockage’s presence.

Conversely, HeartFlow calculates pressure differences
virtually by simulating the blood flow through the patients’
own arteries, the structure of which is derived from a three-
dimensional (3D) computerized tomography (CT) scan. This
information is then used to calculate the fractional flow reserve
(FFR), which is a statistic used to assess the hemodynamic
significance of the stenosis by determining the ratio of the
pressures before and after the narrowing. Therefore, this
technology effectively serves as a non-invasive alternative to the
ICA (Figure 1) (HeartFlow, 2019).

The HeartFlow’s method has been evaluated in four
large prospective clinical trials, enrolling a total of more
than 1,100 patients at major medical centers worldwide. It
received the European Economic Area CE mark in 2011
and U.S. FDA clearance in August 2019 (i.e., it is currently
commercially available in the U.S.) (FDA, 2019). To date,
clinicians have used the HeartFlow approach for over 30,000

patients in the diagnosis of heart disease (Kim, 2019).
Therefore, it serves as the most mature IBM application
in the context of cardiovascular disease. Yet, it is also
one of the simplest in that it does not include the heart
itself, and the blood assumed a homogeneous (i.e., no cells)
fluid. At the same time, more advanced models are coming
online as well. Yet, they are relatively unknown outside of
this niche field.

Although many excellent reviews already exist in the image-
based heart-modeling area, most of them are focused on just
one or two specific aspects: for example, image acquisition
and processing (Weese et al., 2013; Lamata et al., 2014;
Wang et al., 2015; Watson et al., 2018), hemodynamic flow
simulations (Tang et al., 2010; Mittal et al., 2016; Quarteroni
et al., 2017; Zhong et al., 2018); electrical conduction and
stimulation modeling (Trayanova, 2011, 2012; Tobon-Gomez
et al., 2013; Lopez-Perez et al., 2015; Rodriguez et al., 2015;
Beheshti et al., 2016; Gray and Pathmanathan, 2018; Ni et al.,
2018); tissue mechanics computations (Trayanova, 2011, 2012;
Sun et al., 2014; Wang et al., 2015; Chabiniok et al., 2016;
Niederer et al., 2019a,b), ventricular thrombosis (Mittal et al.,
2016) and the use of models in diagnostic procedures (Tang
et al., 2010; Trayanova, 2012). Whereas, the goal of this
manuscript is to provide a brief introductory overview of
the entire cardiovascular IBM for a non-expert audience, in
order to increase the broader exposure of this exciting topic
and its numerous potential applications: CAD, Arrhythmias,
Heart Failure (HF), Left-Ventricular Assist Devices (LVAD) and
Pathogenic Thrombosis/Embolism.

To that end, this review is organized as follows: Section
“Methods: Literature Search” describes our literature search
methods; Section “Background: Cardio Electromechanics
and Hemodynamics” provides a brief background of the
relevant cardiovascular physiology that explains how the
tissue electromechanics and blood biology are interrelated
in vivo; Section “Geometry Module” reviews how the
model geometry is obtained using imaging, in order to
establish a connection with the individual’s unique anatomy;
Sections “Electrophysiology Module,” “Biomechanics Module,”
“Simplified Hemodynamics Module,” and “Hemodynamics
with Thrombogenesis Module” illustrate the mathematical
formulation of the simulation modules used by these
models, such as electrophysiology, biomechanics, simplified
hemodynamics with and without thrombogenesis, respectively.
Finally, Section “Summary and Conclusion” presents
our summary and conclusions regarding the inputs and
outputs of all cardiac modules as well as the directions
that the field of personalized cardiovascular IBM is
expected to go into.

METHODS: LITERATURE SEARCH

In order to provide a “big picture” snapshot overview of
the image-based cardiovascular modeling and its potential
penetration into the clinical sector, we gathered works from the
recent (i.e., approximately the last 5 years) proceedings of the
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FIGURE 1 | Process flow diagram outlining the image-based computational pipeline of the HeartFlow’s approach to calculating the fractional flow reserve
computerized tomography (FFRCT). (Reproduced with permission from Nick Curzen, Professor of Interventional Cardiology/Consultant Cardiologist, University
Hospital Southampton).

following meetings: Interagency Modeling and Analysis Group
Consortium Meetings, National Institute for Mathematical and
Biological Synthesis workshops, Personalized Medicine Coalition
resources, International Workshop on Cancer Systems Biology
meetings and conferences, Pacific Symposium on Biocomputing,
Biomedical Engineering Society, American Institute of Chemical
Engineers. Additionally, we performed manual searches with
key words and terms including “image-based modeling of
the heart,” “patient-specific cardiovascular modeling,” “cardio
electrophysiology/biomechanics/electromechanics/hemodynamics
image-based modeling” or “ventricular thrombosis modeling,”
etc. for both research and review articles on databases, such as
PubMed central, Web of Science, Research Gate, and Google
Scholar. Additionally, we relied on the corresponding author’s
own decade and a half long experience of working on biomedical
image-based simulations. The obtained publication database was
then screened by running citation reports to identify groups of
researchers (typically led by a senior professor, who is joined
by collaborators, postdocs, and students) that have established
a track-record of being active within the various sub-areas
of the cardiovascular modeling fields. Furthermore, to avoid
bias (and to keep the work manageable) we tried to limit the
literature sampling to just one most relevant publication from
each of the groups. However, this was not always possible,
because some of the researchers dominate their respective
niches; and have published more than one article critical to our
review.

BACKGROUND: CARDIO
ELECTROMECHANICS AND
HEMODYNAMICS

Macroscopic Overview of How the Three
Physics Are Coupled With Each Other
Before going into the details of the computational models, it is
first important to understand the three types of coupled physics
occurring in the heart: electrical signal conduction, biomechanics
of the contraction and hemodynamics (which could also include
clot formation and embolism).

Figure 2A illustrates the cardiac conduction system (CCS) –
a heterogeneous complex 3D network of highly specialized
conductive cells (SA node, AV node, bundle of His, bundle
branches, and Purkinje fibers) that transfer signals through the
heart and cause it to contract. The electrical activity is initiated
at the sinoatrial node (i.e., the natural pacemaker of the heart)
where voltage signals called “action potentials” are produced
periodically. Next the signals travel to the AV node, through
the Bundle of HIS, down its branches and through the Purkinje
Fibers. Ultimately, they are propagated to the myocardium
(i.e., the muscular tissue of the heart) through discrete sites
called Purkinje-Myocyte Junctions (not shown), causing the
left and the right ventricles to contract independently of each
other. This creates a double pumping action of the blood (see
Figure 2B).
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FIGURE 2 | Macroscopic overview of the three physics occurring in the heart. (A) Cardiac conduction system schematic. (B) Blood flow path (navy blue arrows) and
the fibrous structure defining the biomechanics of the heart wall (inset).

Specifically, oxygen-poor blood returns from the body to the
right side of the heart (i.e., atrium and ventricle), which then
sends it to the lungs for re-oxygenation. Oxygen-rich blood from
the lungs then enters the left side of the heart and is pumped
through the aorta back to the body. The blood can also carry
thrombi (or their embolized pieces) from other parts of the body,
and/or the clots could be generated within the heart itself via
activation of platelets (blood cells responsible for clot formation)
and the coagulation cascade (a series of biochemical reactions
that results in the formation of a polymer mesh that facilitates
the structural integrity of the clot). The presence of these objects
in the cardiovascular system can interfere with the mechanical
action of the heart by creating rigid obstructions. Furthermore,
the blood clots can also get stuck in the cardio-vasculature and
block the delivery of metabolites to the heart tissue. This leads
to necrosis of the latter, commonly referred to as an ischemia
or a heart attack.

Structural Importance of the
Myocardium
The organization of the cardiomyocyte fibers in the heart’s walls
is thought to be critical to both the conductive and to the
mechanical properties of the organ. Specifically, the contractile
myocytes cells that cause the heart ventricles to beat are arranged
in fibers (see inset of Figure 2B). These fibers make up the
walls of the heart, which are lined with collagen and elastin
extracellular matrix on the inside (i.e., endocardium) and the
outside (i.e., epicardium). Their thickness varies both spatially
and temporarily throughout the cardiac cycle.

If one were to take a representative sample from the left
ventricle (which pumps the most blood) as in Figure 3A, it
would be possible to see that the 3D layered organization
of the myocytes changes throughout the wall thickness from
the epicardium to the endocardium. In fact, Figure 3A shows
that the muscle fiber direction rotates from +50◦ to +70◦

(sub-epicardial region) to nearly 0◦ in the mid-wall region to
−50◦ to −70◦ (sub-endocardial region) with respect to the
circumferential direction of the left ventricle (Holzapfel and
Ogden, 2009). Finally, Figure 3B show that the myocyte fibers
(or myofibrils) are arranged into composite layers (or sheets),
which are interconnected by collagen fibers. Therefore, for
IBM to be physiologically representative, it must account for
how this intricate structure affects the complex physics that
occur in the heart.

GEOMETRY MODULE

The most common ways for obtaining a realistic macroscopic
morphology of the heart and its surrounding blood vessels
are computerized tomography (CT) and magnetic resonance
imaging (MRI). However, the typical MRI/CT machines provide
relatively coarse resolution datasets of the personalized cardiac
geometry, with large gaps between slices (Schulte et al., 2001;
Frangi et al., 2002; Appleton et al., 2005). This necessitates the use
of interpolation procedures. Hence, the microscopic details (e.g.,
blood vessels, trabeculations, the Purkinje Fibers, the location and
activity of the PMJs, the orientations of the myofibril sheets, etc.)
are harder to resolve due to their small size. Yet, they strongly
determine the electrophysiological and biomechanical properties
of cardiac tissue (Watson et al., 2018). Consequently, there are
three main methods for accounting for these fine details:

Rule-Based Heuristics
The most rudimentary approach is to generate these features
mathematically, based on observed trends (see Figure 4A)
(Streeter Daniel et al., 1969). Briefly, the longitudinal fiber
direction is assumed to rotate clockwise from the endocardium
to the epicardium. Specifically, it is made parallel to the long axis
of the papillary muscles, trabeculae at these regions and parallel
to the endocardial and epicardial surfaces at the ventricular
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FIGURE 3 | Schematic diagram of the heart tissue microstructure. (A) The transmural configuration of the muscle fibers and laminar sheets. (B) The layered
organization of myocytes and the collagen fibers between the sheets. f0, fiber axis; s0, sheet axis and n0, sheet-normal axis. (Adopted with permission from
Holzapfel and Ogden, 2009).

FIGURE 4 | Comparison between (A) rule-based method and (B) DTI-based estimation of the myocardial fiber orientation for a 3D model of canine ventricles.
(Reproduced with permission from Bayer et al., 2012).

walls. Lastly, the fiber orientation in the septum is assumed
to be running along the ventricular walls (Bayer et al., 2012).
A popular way to personalize the algorithm to a patient specific
structure of the heart is to use the minimal distance between the
imaged endocardial and the epicardial surfaces to approximate
orientation of the fibers. More stable and advanced rule based
approaches, such as the Laplace-Dirichlet method also exist

(Bayer et al., 2012). However, the heuristics are not guaranteed
to be physiologically accurate, nor are they fully patient specific.
Yet they remain the most common approach due to their low
cost and ease of implementation, as well as due to the difficulty
of imaging the microstructural details in a beating heart in vivo.
And, as Figure 4 shows, they yield results that are comparable
with the best of the imaging techniques (which typically require
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for the heart to be explanted and fixed in order to acquire
such fine details).

Histology/Optical Microscopy
The fiber orientation can also be approximated from histology
of explanted hearts (Vetter and McCulloch, 1998; Deng et al.,
2012), where the tissue is sliced into very thin 2D sections and
dyed using special agents that highlight the features of interest.
Although it is possible to create a 3D reconstruction based on the
2D slices using this approach, manual sectioning of the tissue may
result in uneven slice thicknesses and feature distortion (Burton
et al., 2006). Additionally, confocal microscopy has been used to
image the fine structure of the myocardium (Hooks et al., 2002,
2006). However, the light penetration depth into the sample is
typically limited to ∼100 mm. Hence, imaging a whole heart
using this technique is also impractical. Therefore, both histology
and confocal are typically used to provide localized information
on explanted samples only. However, this information is useful
for validating the rule-based methods, the in vivo imaging, and
the modeling results.

Diffusion-Tensor MRI, Micro-CT With
Contrast and 3D Ultrasound Backscatter
Tensor Imaging
Additional detail can be obtained from MRI images using a
Gadolinium contrast agent (Bishop et al., 2010) and a special
technique called Diffusion Tensor imaging (DTI) (see Figure 4B).
The latter maps the diffusion of water molecules in the biological
tissues, which is not free, but reflects the interactions with
obstacles like macromolecules, fibers and membranes. For the
cardiac DTI, it is well known that the direction of the primary
eigenvector corresponding to each voxel of the received images
matches the longitudinal axis of cardiac myocytes (Scollan
et al., 1998; Holmes et al., 2000). This information can then
be mapped onto the volumetric mesh of a 3D cardiac macro-
geometry to include the microscopic fiber orientation (Plank
et al., 2009; Vadakkumpadan et al., 2010). Likewise, micro-
computed tomography (mCT) with iodine staining has also
recently been used to assess the myocyte fiber orientation in the
heart tissue (Aslanidi et al., 2013). However, both techniques are
too slow to capture a beating heart in 3D without motion artifacts.
Luckily, advanced ultrasound-based imaging techniques are
coming online, which can map the myocardial fibers orientation
and its dynamics with a temporal resolution of 10 ms during a
single cardiac cycle, non-invasively and in-vivo in entire volumes
(Papadacci et al., 2017). However, given the novelty, complexity
and cost of these techniques, they are not yet widely available to
the majority of the cardiovascular IBM researchers.

Imaging-to-Modeling Pipeline
Perhaps the most difficult aspect of the in vivo scanning of
live hearts is the need to perform significant image alignment
using “registration” techniques. Furthermore, once the images
are aligned, they must be “segmented” to identify the various
tissue types and structural features of interest within the data.
The segmentation can be either based on contrast dyes and/or on

morphological feature detection (both manual and automated).
The images can also be enhanced using digital post-processing,
such as deconvolution (i.e., minimizing noise caused by objects
outside of the imaging plane) and structure tensor analysis
(e.g., enhancing visibility of the structural features for the fiber
orientation detection) (Burton et al., 2006; Zhao et al., 2013).
Numerical interpolation and machine learning techniques can
further enhance the apparent resolution of the images digitally.
Finally, the cardiovascular geometry must be “meshed” (i.e.,
broken up into pieces) to discretize the objects obtained from
the images as a set of finite elements for numerical analysis. The
latter is a simulation necessity that enables solving systems of
complex (e.g., partial differential) equations by recasting them
as algebraic approximations of the true solution. The trade-off
for the simplified math is that the solution accuracy must be
increased by making the mesh finer. This grows the number
of equations that must be solved simultaneously, and thus the
computational resource and time requirements. Overall, the
imaging pipeline procedures are often very complicated and
necessitate manual labor. This is both cumbersome (e.g., due
to the large size of the high-resolution images) and subjective
(e.g., due to the lack of contrast agents which necessitate user
input). Therefore, there is an on-going effort to automate the
imaging-to-modeling pipeline (Bishop et al., 2010).

ELECTROPHYSIOLOGY MODULE

The simplest types of the heart models tend to be focused on
cardiac arrhythmias. This is an “umbrella” term for irregularities
in the conduction or pacing of the electrical signals that
control the heartbeat rhythm. Given that some arrhythmias
can lead to mortality, it is important to understand the
underlying electrophysiological mechanisms of these disorders.
Yet, electrocardiograms of the heart provide only limited
information, which often fails to predict lethal outcomes
(Goldberger et al., 2011). Therefore, computational modeling
offers a better alternative for studying these diseases.

Most arrhythmia models focus on the electrophysiology of the
heart, while assuming that it is isolated from the biomechanics
of the contractions that lead to the pumping of the blood.
As mentioned in Section “Methods: Literature Search,” the
contraction of cardiomyocytes is initiated by electrical impulses
called “action potentials,” which travel through the cardiac
conduction system (see Figure 2A) into the myocardium. This
electrical potential travels from one cell to another in the form of
ions that pass through gap junctions between the cardiomyocytes
(see Figure 5).

The cardiomyocytes are polarized, meaning that there is an
electrical potential across the cell membrane: in the resting state
the cells are more negative on the inside and positive on the
outside, while the charge polarity is temporarily reversed as the
action potential passes through them. This reversal occurs via the
transport of Ca++ and Na+ ions from the outside of the cells to
their inside, and K+ ions in the reverse direction (see Figure 5).
The internalization of the Ca++ ion is especially important
to the contraction of the cardiomyocytes, because it triggers a
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FIGURE 5 | Electrical coupling of the neighboring cardiomyocytes via the gap-junctions between their membranes.

sub-cellular signaling cascade that generates tension inside of
the cells. Therefore, the electrophysiology models simulate the
propagation of the ionic currents through the myocardium.

However, given that there are many cells in the heart, and
each one of them has the ionic channels and transmembrane
potentials, the problem is an inherently multiscale one (see
Figure 6). On the subcellular scale (see Figure 6-LEFT),
differential equations are used to model the transport of ionic
species based on the Hodgkin–Huxley formulation (originally
developed for the propagation of action potentials in neurons)
(Hodgkin and Huxley, 1952). The subcellular models are then
combined into cell scale models that can account for up to
dozens of different ionic species and signaling intra-cellular
cascades (see Figure 6, CENTER). Among these, the leading
model is currently considered to be by O’Hara et al. (2011), which
is based on experimental data from >150 undiseased human
hearts. Finally, the individual ion currents are used to calculate
the overall transmembrane potential, and its transport across
the myocardium is treated as a diffusion across a homogenous
medium (i.e., no discrete cells are considered by these models).

There are two types of formulations for the organ-level
diffusion (which is related to the ionic conductivity) of the action
potential across the myocardium: (1) the bidomain formulation,
which considers different diffusivities inside and outside of the
cell (Quarteroni et al., 2017) (see Figure 6, RIGHT):

χCm(∂tv+ iion(v, w, c))−∇ · (Di∇vi) = χiiapp(t)
χCm(∂tv+ iion(v, w, c))−∇ · (De∇ve) = χieapp(t)

dw
dt
= mw(v, w, c)

dc
dt
= mc(v, w, c)

(1)

The bidomain formulation is used for simulating the action
potential propagation throughout the myocardium in the intra-

and the extra- domains separately. The myocardium is assumed
to be a continuum in which the potential is considered to
vary along the longitudinal direction of the conducting cells,
while it is constant in the transversal (or radial) directions
(Quarteroni et al., 2017). In this formulation, vi, ve and ‘v’
are intracellular, extracellular and transmembrane potentials,
respectively; iiapp and ieappstand for applied stimuli on the intra-
and extracellular spaces, respectively; iion are the ionic currents
following a Hodgkin–Huxley-type description for different ionic
species (Hodgkin and Huxley, 1952); w are gating variables taking
values in [0,1] that regulate the transmembrane currents and
have a mutual relation with the intracellular concentrations c of
different ionic species (which also vary depending on the values
of transmembrane potentials v) (Quarteroni et al., 2017); Cm is
the membrane capacitance; ‘χ’ is the ratio of membrane area per
tissue volume; Di and De are the conductivity tensors of the intra-
and extracellular media, respectively.

and (2) the monodomain formulation, which simplifies the
problem by considering only the transmembrane potential
(Quarteroni et al., 2017):

χ[Cm∂tv+ iion(v, w, c)− iapp(t)] =
1
J
∇ · (D0∇v) (2)

In this formulation, the cardiac tissue is also assumed to be a
continuum, but the current conservation is written in terms of the
transmembrane potential v only (i.e., not considering the intra-
and extracellular potentials) (Quarteroni et al., 2017). Instead,
the intracellular and extracellular diffusivities are assumed to be
proportional to each other, and therefore can be represented
by a single variable. Herein, D0 is the conductivity tensor in a
fixed reference state, J is the determinant of the deformation
gradient tensor, which represents the volume change of a
deformable object. The trade-off for the simplicity is that
the monodomain model is unable to describe cardiomyocyte
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FIGURE 6 | Components of a multiscale cardiac electrophysiology model. (Left) Equations and sample output for a Hodgkin-Huxley formulation of the rapid sodium
current through an ion channel. Multiple such sub-cellular models can be used to define a cell model. (Center) Schematic of sub-cellular processes included in a
hypothetical cell model, together with the differential equation governing the transmembrane voltage, and sample output. Cell models differ in their formulation of the
ionic current iion and can be made up of dozens of ordinary differential equations. (Right) Cell models can be incorporated into the bidomain equations and solved
on a computational mesh of the heart (top right: high-resolution rabbit biventricular mesh of Bishop et al., 2010), to simulate normal or arrhythmic cardiac activity
(bottom right). (Adopted with permission from Pathmanathan and Gray, 2018).

repolarization patterns. For this reason, the bidomain model is
more widely used (Bishop and Plank, 2011).

Module Personalization
Table 1 summarizes the most common electrophysiology module
personalization approaches encountered in the recent IBM
works, while Figure 7 maps the relationships between the
module’s inputs, outputs and applications. In this, and in the
subsequent modules, the heart’s macroscopic anatomy can be
personalized for a specific patient by acquiring its geometry
from the in vivo imaging (see “Geometry Module” section).
Furthermore, pathological tissue remodeling (e.g., locations and
extension of infarct scars, diffuse fibrosis, etc.) can be accounted
for via the imaging as well (Vadakkumpadan et al., 2009;
Mewton et al., 2011; Dass et al., 2012; Ashikaga et al., 2013;
Arevalo et al., 2016; Trayanova et al., 2017). However, there
are two important types of microscopic structural information
that cannot be completely personalized yet: the myocardial fiber
orientation and the CCS.

Both are, unfortunately, still too difficult to image in a moving
heart in vivo. Thus, typically an approximated personalization
is performed to include these microscopic features using
the rule-based algorithms (see “Geometry Module” section).
Additional CCS approximation methods are based on: early
activation points obtained from the literature (Durrer et al.,
1970); manual delineation of CCS on the endocardial surfaces
(Romero et al., 2010); ex vivo data obtained by means of
histological studies of animal hearts (Sebastian et al., 2013); from
in vivo electro-anatomical maps (EAMs) (Cardenes et al., 2014;

Palamara et al., 2014). The EAMs data can provide the location
of some of the PMJs, and can also be used to reconstruct
patient-specific electrical activation patterns (Cardenes et al.,
2014; Palamara et al., 2014).

Likewise, the conductivity values of different tissue zones
(normal and abnormal/damaged) are typically too difficult to
measure in living human patients, and are thus initialized based
on accepted literature values: 2–3 m/s in the His-Purkinje system
and 0.3–0.4 m/s in the conductive myocardial cells (Ideker et al.,
2009). They are then either further adjusted to match the human
myocardium conduction velocity (CV) (i.e., speed at which
action potentials are distributed throughout the tissue) measured
using explanted hearts (Arevalo et al., 2016; Trayanova et al.,
2017; Lopez-Perez et al., 2019), or are tuned to fit patient-specific
electrical activation patterns obtained from electrocardiograms
(ECG), body surface potential maps (BSPM) or EAM (Sermesant
et al., 2008; Lopez-Perez et al., 2015).

Unfortunately, at the cellular level, the patient-specific
transmembrane current dynamics (i.e., iion) cannot yet be
measured; and hence, the existing mathematical models are not
personalized at such detail. Similarly, the electrical heterogeneity
between the different regions (e.g., transmural heterogeneity
in the ventricular walls), the electrical remodeling and the
effects due to an individual’s genetic mutations on the cardiac
electrophysiology cannot yet be accounted for (Lopez-Perez et al.,
2015). However, a cellular level electrophysiology model that best
matches the patient’s pathology can instead be chosen from either
existing literature datasets that are representative of a patient-
group (Krueger et al., 2013a,b) or from patch-clamp studies
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TABLE 1 | A recent literature survey of how the Electrophysiology Module is typically personalized using image-based information.

Imaging method Personalized information from imaging Mapping of the personalized information from
imaging to the module’s inputs

Citation

MRI Geometry with infarcted regions Geometry was personalized and tissue conductivity values
were adjusted to match the conduction velocity (CV) in
human cardiac tissue.

Ashikaga et al., 2013

MRI Geometry with infarcted regions Geometry was personalized and tissue conductivity values
were adjusted to match the CV in human cardiac tissue.

Arevalo et al., 2016

MRI Geometry with infarcted regions Geometry was personalized and tissue conductivity values
were adjusted to match the CV in human cardiac tissue.

Trayanova et al., 2017

CT Geometry Geometry was personalized and tissue conductivities were
adjusted to fit local activation times, which were obtained
using electro-anatomical maps (EAMs).

Cardenes et al., 2014

CT and MRI Geometry with infarcted regions Geometry was personalized and tissue conductivities were
adjusted to fit patient-specific electrical activation using
EAMs.

Palamara et al., 2014

MRI Geometry Geometry was personalized; tissue conductivities were
adjusted to fit patient-specific electrical activation and ECG;
and ionic currents were also personalized (via blood
electrolyte concentrations measurement).

Krueger et al., 2013a

MRI Geometry with infarcted regions Geometry was personalized; tissue conductivities were
adjusted to fit a human cardiac tissue model; and ionic
currents were personalized via blood electrolyte
concentrations measurements.

Krueger et al., 2013b

Cardiac delayed
enhancement-MRI

Geometry with infarcted regions, papillary
muscles and main endocardial trabeculations

Geometry was personalized and tissue conductivity values
were adjusted to match the CV in human cardiac tissue.

Lopez-Perez et al.,
2019

MRI Geometry Geometry was personalized and tissue conductivities were
adjusted to match clinically measured propagation times of
the patient using EAMs.

Sermesant et al., 2008

MRI Geometry with infarcted regions Geometry was personalized and tissue conductivity values
were adjusted to match the CV in human cardiac tissue.

Bruegmann et al., 2016

Cine MRI (with torso
geometries)

Geometry with orientation and position of heart Geometry was personalized and tissue conductivity values
were adjusted to match patient-specific ECG data.

Kayvanpour et al., 2015

MRI (with torso geometries) Geometry with orientation and position of heart Geometry was personalized and tissue conductivity values
were adjusted to match the CV in human cardiac tissue.

Mincholé et al., 2019

MRI Geometry with infarcted regions Geometry was personalized and tissue conductivity values
were adjusted to match the CV in human cardiac tissue.

Deng et al., 2016

MRI Geometry with infarcted regions Geometry was personalized and tissue conductivity values
were adjusted to match the CV in human cardiac tissue.

Prakosa et al., 2018

Late gadolinium
enhancement MRI

Detailed geometry, including the atrial structure,
mitral and tricuspid valves, coronary sinus,
pulmonary veins, superior and inferior vena
cava.

Geometry was personalized and tissue conductivity values
were adjusted to match patient-specific activation mapping
data using EAMs.

Roney et al., 2018

Cardiac magnetic
resonance procedure

Detailed geometry, including the atrial structure,
aortic arch, caval veins, torso surface,
trabeculated myocardium between the wall and
the intracavitary blood.

Geometry was personalized and tissue conductivity values
were tuned to match patient-specific activation mapping
using EAMs and ECG data.

Potse et al., 2014

of cells harvested from pathologic zones of the patient (Cabo
and Boyden, 2003; Decker and Rudy, 2010). Additionally, the
extracellular ion concentrations can be estimated and set into
a model from personalized measurements of blood electrolyte
concentrations (Krueger et al., 2013a,b).

Module Outputs and Applications
Overall, the electrophysiology modeling studies the normal
conduction in the heart, as well as the pathological mechanisms
that arise and cause cardiac arrhythmias. It is typically used
to calculate physiological parameters (see Figure 7) like: the
Mean firing rate (i.e., the number of spikes during a cardiac

cycle divided by cycle duration, spike/s) (Behradfar et al.,
2014); Re-entrant arrhythmias propagation (Arevalo et al., 2016;
Deng et al., 2016; Trayanova and Chang, 2016; Prakosa et al.,
2018) (i.e., a propagation of an impulse that fails to die out
after normal activation of the heart and continues to re-excite
it after the refractory period has ended, Antzelevitch, 2001);
Phase singularities (Boyle et al., 2016; Pathmanathan and Gray,
2018; Roney et al., 2018) which represent the sites in which the
activation state cannot be determined, because the particular
location is surrounded by activation states ranging from fully
activated to fully recovered (Valderrabano et al., 2003); Activation
rate gradient which quantifies how fast the transmembrane
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FIGURE 7 | Summary of the Electrophysiology module’s inputs, outputs and applications. Superscripts in the figure correspond to the following references:
1Cardenes et al., 2014; Kayvanpour et al., 2015; Lopez-Perez et al., 2015; 2Cardenes et al., 2014; Palamara et al., 2014; 3Arevalo et al., 2016; Trayanova et al.,
2017; 4Lopez-Perez et al., 2015; 5Behradfar et al., 2014; 6Arevalo et al., 2016; Deng et al., 2016; Trayanova and Chang, 2016; Prakosa et al., 2018; 7Boyle et al.,
2016; Roney et al., 2018; 8Smith et al., 2011; Boyle et al., 2013; Potse et al., 2014; 9Trayanova, 2011; Behradfar et al., 2014; 10Arevalo et al., 2016; Trayanova
et al., 2017; Deng et al., 2019.

voltage Vm changes in different cardiac regions (Smith et al.,
2011; Boyle et al., 2013; Potse et al., 2014); Successful retrograde
propagation which measures whether conduction at a terminal
Purkinje node is successful or refractory (Trayanova, 2011;
Behradfar et al., 2014); and the organization of electrical wavelets
as they propagate through the myocardium (Starobin et al., 1996;
Keldermann et al., 2009; Trayanova, 2014). In our experience,
the majority of the electrophysiological modeling is used for
elucidating the mechanisms of cardiac arrhythmia, especially for
“reentrant propagation of complex waves” (e.g., effects of cardiac
microstructure, spiral wave breakup, early afterdepolarizations,
scroll-wave filaments, action potential duration, electrical
alternans, etc.) (Trayanova, 2011); as well as for prediction of
arrhythmia risks in specific patients. Furthermore, these models
are also used to examine the mechanisms of defibrillation
shock in the heart for terminating arrhythmia, as well as
for increasing the understanding of ablation targets in the
arrhythmia treatments (Trayanova et al., 2017).

Module Personalization Example
The following is a discussion of a representative example
of the personalized electrophysiology modeling applied to an
arrythmia risk assessment in post-infarcted hearts. Specifically,
personalized 3D computer models of the post-infarction hearts
was constructed based on clinical MRI of specific patients.
First, an individualized geometric model of the postinfarction

ventricles was reconstructed from late-gadolinium-enhanced-
MRI (Arevalo et al., 2016), with representations of both the
scar and the infarcted border zones. Due to the difficulty
imaging the myocardial fiber orientation from a moving heart
in vivo, an approximated personalization was performed using
a rule-based algorithm (Bayer et al., 2012). Region-specific
cell and tissue electrical properties were then assigned to the
electrophysiological model based on literature data. After that,
a virtual multi-site delivery of electrical stimuli from various bi-
ventricular locations was conducted, in order to computationally
determine all the ventricular tachycardia reentrant pathways
that the infarct-remodeled ventricular substrate can sustain.
This methodology was then validated in an arrhythmia risk
prediction clinical study including 41 patients and significantly
surpassed several existing clinical metrics in predicting upcoming
arrhythmic events (Arevalo et al., 2016).

BIOMECHANICS MODULE

The next level of complexity are the models of myocardial
abnormalities/heart failure (HF) and the blood pumping assist
devices such as the Left-Ventricular Assist Device (LVAD).
Since these models are interested in how the presence of
abnormalities or assist devices affects the blood circulation,
they must account for the contraction solid mechanics and the
blood hemodynamics. However, if they are not interested in clot
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formation, the models are simplified by homogenizing the blood
flow. Therefore, they are not as complicated as the ones that do
account for the thrombosis. Yet, they are still complex, because
they include solving multiple different types of coupled physics
(see Figure 8, LEFT) applied in different parts of the heart (see
Figure 8, RIGHT).

Since the electrophysiology in these models is treated similarly
to the arrhythmia models, the cardio biomechanics framework
will be discussed next. Central to this physics type is the
fact that the myocytes in the heart contain rod-like structures
called myofibrils, which are composed of repeating contractile
units called “sarcomeres” (see Figure 9, LEFT). Each sarcomere
contains thin and thick filaments, made from actin and myosin
proteins, respectively.

After depolarization, calcium enters the cardio-myocytes
through the ion channels in their membrane, and triggers the
release of cytosolic calcium stored in the sarcoplasmic reticulum
(a storage compartment) of the cells through a cascade of intra-
cellular signaling (see Figure 9, RIGHT). This release of the
internal calcium leads to the binding of myosin heads to the actin
filaments in the sarcomeres, which in turn causes the filaments to
slide against each other and contract the entire cell (see bottom
inset in Figure 9, LEFT). This process is called the “crossbridge
mechanism” and it corresponds to the active tension in the
biomechanical calculations of the heart.

The kinetics of this process have been modeled using
Monte Carlo (Walcott and Sun, 2009) and partial differential
equations (Huxley, 1957). However, both approaches are too
computationally expensive to be calculated at the organ
level. Consequently, the latter model has been simplified by
considering a single cross bridge representative of the whole
distribution (i.e., mean field theory) (Negroni and Lascano, 2008;
Rice et al., 2008; Washio et al., 2012) or by averaging the

distributions over a single cell (Bestel et al., 2001). Simpler yet
is the assumption that the active contraction of the individual
cells depends on the intracellular ionic concentrations and the
local deformation gradient (Quarteroni et al., 2017). Ultimately,
the microscopic sarcomere sliding velocity is related to the
macroscopic strain along the myocardial fibers via a constitutive
relationship (i.e., microscopic rate-of-strain depends on the
macroscopic strain), such as the Hill-Maxwell rheological model
which is a modification from Hill’s force-velocity relation (Sainte-
Marie et al., 2006). Herein, a specific choice of the attachment
and detachment rates was modified so that they were not only
dependent upon the sarcomere strain, but also on the strain rate.

The active contraction can be expressed by the following active
stress formulation from Rossi et al. (2014):

PA =

(
∂WA

∂IE
1
+

∂WA

∂IE
4,f

)
F̂A(c, I4,f )f0 ⊗ f0 +

∂WA

∂FA
(3)

And the active strain formulation can be derived from Quarteroni
et al. (2017):

∂tγf =
1
ηA

[(
∂WA

∂IE
1
+

∂WA

∂IE
4,f

)(
F̂A(c, I4,f )−

2I4,f

(1+ γf )3

)

−
∂WA

∂FA
: f0 ⊗ f0

]
(4)

Where, WA is the active component of the free energy, FA is the
active deformation, ‘c’ is the intracellular calcium concentration,
I4,f is the local deformation gradient invariant in the myofiber
direction, ∂IE

1 and ∂IE
4,f are elastic invariants (described in more

details in Rossi et al., 2014). The incorporation of the microscopic

FIGURE 8 | (A) Sketch of the cardiac electro-fluid–structure coupling. (B) The three computational domains (fluid domain �F, solid mechanics domain �S,
electrophysiology domain �E) considered in the cardiac multiphysics problem. In this example the electrophysiology physics are only considered in the ventricles,
whereas the solid mechanics physics applies to the atria also. Additionally pictured are the fluid–structure interface 0I inside the left ventricle, the epicardial surface
0S,epi, and the mitral valve inlet surface 0in. Lastly, the domains �E and �S overlap within the ventricular part of the heart. (Adopted with permission from Quarteroni
et al., 2017).
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FIGURE 9 | Sub-cellular tension generation mechanisms. (A) Organization of the cardiac muscle cell’s contraction mechanism (bottom inset shows the
contraction-relaxation cycle of a single sarcomere). (B) Diagram showing how calcium release from internal cytosol storage causes cardiomyocyte contraction in
response to the “outside-to-inside” calcium signaling.

active tension, F̂A, at the tissue level is a key aspect in the multi-
scale framework of the cardiac function (Quarteroni et al., 2017)
and can be derived by:

F̂A(c, I4,f ) = αf (c)RF−L(I4,f ) (5)

where RF−L(I4,f ) is a function that represents the force–length
relationship of the cardiac cells (defined in Ruiz-Baier et al.,
2014) which depends on I4,f ; f (c) specifies the amount of
force generated by the cross-bridges in response to intracellular
calcium release; and α is a positive parameter. Thus, the F̂A
represents the active tension generated within the sarcomeres,
which then drives the macroscopic muscular contractions.

In addition to the active tension generated by the cross-bridge
mechanism, the solid mechanics calculations must also account
for the passive stiffness of the myocardium (e.g., when it is
expanded by the blood flow entering the heart). This is modeled
by assuming that the myocardium is an isotropic linear elastic
tissue. The general formulation of passive stress (i.e., Cauchy
stress) can be expressed by Avazmohammadi et al. (2019):

σ = J−1FSFT (6)

Where, the second Piola–Kirchhoff stress tensor ‘S’ can be
described in terms of the stored energy density function ‘W’
through: S = 2∂W/∂C, and ‘W’ can be derived based on
Holzapfel–Ogden constitutive law which is divided into three
parts - the isotropic isochoric part, the isotropic volumetric part,
and the orthotropic part:

W(F) =
a

2b
exp(b[

−

I −3])+
κ

4
[(J − 1)2

+ (ln J)2
]

+

∑
i=f ,S

ai

2bi
[exp(bi <

−

I4,i−1 >2)− 1]

+
afs

2bfs
[exp(bfs

−

I2
8,fs)− 1] (7)

where

J = det(F), C = FTF, I1 = tr(C), Ī1 = J−2/3I1,

I4,f = Cf0 · f0, Ī4,f = J−2/3I4,f , I4,s = Cs0 · s0, I4,s = J−2/3I4,s,

I8,fs = cf0 · s0, Ī8,f ,s = Cf0 · s0, Ī8,f ,s = J−2/3I8,f ,s
(8)

and the material parameters a, af , as, afs, b, bf , bs, bfs are
experimentally fitted (Quarteroni et al., 2017). The parameter
‘κ’ is the bulk modulus that “penalizes” local volume changes to
enforce the incompressibility of the tissue.

Furthermore, since stretching a cell changes the distance
between the gap junctions and their neighbors, this leads
to changes in the ion channels, and consequently, in the
conductivity of the action potential from cell to cell. This
electromechanics coupling is typically included by modifying
the conductivity tensor in the original equation of the
electrophysiological propagation (see Equation 2). Specifically,
the fixed reference state conductivity tensor ‘D0’ is replaced with
the spatial configuration conductivity tensor ‘D’. Furthermore,
an explicit dependence on the solid deformation tensor ‘F’ is
included into the conductivity tensor in order to account for the
geometric feedback, due to deformation of the tissue structure
(Quarteroni et al., 2017):

χ[Cm∂tv+ iion(v, w, c)+ iSAC(v, F)− iapp(t)]

=
1
J
∇ · (JF−1DF−T

∇v) (9)

Moreover, an additional inward ionic current, induced by the
stretch-activated channels, also contributes to the depolarization.
This is commonly modeled as follows:

iSAC(v, F) = g
(√

I4,f (F)− 1
)

(v− E) (10)

Where, ‘E’ and ‘g’ are the reversal potential and the maximal
conductance of the channels.

Lastly, in vivo the heart is immersed in a pericardial fluid;
and it is also loosely supported by a flexible double-layered
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pericardium membrane. Therefore, spring-like external support
enforced by Robin-type boundary conditions (Moireau et al.,
2012) are typically tuned to mimic the global motion of the
modeled heart. An explicit solution of the pericardium–heart
contact problem has been proposed as well (Fritz et al., 2014).

Module Personalization
Table 2 summarizes the most common biomechanics module
personalization approaches encountered in the recent IBM
publications, while Figure 10 the relationships between the
module’s inputs, outputs and applications. Before personalizing
the modeling of the passive (i.e., resting) properties of the
myocardium, the parameters of the Holzapfel and Ogden
model (see Equations 7 and 8) are typically initialized using
experimental data from biaxial (Krishnamurthy et al., 2013) and
shear tests (Dokos et al., 2002; Sommer et al., 2015) of explanted
myocardial tissue. The passive mechanics parameters are then
further optimized to match the patient-specific end-diastolic
pressure and volume (EDPV) relations (Krishnamurthy et al.,
2013; Meoli et al., 2015; Finsberg et al., 2018; Palit et al., 2018).
The EDPV relation is a graphical representation of the pressure-
volume loop related to the passive filling of the left ventricle
during diastole (i.e., relaxation), and is a measure of the passive
ventricle stiffness. The chamber volume of the left ventricle at the
end of the diastole is defined as the end-diastolic volume (EDV),
which is used to estimate the preloading volume of the heart and
indicate the stiffness of the ventricle.

The active contraction modeling, on the other hand, is coupled
with the cardiac hemodynamics, so it is important to link it
with the patient-specific hemodynamic metrics corresponding
with the end-systolic condition. For example, the pumping
ability of the heart is represented by the end-systolic pressure
(ESP) and the end-systolic volume (ESV), which are the peak
values of pressure and ventricular volume at the end of systole
(i.e., contraction), respectively. The active contraction is also
associated with ejection fraction (EF), which is defined as a
measurement of the percentage of blood leaving out of the
left ventricle with each contraction. Therefore, the optimization
procedure is performed to find the patient-specific parameters
that best replicate the clinical hemodynamics of the patient
in terms of the mean, maximum and minimum values of the
pressures, flows and the cardiac volumes (such as the clinically
recorded values of the ESP, ESV, and EF).

Module Outputs and Applications
Overall, the biomechanics models tend to perform stress analysis,
which is used to evaluate the effects that a defective myocardium
structure has on the heart function, and design new therapies and
treatment devices for reducing the abnormal stress (Guccione
et al., 2003; Wall et al., 2006; Lee et al., 2013; Finsberg et al.,
2018) (see Figure 10). Additionally, they calculate the stiffness
of the heart, which strongly corresponds to its ability to function
normally and can be used as an indicator for HF (e.g., heart
attacks caused by a diastolic dysfunction that occurs when the
ventricle becomes too stiff or weak to pump blood effectively).
Ultimately, however, since the goal of these models is to obtain
the relationship between the biomechanics of the myocardium

tissue and the blood pumping ability of the heart, they also
include a simplified (i.e., no discrete blood cells) hemodynamics
module, which is discussed in the next section.

Module Personalization Example
The following is a discussion of a representative example of the
personalized Biomechanics module applied to five HF failure
patients from San Diego Veteran’s Affairs Medical Center.
Specifically, personalized 3D models of ventricular biomechanics
in their failing hearts were derived from cardiac CT imaging.
The human fiber orientation was modeled using DT-MRI data
from an isolated (i.e., fixed) human organ-donor heart, and
then transposed to the specific patient’s geometric model. The
biomechanics model was then developed for optimizing the
passive material properties to match previous experimental
results on cardiac tissues and patient-specific end-diastolic
pressure and volume relations. The material properties of
the active contraction were also optimized to match patient-
specific measured peak left ventricular pressures and end-systolic
volumes. These components were then integrated to generate
a multi-scale computational approach for the patient-specific
hearts. The simulation results in the patients demonstrated good
agreement with their measured echocardiographic and cardiac
output parameters, such as EF and peak cavity pressures. This
model was developed for stress analysis in HF patients and could
be further developed with the goal of predicting treatments for
heart disease under different interventions.

SIMPLIFIED HEMODYNAMICS MODULE

In the cardiovascular models where clot formation is not
considered, the blood flow is simulated using the incompressible
Navier-Stokes equations. This means they do not account for
discrete cells floating in the plasma. Instead the blood is treated
as a homogeneous weakly non-Newtonian fluid (Shibeshi and
Collins, 2005), which flows mostly in the laminar regime [though
the strong vortices can create transition to turbulence with
Reynolds numbers in the 1500–2500 range (Quarteroni et al.,
2017)]. The fluid-structure interaction between the blood and the
myocardium walls is typically modeled explicitly using moving
mesh approaches: for example, Arbitrary Lagrangian-Eulerian
(Cheng et al., 2005; Chnafa et al., 2014; Su et al., 2014), immersed
boundary (Kohl et al., 2001; Vigmond et al., 2008) and level-
set based methods (Mihalef et al., 2011). The heart valves, on
the other hand, are commonly approximated using the Bernoulli
equation for orifice flow (Flachskampf et al., 1990; Vandervoort
Pieter et al., 1995; Donati et al., 2017).

Additionally, the myocardium hemodynamics are typically
coupled to the rest of the body’s circulation via the Windkessel
circuit model, which mimics the arterial blood pressure’s
waveform. This is a relatively simple method used to obtain
the relationship between the blood flow and the pressure in a
modeled segment through the resistive ‘R’ and the capacitance
‘C’ properties of the arterial vasculature (see Figure 11) (Wall
et al., 2006). Specifically, the heart and the systemic arterial
system are treated as a closed hydraulic circuit, which, contains
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a pump connected to a chamber partially filled with a liquid.
As it is pumped, the latter compresses the air pocket in the
chamber, which in turn pushes the liquid back out (i.e., creating a
back-and-forth cycle). Consequently, the arterial compliance, the
peripheral resistance, and the inertia are modeled as a capacitor,
a resistor, and an inductor, respectively. In this model, the
physiological variables such as pressure ‘P’ and flow ‘Q’ only vary
as a function of time ‘t’ (Morris et al., 2016). The relationship
between the flow rate Q(t) and the pressure P(t) can be expressed
by:

Q(t) =
P(t)

R
+ C

dP(t)
dt

(11)

It essentially states that the volumetric flowrate must equal to
the sum of the volume stored in the capacitive element and the
volumetric outflow through the resistive element. During the
diastole there is no blood inflow (Q = 0), so the Windkessel
equation can be solved for the P(t):

P(t) = P(td)e
−(t−td)

(RC) (12)

where td is the time of the start of the diastole and P(td) is the
blood pressure at that time. Due to its simplicity, the Windkessel
equation is frequently used to approximate various components
and boundary conditions in the cardiovascular system (Morris
et al., 2016). However, this model is only a rough approximation

TABLE 2 | A recent literature survey of how the Biomechanics module is typically personalized using image-based information.

Imaging method Personalized Information from
Imaging

Mapping of the Personalized Information from
the Imaging to the Module’s Inputs

Citation

CT combined transthoracic 2D; and
continuous-wave Doppler
echocardiography

Geometry with Infarcted regions,
ventricular dimensions including early
diastolic volume, EDV, ESV and blood
flow velocities

Geometry was personalized; passive mechanics
parameters were fitted to match the previous
experimental results on cardiac tissues and match
patient-specific EDPV relations; active mechanics
parameters were adjusted to match the
patient-specific measured peak left ventricular
pressures and ESV.

Krishnamurthy et al.,
2013

DT-MRI from explanted heart Fiber direction

Cine cardiac MRI Geometry with ventricular dimensions
and ejection fraction (EF).

Geometry was personalized; passive mechanics
parameters were fitted to match the previous
experimental results and match the previous results
of EDPV relations (due to the unavailability of
subject-specific ventricular pressures that require
invasive measurements).

Palit et al., 2018

Cine cardiac MRI Geometry with ventricular dimensions
and regional strain-time

Geometry was personalized; passive mechanics
parameters were fitted to match patient-specific
EDPV relations; active mechanics parameters were
adjusted to match the patient-specific end-systolic
state.

Finsberg et al., 2018

MRI flow tracing and echocardiographic
Doppler velocity tracings

Geometry with ventricular dimensions
and blood flow velocities.

Geometry was personalized; passive mechanics
parameters were fitted to match the previous
experimental results on cardiac tissues and match
patient-specific EDPV relations; active mechanics
parameters were adjusted to match the
patient-specific measured peak left ventricular
pressures.

Meoli et al., 2015

MRI Geometry with ventricular dimensions Geometry was personalized; passive parameters
were tuned so that the resultant EDV matched the
corresponding MRI-measured cavity volume; active
parameters were adjusted so that the resultant ESV
matched the corresponding MRI-measured cavity
volume.

Lee et al., 2013

Cine MRI and Echocardiography Geometry with ventricular dimensions
and EF

Geometry was personalized; passive and active
parameters were determined by minimizing the sum
of the squared differences between computed and
measured EF, stroke volume, EDV, ESV,
end-diastolic pressure and end-systolic pressure.

Kayvanpour et al., 2015

Cine MRI Geometry with ventricular volume
waveforms

Geometry was personalized; biomechanics
parameters were tuned along with hemodynamics
parameters; passive parameters were adjusted to
match the measured EDPV; active parameters were
adjusted to match patient-specific volume and
pressure waveforms.

Shavik et al., 2020

Phase-contrast MRI Luminal area waveforms
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FIGURE 10 | Summary of the Biomechanics module’s inputs, outputs and applications. Superscripts in the figure correspond to the following references:
1Krishnamurthy et al., 2013; Meoli et al., 2015; Finsberg et al., 2018; 2Krishnamurthy et al., 2013; Meoli et al., 2015; 3Krishnamurthy et al., 2013; Kayvanpour et al.,
2015; Meoli et al., 2015; Finsberg et al., 2018; Palit et al., 2018; Shavik et al., 2020; 4Krishnamurthy et al., 2013; 5Krishnamurthy et al., 2013; Palit et al., 2018; 6Lee
et al., 2013; Meoli et al., 2015; Finsberg et al., 2018.

of the arterial circulation. To that end, the next section covers the
approaches to more detailed hemodynamic formulations.

HEMODYNAMICS WITH
THROMBOGENESIS MODULE

The last class of the cardiovascular models is the one in which the
hydrodynamics of the discrete blood cells, and the biochemistry
associated with their physiological activity, are of interest.
For example, such simulations could be focused on studying
pathological clot formation inside of the heart (Choi et al., 2015;

FIGURE 11 | Two-element Windkessel circuit analogy illustrated.

Mittal et al., 2016; Seo et al., 2016; Harfi et al., 2017), or
embolism into it from other parts of the body. Therefore, these
types of models must simulate the blood as a suspension of
deformable cells (e.g., platelets and/or red blood cells), whose fate
is intertwined with the mechanical motion of the myocardium
(and by association with the electrophysiology of the heart).
This is typically done using Stokesian Dynamics methods,
Dissipative Particle Dynamics, Completed Double Layer
Boundary Integration Equation Method and Lattice Boltzmann
Method (Wang and King, 2012). These are mesoscopic off-
and on- lattice frameworks that calculate trajectories of the
cells under the influence of hydrodynamic and Brownian
forces; while the deformation of the structure is typically
simulated using continuum-based models that treat the cell
membrane and intracellular fluids as homogeneous materials:
some popular approaches are the Boundary Integral Method, the
Immersed Boundary Method, and the Fictitious Domain Method
(Li et al., 2017).

To make matters even more complicated, the mechanism
of the blood clot formation strongly depends on the following
three processes: Receptor-Ligand Binding, Platelet Activation and
the Coagulation Cascade. Specifically, the initiation of thrombus
development starts with tethering of circulating platelets onto
the exposed subendothelial layer where a blood vessel is injured.
This process involves bonding between the various receptors on
the platelet surfaces to the extravascular proteins, such as the
von Willebrand Factor. It is typically modeled using a Monte
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Carlo approach called Adhesive Dynamics, while the rate of the
receptor-ligand bond formation and breakage are determined
by the Bell Model that calculates the probability of dissociation
events occurring over a specific timespan.

Once the platelets have been recruited to the injury site,
they undergo a metamorphosis that is generally described
as “activation.” During this process, the membrane receptors
transmit signals to the inside of the cells, which results in the
dumping of chemical agonists stored in the internal vesicles called
lysosomes and granules (e.g., dense and alpha). The release of
these molecules then activates other neighboring platelets, which
ultimately leads them to becoming “stickier” and compacting into
the blood clot’s body. Unfortunately, the bottom-up description
of the process contains numerous unknowns (Dolan and
Diamond, 2014). For this reason, it has been instead described
via a top-down Neural Network approach, which was trained on
patient-specific experimental data (Flamm et al., 2012).

Lastly, the coagulation cascade is a system of coupled
biochemical reactions with two different initiation pathways,
which both ultimately lead to the polymerization of soluble
fibrinogen (a blood plasma protein) into an insoluble fibrin
mesh that holds the clot together. The kinetic portion of the
cascade involves 34 differential equations, with 42 rate constants,
that cumulatively account for 27 independent equilibrium
expressions and fates of 34 chemical species (Hockin et al.,
2002). Additionally, the mass transport of these species must

be tracked under the flow conditions experienced in the
cardiovascular system (which involves Knudsen diffusion within
the porous clot). Figure 12 summarizes the coupling of the
various hemodynamics submodules, as well as the methods
used to solve them.

Module Personalization
Table 3 summarizes the most common hemodynamics module
personalization approaches encountered in the recent IBM
works, while Figure 13 maps the relationships between the
module’s inputs, outputs and applications. Similarly to the
previous modules, the macroscopic geometry of the heart, and
that of the surrounding blood vessels, is commonly obtained
for use in the Hemodynamics modules via the in vivo imaging
techniques (such as MRI and CT). Additionally, for the body’s
circulation, the parameters values for the Windkessel model
(i.e. ‘R’ and ‘C’ elements) are typically chosen to match the
patient specific cardiac output, flow waveforms and pressure
pulses (Kim et al., 2009, 2010; Kung et al., 2014) obtained via
contrast-enhanced CT scans, Doppler ultrasound scanning and
invasive blood pressure measurements (IBPM). Particularly, the
Doppler ultrasonography allows the measurement of the cardiac
output and heart rate; and the IBPM allows to measure the
systolic and diastolic pressures (Bonfanti et al., 2019). Specifically,
they are first chosen based on literature data (Segers et al.,
2002; Kim et al., 2009) and are then iterated until the calculated

FIGURE 12 | Overview of the specific methods, modules and models commonly used in the state-of-the-art multiscale platelet hemodynamics and thrombus
development studies. (Adopted with permission from Wang and King, 2012).
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flow parameters match the subject’s unique physiological profile
(Kim et al., 2009).

Unfortunately, due to the enormous complexities and
computational costs of the heart modeling, oversimplifications
are common in the personalization of the blood properties within
the Hemodynamics modules. Given that it is typically assumed to
be a Newtonian (or weakly non-Newtonian) fluid, it effectively
does not contain discrete blood cells, such as the platelets or
the erythrocytes. This, in turn, means that only simple flow
properties, like fluid viscosity can be personalized to the subject.
Consequently, the patient-specific biology of these cells (e.g.,
thrombotic propensity, sickle cell anemia, etc.) are omitted. Yet,
in the non-cardio blood modeling, attempts at personalizing
such functionality and disorders have been made: for example,
the application of the Neural Networks trained on the patient-
specific experimental data in order to phenotype the platelet
activation (Flamm et al., 2012). However, we could not find
an example of such an extensive blood personalization in the
cardiovascular modeling literature.

Module Outputs and Applications
Figure 13 summarizes the inputs, outputs and applications of
the cardiac hemodynamics module. Overall, the models that use

the simplified hemodynamics formulation tend to calculate the
blood flow parameters, like the pressure-volume relationship of
the cardiac cycle. These, in turn, help to elucidate quantities that
are key to understanding the heart dysfunctions: such as the
end-diastolic and the end-systolic pressure volume relationships.
Additionally, Fractional Flow Reserve, which is defined as the
pressure difference across a coronary artery stenosis (e.g., a
narrowing due to atherosclerosis), can be calculated to determine
the likelihood that the latter would impede oxygen delivery to
the heart and lead to a myocardial ischemia. Furthermore, the
biomechanical models measure “compliance,” which is the ability
of the blood vessel walls to stretch in order to accommodate
an increasing amount of blood; and “resistance” (defined as
the ratio of the pressure drop and the flow change across the
segment) that the blood flow experiences due to viscous stresses
and constrictions by the blood vessels. Most importantly, the
biomechanics-hemodynamics modeling can be used to predict
the left ventricular ejection fraction (LVEF) - a main indicator
of HF, which is expressed as a percentage of how much blood
the left ventricle pumps out with each contraction. Lastly, such
models can be used to investigate the effects of the blood pumping
assist devices (e.g., LVAD) on the cardiac function, which may
otherwise be too difficult or costly to study experimentally.

TABLE 3 | A recent literature survey of how the Hemodynamics modules are typically personalized using image-based information.

Imaging method Personalized Information from Imaging Mapping of the Personalized Information from the
Imaging to the Module’s Inputs

Citation

CT Coronary arteries geometry Geometry was personalized; parameter values for coronary
model were obtained from literature; parameter values of
lumped heart model (for the inlet) and Windkessel models
(for the outlet) were adjusted to match subject-specific
cardiac output and pulse pressure.

Kim et al., 2010

MRI Coronary arteries geometry Geometry was personalized; parameter values of lumped
heart model (for the inlet) and Windkessel models (for the
outlet) were adjusted to match subject-specific flow
distribution and measured brachial artery pulse pressure.

Kim et al., 2009

CT angiogram Right coronary artery with aneurysmal
region

Geometry was personalized; Windkessel model’
parameters were adjusted to match subject-specific flow
distribution and pressure at outlet boundary of the coronary
artery.

Kung et al., 2014

Phase contrast MRI 3-component flow velocity at two slice
locations in the coronary aneurysm
geometry

Contrast-enhanced CT Aortic dissection geometry Geometry was personalized; inlet flowrate was obtained by
adjusting a typical ascending aorta blood flow waveform to
match the patient-specific hemodynamic data including
cardiac output, heat-rate and systolic-to-diastolic duration
ratio; for the outlet, Windkessel models parameters were
adjusted to achieve patient-specific physiological flow
distribution at each outlet, and to obtain the measured
systolic and diastolic pressures at the inlet.

Bonfanti et al., 2019

Doppler ultrasonography Cardiac output and heart rate

CT angiogram Coronary arteries geometry Geometry was personalized; parameter values of lumped
heart model (for the inlet) and Windkessel models (for the
outlet) were adjusted to match subject-specific flow
distribution and measured aortic pressure.

Grande Gutierrez et al.,
2017

4D cardiac CT images and
echocardiogram

Whole-heart geometry with kinematics of
left ventricle lumen: heart rate, EDV, ESV,
EF, stroke volume.

Geometry was personalized; the immersed
boundary-based method is used to match the
patient-specific kinematics of the left ventricular lumen
including heart rate, EDV, ESV, EF and stroke volume.

Harfi et al., 2017
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FIGURE 13 | Summary of the Hemodynamics modules’ inputs, outputs and applications. Superscripts in the figure correspond to the following references: 1Kim
et al., 2009, 2010; Kung et al., 2014; Bonfanti et al., 2019; 2Tang et al., 2010; Choi et al., 2015; 3Kung et al., 2014; Grande Gutierrez et al., 2017; 4Kim et al., 2010;
Bonfanti et al., 2019; 5Seo et al., 2016; Harfi et al., 2017; 6Koo et al., 2011; Zhang et al., 2014; Min et al., 2015.

Conversely, the models that use the thrombogenesis
hemodynamics module tend to try to assess the propensity of
clot formation at (or near) the heart, based on parameters that
are related to platelet activation: such as the Wall Shear Rate;
the blood Residence Time Near a Damaged Tissue; the Ejection
Fraction (i.e., the percentage of the blood leaving the left ventricle
each time it contracts); Washout Ratio (i.e., the ratio of delayed
ejection volume to the total ventricular blood at the beginning
of the cycle). Additionally, some of these models simulate how
drugs and clot breakup devices (e.g., Vena cava filters) help to
protect the heart from pathogenic events. Overall, this is the most
computationally expensive model type, due to the complexity of
the thrombogenesis/embolism processes (which are themselves
still being actively investigated) (Wang and King, 2012).

Module Personalization Example
The following is a discussion of a representative example of the
personalized hemodynamics modeling applied to predicting the
thrombosis risk in patients with Kawasaki disease (KD) (Grande
Gutierrez et al., 2019). Thrombosis is a major complication
associated with coronary artery aneurysms (CAAs) resulting
from the KD. In this research, the aneurysm hemodynamics
were investigated for thrombotic risk stratification in ten
KD patients, and were compared to the standard clinical
guidelines for anticoagulation therapy. The patient-specific
models were generated from MRI data by performing an

angiography of: the heart, the main coronary arteries (right,
left main, left anterior descending and circumflex), and the
aorta and its arch branches (the brachiocephalic artery, the
left common carotid artery and the left subclavian artery).
This was done via the injection of gadolinium-based contrast
with a cardiac and respiratory-gated 3D TrueFISP sequence.
Computational hemodynamic simulations were then performed
in the reconstructed anatomical model using SimVascular
software (Grande Gutierrez et al., 2019). The pulsatile flow,
deformable arterial walls and Windkessel parameters were tuned
to match the patient-specific arterial pressure and cardiac output.
Local hemodynamics variables were derived from the simulation
results, including the time-averaged wall shear stress, low wall
shear stress exposure and blood residence time. These variables
were then used to develop a framework for predicting the
thrombosis risk. Although platelet activation and aggregation are
typically associated with regions of higher fluid shear (Casa et al.,
2015) and longer blood stagnation (Hathcock James, 2006), this
study showed that a combination of low shear stress coupled
with a high residence time correlated to thrombus formation
in the KD CAAs patients. Furthermore, it was shown that
the prediction of the thrombotic risk using the hemodynamic
variables was validated with a higher sensitivity and specificity
in comparison with the standard clinical metrics. In conclusion,
this type of personalized computational modeling can be used
to provide a non-invasive thrombotic risk stratification that is
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FIGURE 14 | Summary of cardiovascular IBM’s modules and their respective inputs and outputs with corresponding references: 1Krishnamurthy et al., 2013;
Lopez-Perez et al., 2015; 2Krishnamurthy et al., 2013; Cardenes et al., 2014; Kayvanpour et al., 2015; Lopez-Perez et al., 2015; 3Krishnamurthy et al., 2013;
Grande Gutierrez et al., 2017; Finsberg et al., 2018; 4Meoli et al., 2015; Bonfanti et al., 2019; 5Arevalo et al., 2016; Trayanova et al., 2017; Lopez-Perez et al., 2019;
6Krishnamurthy et al., 2013; Finsberg et al., 2018; Palit et al., 2018; 7Kung et al., 2014; Grande Gutierrez et al., 2017; Bonfanti et al., 2019; 8Choi et al., 2015; Seo
et al., 2016; Harfi et al., 2017; 9Arevalo et al., 2016; Deng et al., 2016; Trayanova and Chang, 2016; Prakosa et al., 2018; 10Arevalo et al., 2016; Trayanova et al.,
2017; Deng et al., 2019; 11Voorhees and Han, 2015; Walmsley et al., 2017; Lee et al., 2018; 12Koo et al., 2011; Min et al., 2012, 2015; Zhang et al., 2014; Min
et al., 2015.

more accurate than the current clinical approaches. This, in
turn, can assist the long-term medical management of the KD
patients with the CAAs.

SUMMARY AND CONCLUSION

Most of the published cardiovascular modeling reviews are
typically oriented at an expert audience, which makes it difficult
for the outsiders to understand the full medical potential
of these methods. One of the barriers to penetrating the
field is that these works tend to focus on just one or two
specific aspects of the simulation approach at a time: such as
imaging (Weese et al., 2013; Lamata et al., 2014; Watson et al.,
2018), electrophysiology (Lopez-Perez et al., 2015; Rodriguez
et al., 2015; Beheshti et al., 2016; Gray and Pathmanathan,
2018; Ni et al., 2018), biomechanics (Wang et al., 2015;
Chabiniok et al., 2016), hemodynamics (Zhong et al., 2018),
electro-biomechanical coupling (Trayanova, 2011, 2012; Tobon-
Gomez et al., 2013; Niederer et al., 2019b), biomechanics-
hemodynamics coupling (Tang et al., 2010; Sun et al., 2014), etc.
In contrast, our manuscript provides a “big picture” overview
of the components that these models are built from; their
mechanisms, inputs, outputs and connecting pipelines; the

underlying physiological processes that they represent; their
image-based personalization to the individual patient’s unique
anatomy; and their applications to the different cardiovascular
disease understanding and treatments.

As a part of our review, it was found that although
this type of modeling holds a tremendous potential for
revolutionizing personalized cardiovascular medicine, it is still
in its infancy (with HeartFlow being the only commercially
available product). Furthermore, due to the slow speed of
high-resolution imaging, most of the IBM in academia still
rely on scans of dead hearts (as opposed to beating ones).
This, however, is expected to change, as the imaging speeds
of mCT and MRI are increased. As far as the physics being
modeled, the modules, their inputs and outputs are summarized
in Figure 14. The simplest application of the cardiovascular
IBM is to the study of arrythmias, which simulates the
propagation of electrical impulses through the myocardium,
while ignoring the biomechanics and hemodynamics. At the
subcellular level, these models calculate transfer of ions across
the cell membrane channels, while at the macro level the
transfer of potential between the cells is modeled as a diffusive
process. Conduction irregularities, ablation targets, and effects
of defibrillation are just some of the outputs provided by the
electrophysiological models.
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The more complex models account for the biomechanical
processes occurring in the myocardium. These models are
focused on how abnormalities in the tissue morphology and
stiffness affect the pumping efficiency of the heart. At the
subcellular level, they simulate how the electrically driven
calcium signaling governs the crossbridge mechanism of the
active tension generation via the actin-myosin interactions
in the cells’ sarcomeres. Additionally, the solid mechanics
calculation also involves the passive stress of the myocardium,
which represents the stress-strain relationship of the cardiac
fibers without the electrical stimulation. The resulting tissue
deformation is then backwards-coupled to the electrophysiology,
since the stretching of the cells can change the gap junction
distance to their neighbors (which results in changes to the
ionic conductivity).

Lastly, these models are coupled to the hemodynamics
calculations via fluid-structure interactions. If only the blood
flow without the clot formation is of interest, then the
structure of the fluid is approximated to be homogeneous
and Newtonian; while the rest of the body’s circulation is
introduced as an oscillating pressure boundary condition that
is assumed to behave like a simple RC circuit. This type
of model can provide insight into HF due to deformities
and obstructions, as well as allow for virtual design and
testing of assisted pumping devices. On the other hand, if
clotting information is necessary, the blood must be treated
as a suspension of deformable particles, with receptor ligand
interactions, intra-cellular signaling, and coupled biochemical
reactions representing the coagulation cascade. Although a
lot more involved, this type of model can be useful for
antithrombotic drug development and design of clot breakup
devices (e.g., Vena cava filters) meant to protect the heart.
However, for simplicity most cardiovascular IBM do not account
for the hydrodynamics and biomechanics of the individual blood
cells. Likewise, the coagulation cascade and the platelet activation,
both of which are central to thrombogenesis, are oversimplified
relative to the state-of-the-art within the non-cardiovascular
blood modeling field.

Overall, the cardiovascular IBM is expected to become more
mainstream as the computational and imaging technologies
advance. This could potentially revolutionize how cardiovascular
medicine is done in the future. Yet, significant improvements

are still required to personalize the models more. For example,
a common limitation across all of the modules is that the
myocardium (e.g., conductivity and tissue stiffness) and the blood
(e.g., hematocrit, coagulation cascade and platelet activation
kinetics and deficiencies) properties that they use are typically
estimated based on empirical measurements performed ex vivo
and using samples that are not derived from the same individual
(or even from the same species for that matter). Therefore,
better imaging methods need to be developed, such that these
properties could be estimated by scanning the individual patient.
Furthermore, a finer image resolution is needed to capture
the individualized variations in the conductive and contractile
fibers, and their junctions. Likewise, the computational methods
need to improve their modeling of the intra-cellular processes
(e.g., the crossbridge mechanism) for the cardiovascular IBM to
become more physiologically representative and adopted by the
mainstream clinical market. However, given the fast pace of the
technological progress, the near future impact of the IBM on the
cardiovascular medicine is imminent.
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GLOSSARY

Action Potential
A brief reversal (i.e., “depolarization” increase from a negative resting state followed by “repolarization” down to the original levels)
in the voltage polarity of cardiomyocytes, which is generated by ion (e.g., Ca++, Na+, and K+) exchange across specialized channels
in the cell membrane. The propagation of this electrical impulse through the heart tissue occurs via currents of the Ca++ and K+
ions moving through the gap junctions from the activated cells to their resting neighbors. This leads to the eventual contraction of the
cardiac fibers along the conduction pathway.

Activation Rate Gradient
An arrythmia measure indicating a difference in the speed with which cardiomyocytes in the epicardial and in the endocardial tissues
activate (i.e., depolarize/repolarize) in response to applied external stimuli (e.g., electrodes, needles, heat, blocking ion channels via
medications, etc.) during Ventricular Fibrillation studies.

Bidomain Formulation
A mathematical framework that is used in Electrophysiology modeling to simulate the propagation of the Action Potential (see
definition) through the myocardium. As opposed to the Monodomain Formulation (see definition), it considers both the intra- and
the extra- cellular domains of the ion exchange across the cardiomyocyte membrane separately.

Cauchy–Green (Left and Right) Tensors
Rotation-independent measures of the material (e.g., myocardium tissue) deformation, in a spatial reference and in the object’s
coordinate systems, respectively. They are often used when describing the passive properties of hyperelastic materials, such as the
diastolic cardiac dysfunction.

Conductivity Tensor
A mathematical quantity that describes the electrical conductivity of the myocardium. This property is highly dependent on the
orientation of the fibers that the conductive heart cells are arranged into within the tissue. For this reason, the effective conductivity of
the myocardium differs, depending on the direction of the current flow. Therefore, the tensor encompasses 9 total conductivity values:
three of them represent directions along each of the principle axes, while the other six express the correlation of the conductivity
between each pair of the principal directions.

Deformation Gradient Tensor
A mathematical quantity that describes a shape change (e.g., stretch), as well as overall rotation, relative to an initial state of a material
(e.g., cardiac fiber structure). It holds information about the difference in the current locations of neighboring cardiomyocytes and is
unity when they are displaced equally (i.e., for no deformation).

Diffusion Tensor
A mathematical quantity calculated in magnetic resonance imaging to visualize structural arrangements (e.g., fibers, sheets) of the
cardiomyocytes within the myocardium. It is based on at least 6 unique (plus one baseline) measurements of how the diffusion of
water molecules is restricted or biased in different directions by the structural obstructions that they encounter during their motion
in the tissues of the hearts. Therefore, the tensor encompasses three main elements that represent diffusion coefficients along each of
the principal axes, while the off-diagonal terms reflect the correlation of random motions between each pair of principal directions.

Determinant of the Deformation Gradient Tensor
A scalar value corresponding to the ratio of the deformed to the undeformed volume, which is computed from the elements of the
Deformation Gradient Tensor (see definition) in order to quantify the amount of transformation occurring in the cardiac geometry.

Invariant
A property of a mathematical quantity which remains unchanged after an application of an operation or a transformation. For
example, when calculating strain and stress of the cardiac fibers it is important that the resulting principal values remain the same,
regardless of the coordinate system chosen for their calculation or measurement.

Membrane Capacitance
A constant that describes the relationship between the voltage across the membrane of a cell and the ionic charge that builds up on its
interior and exterior surfaces. In cardiomyocytes it effectively determines how quickly the Action Potential (see definition) can travel
through the myocardium. It is therefore useful for both modeling and understanding their excitability and pathological conditions.
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Monodomain Formulation
A mathematical framework that is used in Electrophysiology modeling to simulate the propagation of the Action Potential through
the myocardium. As opposed to the Bidomain Formulation (see definition), it does not consider both the intra- and the extra- cellular
domains of the ion exchange across the cardiomyocyte membrane. Instead, the framework is expressed in terms of a transmembrane
potential, which assumes that the intracellular and extracellular ion diffusivities are proportional to each other.

Neural Network
A set of artificial intelligence algorithms, modeled loosely after how the human brain learns, that are designed to recognize patterns
within complex datasets. In cardiovascular modeling specifically, they are used to represent processes that are too difficult to describe
mathematically using first-principle methods: for example, platelet “activation” – a cascade of cell membrane surface receptor
activation, intracellular signaling, dumping of granules, etc. – in the context of thrombosis.

Stored (a.k.a., Strain) Energy Density Function
Energy per unit volume of a material temporarily deformed by an applied force, like a coiled spring or a stretched elastic band.
This quantity is commonly used to formulate constitutive force-deformation relationships that characterize the spatial and temporal
variations in the orthotropic (i.e., different in the axial, radial, and circumferential directions) properties of the myocardium. It is
largely dominated by the structural arrangements of the myocardial fibers in the heart tissue.
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