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Temporal multi-omics data can provide information about the dynamics of disease

development and therapeutic response. However, statistical analysis of high-dimensional

time-series data is challenging. Here we develop a novel approach to model temporal

metabolomic and transcriptomic data by combining machine learning with metabolic

models. ADAPT (Analysis of Dynamic Adaptations in Parameter Trajectories) performs

metabolic trajectory modeling by introducing time-dependent parameters in differential

equation models of metabolic systems. ADAPT translates structural uncertainty in the

model, such as missing information about regulation, into a parameter estimation

problem that is solved by iterative learning. We have now extended ADAPT to include

both metabolic and transcriptomic time-series data by introducing a regularization

function in the learning algorithm. The ADAPT learning algorithm was (re)formulated as a

multi-objective optimization problem in which the estimation of trajectories of metabolic

parameters is constrained by the metabolite data and refined by gene expression data.

ADAPT was applied to a model of hepatic lipid and plasma lipoprotein metabolism to

predict metabolic adaptations that are induced upon pharmacological treatment of mice

by a Liver X receptor (LXR) agonist. We investigated the excessive accumulation of

triglycerides (TG) in the liver resulting in the development of hepatic steatosis. ADAPT

predicted that hepatic TG accumulation after LXR activation originates for 80% from an

increased influx of free fatty acids. The model also correctly estimated that TG was stored

in the cytosol rather than transferred to nascent very-low density lipoproteins. Through

model-based integration of temporal metabolic and gene expression data we discovered

that increased free fatty acid influx instead of de novo lipogenesis is the main driver of

LXR-induced hepatic steatosis. This study illustrates how ADAPT provides estimates

for biomedically important parameters that cannot be measured directly, explaining

(side-)effects of pharmacological treatment with LXR agonists.
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1. INTRODUCTION

Dynamic responses contain important information about
the behavior of biological systems. For example, data from
continuous glucose monitoring has been used to identify
characteristic patterns in glucose dynamics (Hall et al., 2018).
Statistical modeling of time-series data using machine learning
works well if the number of samples (individuals) in the dataset
is large and the number of outcome variables is (relatively)
small. For example, Latent Class Trajectory Analysis has been
applied for time-series modeling of glucose measurements
obtained during an oral glucose tolerance test (Hulman et al.,
2018), thyroid hormones during gestation (Pop et al., 2018)
and troponin levels after cardiac surgery (Deneer et al., 2020).
The application of omics technologies, such as transcriptomics
and metabolomics, to study the dynamics of biological systems
results in high-dimensional time-series data, in which the
number of gene expression values or small molecules detected in
biological fluids is larger than the number of samples. Statistical
analysis of high-dimensional time-series data is challenging.
Mechanistic modeling offers a complementary approach to
study the dynamics of biological systems (van Riel, 2006).
Differential equation models can be used to describe disease
progression. For example, the model by de Winter et al. (2006)
is composed of three differential equations to simulate glucose,
insulin and HbA1c (glycated hemoglobin) over time in patients
with diabetes. Dynamic metabolic models calibrated to time-
series data have been developed for biological systems such
as yeast (e.g., Rizzi et al., 1997; van Riel et al., 1998) and
human metabolism (e.g., Rozendaal et al., 2018a; O’Donovan
et al., 2019). In silico dynamic models often lack the multi level
layers of regulation that control metabolism. This impedes their
application in disease modeling because causes of disease can be
located at multiple levels, and also molecular therapies can be
targeted to genes, proteins and metabolites. To overcome current
limitations in statistical analysis and mechanistic modeling we
combine metabolic modeling with machine learning techniques
to integrate longitudinal metabolic and transcriptomic data.
Previously we developed the computational approach called
ADAPT (Analysis of Dynamic Adaptations in Parameter
Trajectories) (Tiemann et al., 2011; van Riel et al., 2013). ADAPT
combines mechanism-based differential equation models with
machine learning to model temporal metabolic data (Tiemann
et al., 2013; Rozendaal et al., 2018b). ADAPT functions as a so-
called state observer (or state estimator), which is a system that
provides an estimate of the internal state of a given real system
from measurements of the input and output of the real system.
Here, we aimed to extend ADAPT to include both metabolic
and transcriptomic time-series data. Hereto we added a new
regularization function to the learning algorithm that is used
to estimate model parameters. The new version of ADAPT uses
the metabolite data as input to estimate trajectories of metabolic

Abbreviations:ADAPT, analysis of dynamic adaptations in parameter trajectories;

apo, apolipoprotein; C, cholesterol; CE, cholesterylester; DNL, de novo lipogenesis;

ER, endoplasmic reticulum; FC, free cholesterol; FFA, free fatty acid; FPLC, fast

protein liquid chromatography; HDL, high density lipoprotein; LXR, liver X

receptor; ODE, ordinary differential equation; SSE, sum of squared errors; TG,

triglyceride; VLDL, very low density lipoprotein.

parameters and takes the gene expression data as additional
information to refine the trajectories.

ADAPT has been applied to a model of hepatic lipid
and plasma lipoprotein metabolism (HepaLip2) to predict
which metabolic adaptations are induced upon pharmacological
treatment of mice by Liver X receptor (LXR) agonist T0901317.
LXR agonists exert potent antiatherosclerotic actions but
simultaneously induce excessive triglyceride (TG) accumulation
in the liver. Using the new version of ADAPT we reveal
that both input and output fluxes to hepatic TG content are
considerably induced on LXR activation and that in the early
phase of LXR agonism, hepatic steatosis results from only
a minor imbalance between the two. It is generally believed
that LXR-induced hepatic steatosis results from increased de
novo lipogenesis (DNL). In contrast, ADAPT predicts that
the hepatic influx of free fatty acids is the major contributor
to hepatic TG accumulation in the early phase of LXR
activation. This prediction is tested in vivo by a metabolic
tracer experiment.

2. RESULTS

2.1. HepaLip2: Model of Hepatic Lipid and
Plasma Lipoprotein Metabolism
Fundamental in ADAPT is a mathematical model of the
(molecular) pathways of interest. We developed a mathematical
multi-compartment model describing triglyceride and
cholesterol metabolism (HepaLip2). The mathematical model
contains three compartments representing the liver cytosol,
liver endoplasmic reticulum (ER) and blood plasma (Figure 1).
The liver includes the production, utilization and storage of
triglycerides (TG) and cholesterols. Triglycerides are produced
in the ER and can be transferred to the cytosol where they
are stored in lipid droplets or catabolized. TG produced in
the ER are also incorporated into nascent produced very low
density lipoprotein (VLDL) particles. These VLDL particles
are subsequently secreted in the blood plasma where they
provide nutrients for peripheral tissues. The model also includes
the hepatic uptake of free fatty acids (FFA) from plasma that
predominantly originate from adipose tissue. Finally, the
model includes the reverse cholesterol transport pathway,
i.e., the net transport of cholesterol from peripheral tissues
back to the liver via high density lipoproteins (HDL). The
model is composed of 11 differential equations, (Table 1) 29
fluxes and 22 parameters. The flux equations are based on
mass-action kinetics. Each flux equation introduces a parameter
with unknown in vivo value. Collectively these parameters
are referred to as the ’metabolic parameters’. A detailed
description of the mathematical model including an overview
of the state variables, parameters, fluxes, and differential
equations is presented in the Supplementary Material

(section 2).

2.2. Pharmacological Treatment With LXR
Agonists
The liver X receptor (LXR) plays a central role in the
control of cellular lipid and cholesterol metabolism and is
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FIGURE 1 | Computational model of hepatic lipid and plasma lipoprotein metabolism (HepaLip2), under fasting conditions. The HepaLip2 model is composed of three

compartments representing the liver cytosol, liver endoplasmic reticulum, and blood plasma. The liver compartment includes reactions comprising the production,

utilization, and storage of triglycerides and cholesterols, and the mobilization of these metabolites to the endoplasmic reticulum, where they are incorporated into

nascent VLDL particles. The VLDL particles are secreted in the plasma compartment where they serve as energy source for peripheral tissues. Remnant particles are

taken up and cleared by the liver. The model furthermore includes the hepatic uptake of free fatty acids as well as HDL-mediated reverse cholesterol transport. The

model is composed of 11 differential equations (and 11 corresponding state variables x), 29 fluxes f and 22 (unknown) parameters. ApoB, apolipoprotein B; CE,

cholesterylester; ER, endoplasmic reticulum; FFA, free fatty acid; FC, free cholesterol; HDL, high density lipoprotein; TG, triglyceride; VLDL, very low density lipoprotein.

considered a potential target to treat or prevent atherosclerosis.
However, a serious complication of LXR activation is the
excessive accumulation of triglycerides in the liver, which finally
results in the development of hepatic steatosis. The underlying
molecular mechanisms inducing these adaptations are not fully
understood, which complicates the clinical application of LXR
agonists (Grefhorst et al., 2002; Grefhorst and Parks, 2009;
Cave et al., 2016). We used data obtained from pharmacological
treatment of mice by LXR agonist T0901317 up to 3 weeks.
Quantitative experimental data at different stages of the
treatment intervention were collected to study the dynamics
of induced molecular adaptations. All the experiments were

performed in the fasting state. Details about the experimental
procedures can be found in section 5.

An overview of the quantities that were experimentally
observed and their relation to corresponding model components
is presented in Table 2. A model output yi (i = 1, . . . , 15) was
coupled to experimental data di. Somemodel outputs are equal to
state variables, other outputs are a combination (summation) of
state variables. The data also includes fluxes, such as the synthesis
rate of triglycerides secreted in VLDL particles, and the size and
composition of VLDL particles and the corresponding variables
in themodel were also selected as outputs. Data was collected at 0,
1, 2, 4, 7, 14, and 21 days of treatment with T0901317 (Figure 2).
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TABLE 1 | State variables included in the HepaLip2 model (Figure 1).

State Name Description Units

x1 xFC Hepatic free cholesterol µ mol/liver

x2 xCEcyt Hepatic cholesteryl ester (cytosol) µ mol/liver

x3 xCEER Hepatic cholesteryl ester (ER) µ mol/liver

x4 xTGcyt
Hepatic triglyceride (cytotol) µ mol/liver

x5 xTGER
Hepatic triglyceride (ER) µ mol/liver

x6 xTGdnlcyt Hepatic de novo triglyceride (cytosol) µ mol/liver

x7 xTGdnlER Hepatic de novo triglyceride (ER) µ mol/liver

x8 xTGVLDL
Plasma VLDL-triglyceride µ mol/L

x9 xCVLDL Plasma VLDL-cholesterol µ mol/L

x10 xCHDL Plasma HDL-cholesterol µ mol/L

x11 xFFA Plasma free fatty acid µ mol/L

The differential equations, parameters and fluxes are presented in

Supplementary Material (section 2).

TABLE 2 | Measured quantities and their relation to model components.

Measurement Model

output

Equation Unit

Hepatic triglyceride y1 [x4]+ [x5]+ [x6]+ [x7] µ mol/liver

Hepatic cholesteryl

ester

y2 [x2]+ [x3] µ mol/liver

Hepatic free cholesterol y3 [x1] µ mol/liver

Plasma total cholesterol y4 [x9]+ [x10] µ mol/L

HDL-cholesterol y5 [x10] µ mol/L

Plasma triglyceride y6 [x8] µ mol/L

Plasma free fatty acid y7 [x11] µ mol/L

VLDL TG/C ratio y8 TGcnt/CEcnt [-]

VLDL diameter y9 DVLDL nm

VLDL-TG production y10 f14 µ mol/h

VLDL catabolic rate y11 CRVLDL [-]

de novo lipogenesis y12 FCDNL [-]

Hepatic HDL-C uptake y13* f21 µ mol/h

Ratio cyt-TG / ER-TG

concentration

y14* RcTGcyt,TGer [-]

Ratio cyt-TG / ER-TG

production

y15* RpTGcyt,TGer [-]

*Only for the untreated phenotype (t = 0).

Most measurements were available for all the seven time points,
but y13 to y15 were experimentally observed for the untreated
phenotype (t = 0) only.

2.3. Calibrating the Model to the Untreated
Phenotype
First the HepaLip2 model was used to describe the untreated
phenotype. Model parameters at baseline (start of simulation
and experiment) are estimated from metabolic data and
flux information. ADAPT estimates the model parameters by
applying a least squares algorithm that minimizes the sum of
squared errors (SSE) between the metabolic data dm,i of the
untreated phenotype and corresponding model outputs yi. To

account for experimental and biological uncertainties different
random samples of the data were generated assuming a data
error model based on Gaussian distributions, with means and
standard deviations according to the experimental data. A global
scatter search was used to initialize a multi-start, gradient-based,
interior point local optimization method, resulting in a collection
of parameter sets that describe the untreated phenotype. These
parameter sets served as a starting point from which ADAPT
iteratively learns and updates the parameters to describe the
transition between experimental data obtained during different
stages of the treatment, as is described next.

2.4. Linking the Computational Model to
Time-Series Data
HepaLip2 and ADAPT have been employed to generate
insight in the LXR agonism response. The T0901317-induced
perturbation starts at the proteome level and subsequently
induces adaptations at the other levels. During the 3 week
treatment the metabolic parameters and fluxes are expected to
change over time. ADAPT captures adaptations or modulating
effects on metabolic pathways by introducing time-dependent
descriptions of model parameters. Parameter trajectories are
constrained by experimental data. To enable the estimation
of dynamic trajectories of metabolic parameters and fluxes,
continuous dynamic descriptions of the experimental data are
used as input for ADAPT. For this purpose, cubic smoothing
splines were calculated that describe the experimental data,
taking into account experimental and biological uncertainties. A
collection of splines was calculated using aMonte Carlo approach
as follows. For all time points in the data the same data model
and sampling approach were used as described above for the
untreated phenotype (the first time point in the time-series).
Subsequently, for each generated set of time samples a cubic
smoothing spline was fitted, which is used as input for the next
step of the ADAPT algorithm. The experimental data and splines
are presented in Figure 2.

2.5. Estimating Time-Dependent Changes
of the Model Parameters
The HepaLip2 model mechanistically describes the kinetics
of metabolic pathways (Figure 1). ADAPT is based on the
assumption that during disease development and treatment
response, changes in kinetic metabolic parameters are caused
by changes in corresponding enzymes that catalyze conversion
or transport of metabolites. Adaptations in metabolic processes
are identified by inferring which metabolic parameters and
consequently metabolic fluxes necessarily have to change to
describe the experimental data. To this end, a simulation of
the full treatment period was divided into a number Nt of
time segments 1t. First, the simulation is started using the
parameters and model state of the untreated phenotype. Next,
for each subsequent segment n, the system is simulated (using
a variable step integration method) for a time-period 1t using
the parameters and model state of the previous step n − 1 as a
starting point. The parameters for segment n are re-estimated
by minimizing the difference between the data interpolants
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FIGURE 2 | Metabolic data and interpolants. Metabolic time-series data and 2D histograms of the splines that were used as input for ADAPT (included in χ2
d ,

Equation 2). A darker color represents a higher density of trajectories in that specific region and time point. The white lines enclose the central 67% of the interpolant

density at each time point. Data is represented as means ± standard deviations (N = 5–6), with an exception for the experimental data obtained via FPLC

measurements. These measurements were performed on pooled mice plasma and are represented by the white dots. Measures of variance used for the Monte Carlo

sampling of these quantities were estimated based on similar experiments that were performed in Grefhorst et al. (2012).

and corresponding model outputs for that time segment. This
procedure is repeated for all segments and as a result parameter
trajectories are inferred by minimizing the objective function χ2

over the time segments through numerical optimization:

Êp(n1t) = arg min
Ep(n1t)

χ2(Ep(n1t)) n = 1, . . . ,Nt (1)

Êp(n1t) represents the optimized parameter set for the nth time
segment. The objective function χ2 is the weighted sum of
squared differences between model outputs and data:

χ2(Ep(n1t)) =

Ny
∑

i=1

(

Yi(n1t)− dm,i(n1t)

σm,i(n1t)

)2
.
= χ2

d (Ep(n1t))

(2)

where Ny is the number of measured model variables (outputs),
Yi(n1t) are the discrete time model outputs, dm,i(n1t) are the
interpolants of the metabolic data with standard deviation σm,i.
The optimization procedure is repeated for all data interpolants,
starting from the state and parameter set of the untreated
phenotype. An ADAPT solution was considered acceptable if
model outputs were within the 95% confidence interval of the
data. In this study Ny = 15, and Nt = 200 was used.

ADAPT simulation of HepaLip2 provides estimates for
system variables that were not experimentally observed, such
as the synthesis rate and composition of VLDL particles

(Supplementary Figure 7). As observed before (Tiemann et al.,
2013), VLDL particle secretion is reduced upon LXR activation.
Although the secretion of VLDL particles decreased, an increased
release of VLDL-TG to the plasma was experimentally observed
(Supplementary Figure 7B). Similarly, the computational
analysis showed an increased production of VLDL-CE to the
plasma (Supplementary Figure 7C). According to the model
the progressive increase of these fluxes was facilitated by an
increased loading of triglycerides and cholesterol onto VLDL
particles (Supplementary Figures 7D,E). These predictions were
obtained using only the metabolic data as input for ADAPT.

2.5.1. Integration of Gene Expression Data
Until here ADAPT connected metabolic parameters to activity
of enzymes (protein level). Next, gene expression was added
as a third layer of information. ADAPT has been extended to
include a potential functional relationship between metabolic
parameters and gene expression levels. Variables in the
mechanistic (metabolic) part of the model can be directly linked
to metabolic data, which is used to fit the model to that
experimental data. Pathways at the transcriptome level were not
modeled mechanistically due to the lack of sufficient quantitative
information about these systems. Gene expression data does not
have an one-to-one connection with the metabolic variables and,
therefore, cannot be included in the error function (Equation
2). Therefore, a different approach was used to integrate gene
expression data in the parameter trajectory estimation algorithm.
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The transcriptomic data is implicitly used to constrain the
dynamic behavior of parameter trajectories, by including a
regularization function. Time-course data of relative expression
levels of 23 genes was available (Figure 3). Table 3 provides
an overview of the parameters and genes that were coupled.
The optimization problem was extended as follows. First, for
each time segment 1t, parameter adaptations are preferred
such that resulting parameter trajectories and corresponding
gene expression profiles display temporal correlation. This was
implemented by including an additional component (χ2

g1
) in

the objective function which maximizes the Pearson correlation
between these profiles. Secondly, the gene expression data
was also used to find parameter trajectories that are steady
and smooth (enforcing temporal sparsity in the solutions). It
was assumed that parameters are less likely to change when
corresponding gene expression levels remain unchanged over
time, compared to data indicating that expression of the genes
is induced or repressed. Therefore, when transcriptomics data
indicate that expression of genes changes over time parameter
adaptations will be less penalized compared to genes with
constant expression. This was implemented by including a third
component (χ2

g2
) in the objective function which utilizes the

time derivative of gene expression profiles to penalize parameter
fluctuations. The higher the derivative of the gene expression
profile, the lower the penalty on changes in parameter values will
be. The resulting objective function χ2(Ep) is written as:

χ2(Ep) = χ2
d (Ep)+ λg1χ

2
g1
(Ep)+ λg2χ

2
g2
(Ep) (3)

in which χ2
d
is the (weighted) sum of squared errors (SSE) of

metabolic data and model outputs (Equation 2), χ2
g1

maximizes
the temporal correlation between parameter trajectories and gene
expression profiles, and χ2

g2
penalizes parameter fluctuations.

λg1 and λg2 are regularization constants (also referred to as
weighting coefficients) that determine the relative importance of
the components. Further details are provided in section 5 and in
the Supplementary Material.

2.6. Setting the Regularization Constants
In multi-objective optimization and regularized regression
approaches, like Equation (3), the weights of the different
components in the objective function are important hyper-
parameters of the algorithm that are problem dependent and
need to be tuned for adequate performance. First, the influence
of the regularization constants for gene correlation (λg1 ) and
damping of unnecessary parameter fluctuations (λg2 ) on the
estimation of the parameter trajectories was investigated using
a Monte Carlo approach. ADAPT was performed for 20, 000
random combinations for λg1 and λg2 and the values of the three
components in the objective function were analyzed. Results
are reported in the Supplementary Material (section 3.1). We
found combinations of regularization constants for which λg1χ

2
g1

becomes effective: when λg1 is larger than 10−6 and λg2 is
smaller than 10−8 parameter-gene couples displayed temporal
correlation. For these combinations λg2 is sufficiently large for
λg2χ

2
g2

to reduce unnecessary parameter trajectory fluctuations,

and the data error χ2
d
is always small (Supplementary Figure 3).

Secondly, the characteristics of parameter trajectory solutions
corresponding to a specific combination of gene regularization
constants was investigated. In some cases parameter-gene
couples already displayed (high) temporal correlation without
including gene expression data (Supplementary Figure 4,
bottom panel). As expected, in many cases an increase in
temporal correlation between the assigned parameter-gene
couples was obtained when gene expression data was included
(Supplementary Figure 4, bottom panel). Interestingly, couple
c5,1 showed a predominantly negative correlation for all solution
groups. Couple c5,1 links the expression of Apob encoding
for the apolipoprotein B to VLDL particle secretion (flux
f24, parameter p22, Table 3). This can be explained when
inspecting the VLDL particle secretion, described in detail in the
Supplementary Material (section 3).

After these verification steps, we concluded the proposed
method works as designed for Hepalip2 in combination with
the experimental data: ADAPT provides a data-driven approach
to incorporate the multi level layers of regulation in a
dynamic model of metabolism. In the following sections we
analyze the applicability of gene expression data to constrain
model predictions, and ADAPT is applied to study: (1) the
compartmentalization of hepatic triglycerides, (2) adaptations
in the hepatic lipid loading capacity, and (3) the quantitative
contribution of the different metabolic routes to the increased
hepatic triglyceride level.

2.7. Integration of Gene Data Constrains
Metabolic Predictions
We introduce the following notation: A group of trajectory
solutions is denoted by Gi where i (0.05 ≤ i ≤ 1) represents
the fraction of all solutions with the highest temporal correlations
of parameter trajectories with gene expression over the entire
treatment period (hence lowest χ2

g1
). For example, group G0.05

contains 5% of the 20, 000 trajectory solutions with the lowest
values for χ2

g1
summed over time. Furthermore, G0 is defined as

the group of solutions corresponding to λg1 = λg2 = 0 (solutions
obtained without regularization). The effect of integration of
gene expression data on model performance was expressed
as reduction in variance in model estimations (Equation 7
in the Supplementary Material). Figure 4 shows the variance
reduction of G0.05 compared to G0 at each time point for all state
variables (left panel), parameters (middle panel), and fluxes (right
panel). The (dark-)gray parts clearly display model predictions
that were effectively constrained by the gene expression data.
Note that in multiple cases also a reduction in variance was
obtained for parameters that were not coupled to genes.

2.8. Compartmentalization of Hepatic
Triglycerides
A reduction in the variance (estimation uncertainty) was
observed for many of the model components when gene
expression was included (Figure 4). One example concerns
the hepatic storage of triglycerides in cytosolic (x4 + x6) and
endoplasmic reticulum (x5 + x7) fractions. The cytosolic fraction
represents the TG pool stored in lipid droplets and the ER
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FIGURE 3 | Gene expression data and interpolants. Temporal expression data for 23 genes and 2D histograms of the corresponding cubic splines that were used as

input for ADAPT (included in χ2
g1

and χ2
g2
). The experimental data is represented as means ± standard deviations (N = 5-6). The white lines enclose the central 67% of

the interpolant density at each time point. (see Table 3 for the gene names).
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TABLE 3 | Parameter-gene couples, linking 23 genes to 11 model parameters.

Couple Parameter Gene Description

c1,1 p16 Ldlr Low-density lipoprotein receptor

c1,2 p16 Vldlr Very-low-density lipoprotein receptor

c1,3 p16 Lrp1 Low-density lipoprotein receptor-related

protein 1

c2,1 p12 Cd36 Cluster of differentiation 36

c2,2 p12 Ap2 Adipocyte protein 2

c3,1 p14 Mtp Microsomal triglyceride transfer protein

c4,1 p15 Mtp Microsomal triglyceride transfer protein

c5,1 p22 Apob Apolipoprotein B

c6,1 p18 Lpl Lipoprotein lipase

c7,1 p8 Lcad Long chain acyl-CoA dehydrogenase

c7,2 p8 Aox Aldehyde oxidase

c7,3 p8 Hmgcoa Hydroxymethylglutaryl-CoA

c7,4 p8 Ucp2 Uncoupling protein 2

c8,1 p7 Gpat Glycerol-3-phosphate acyltransferase

c8,2 p7 Fas Fatty acid synthase

c8,3 p7 Me1 NADP-dependent malic enzyme 1

c8,4 p7 Srebp-1c Sterol regulatory element binding

transcription factor 1c

c8,5 p7 Scd1 Stearoyl-CoA desaturase 1

c9,1 p10 Gpat Glycerol-3-phosphate acyltransferase

c9,2 p10 Fas Fatty acid synthase

c9,3 p10 Me1 NADP-dependent malic enzyme 1

c9,4 p10 Srebp-1c Sterol regulatory element binding

transcription factor 1c

c9,5 p10 Scd1 Stearoyl-CoA desaturase 1

c10,1 p2 Abcg1 ATP-binding cassette subfamily G member 1

c10,2 p2 Abcg5 ATP-binding cassette subfamily G member 5

c10,3 p2 Cyp7a1 Cytochrome P450, family 7, subfamily A,

polypeptide 1

c11,1 p1 Sqs Squalene synthase

c11,2 p1 Hmgcoared HMG-CoA reductase

c11,3 p1 Srebp-2 Sterol regulatory element-binding protein 2

A description of the parameters and corresponding fluxes is presented in

Supplementary Material (section 2).

fraction the TG contained in nascent VLDL particles. Figure 5
shows the 95% intervals of these model quantities for group
G1 (Figure 5, left column), G0.1 (Figure 5, middle column),
and G0.05 (Figure 5, right column). The experimental data only
includes measurements of the total hepatic triglyceride content
(y1) and the model provides more detailed information on where
these lipids reside inside the hepatocyte. Experimental data of
the total hepatic triglyceride content (y1 = x4 + x5 + x6 + x7)
was included in the optimization procedure and all solution
groups describe this data adequately. Before the inclusion of
gene expression data, it was not possible to accurately predict
how the total triglyceride content is distributed between cytosolic
and VLDL fractions (Figure 5, left column). However, when the
gene expression data was included, the model estimates that the
increased triglyceride fluxes are especially stored in the cytosol,
rather than transferred to nascent VLDL (Figure 5, middle and

right column). This estimation was more precise for the 5% of
the trajectory solutions with the lowest values for χ2

g1
(highest

temporal correlation with gene expression) compared to when
the number of trajectories in the analysis was increased to
include 10% of the trajectories with the lowest values for χ2

g1
(G0.05 vs. G0.1).

Subsequently, additional independent measurements
were performed to validate this model result. Fractionation
experiments were performed on livers from untreated C57BL/6J
mice and C57BL/6J mice treated with T0901317 for 14 days, to
separate the cytosolic triglyceride fraction from the microsomal
fraction, containing VLDL. A description of the experimental
materials and procedures is available in section 5. Indeed,
the experimental data shows that the increased triglyceride
fluxes are predominantly stored in the cytosolic fraction
compared to the microsomal fraction (Figure 6), confirming the
model prediction.

The parameter and flux trajectories were investigated to
determine which processes are responsible for the observed
compartmentalization of hepatic triglycerides between cytosolic
and ER fractions (Supplementary Material, section 4). It
appeared that the calculation of constrained estimations for
the nascent VLDL triglyceride content was determined by two
factors. First, the nascent VLDL triglyceride content is co-
determined by the hepatic capacity to load these triglycerides
onto nascent produced VLDL particles (fluxes f14 and f15). A
second factor is the VLDL-TG production flux which increases
progressively during the treatment (Supplementary Figure 7).
Mathematically, this compartmentalization was enforced by
a predicted increase of the hepatic lipid loading capacity
of lipoproteins, as described before (Figure 5). The lipid
loading capacity is co-determined by the activity of microsomal
triglyceride transfer protein Mtp. Expression of Mtp is linked to
parameters p14 and p15 in the HepaLip2 model. The expression
level of the Mtp gene was increased upon LXR activation
(Figure 3). Furthermore, a significant increase of the activity of
Mtp was experimentally observed in mice treated with T0901317
for 1 week (Grefhorst and Parks, 2009).

2.9. Hepatic Triglyceride Accumulation
Pharmacological activation of LXR induces the excessive
accumulation of triglycerides in the liver (Figure 7). Figure 7A
shows that the sum of all fluxes contributing to the hepatic
triglyceride pool increased rapidly during the first 3 days
of the intervention, and remained at this elevated level
upon prolonged treatment. In the mathematical model the
additive fluxes (Fa) include: de novo lipogenesis, hepatic
FFA uptake from plasma, and clearance of lipoproteins
via lipases and whole-particle uptake (Equation 8 in the
Supplementary Material). Figure 7B shows that the increased
Fa was closely accompanied by an increase of the fluxes
that catabolize hepatic triglycerides (Fs, Equation 9 in the
Supplementary Material). The subtractive fluxes include the
secretion of triglycerides to nascent produced VLDL particles
and the hepatic catabolism of triglycerides (the hydrolysis of
triglyceride into fatty acids and glycerol which are subsequently
used in processes such as β-oxidation, gluconeogenesis,
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FIGURE 4 | Temporal variance reduction by incorporating gene expression data. The gray-intensity indicates reduction in variance for estimated state variables (left),

parameters (middle), and fluxes (right). The asterisk signs (*) indicate parameters that were coupled to one or multiple genes. The (dark-)gray parts display model

estimates that were effectively constrained by the gene expression data. Results shown for group G0.05, containing 5% of the trajectory solutions with the highest

temporal correlation between parameter trajectories and gene expression (lowest penalty by χ2
g1
). Compared to G0, which are the solutions obtained without

regularization Note f14 = f28 + f29.

ketogenesis, sterol- and phospholipid synthesis). The difference
between additive and subtractive triglyceride fluxes is displayed
in Figure 7C. An imbalance between these fluxes can be
observed during the first days of the intervention, which
stabilizes gradually during the treatment. One process that
contributes to the hepatic triglyceride accumulation is de
novo lipogenesis. LXR induces the expression of lipogenic
genes such as Fas (fatty acid synthase) and Scd1 (stearoyl-CoA
desaturase 1) (Figure 3), resulting in an increased fractional
contribution of de novo lipogenesis (Figure 2). A question
remained whether de novo lipogenesis is the sole process being
responsible for the triglyceride accumulation. Experimental
data and model simulations showed that the hepatic triglyceride
level was already increased within 1 day of treatment, while
no significant change in the fractional contribution of de novo
lipogenesis was observed. This suggests that other processes
are involved during the initial phase of the treatment (and
perhaps also upon prolonged treatment). Therefore, we
quantified the contribution of all metabolic routes included in

the mathematical model that influence the hepatic triglyceride
level. Figure 7D shows how the fractional contribution of
the various fluxes included in Fa changes during treatment
with T0901317. The analysis shows that plasma FFA provided
a major contribution to the supply of hepatic triglycerides,
whereas the clearance of lipoproteins played merely a minor
role. Furthermore, the figure shows a peak contribution of
hepatic FFA uptake at t ≈ 1 day, while the contribution of
de novo lipogenesis increased gradually up to one week of
treatment. Figure 7E shows the time to peak (time to maximal
fractional contribution) of the various processes. The results
clearly indicate that an increased uptake of FFA precedes the
induction of de novo lipogenesis. The hepatic influx of FFA
contributes for roughly 80% to the accumulation of TG in
the liver.

To establish whether the flux of FFA from plasma to the liver
is indeed increased in the initial phase of LXR activation, as
suggested by the model, experiments were performed in which
13C-palmitate was infused into C57Bl/6J mice that were treated
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FIGURE 5 | Hepatic triglyceride fluxes are increased and especially stored in the cytosolic fraction. Trajectories of the total hepatic TG content (y1 = x4 + x5 + x6 + x7),

as well as its subdivision into cytosolic (x4 + x6) and endoplasmic reticulum (x5 + x7) fractions, are displayed for different groups of solutions. The experimental data of

the total hepatic TG content (the error bars represent the standard deviation of the data) was included in the optimization procedure (linked to output y1) and all groups

describe this data adequately. When only the metabolic data was used to calibrate the model (group G1 ), the distribution of the total TG content between the cytosolic

fraction (TG in lipid droplets) and ER fraction (TG transferred to nascent VLDL could not be estimated precisely (left column). When including the gene expression data,

model results showed that the increased TG pool is especially stored in the cytosol, rather than transferred to nascent VLDL (middle and right column). The solutions

with the highest correlation between parameter trajectories and temporal gene expression (G0.05, right column) yielded the most precise estimates. The shaded areas

indicate the 95% confidence intervals of the model estimates.

FIGURE 6 | Fractionation of hepatic triglycerides. Additional measurements were performed on livers from C57BL/6J mice treated with T0901317 for 14 days and

untreated controls to separate the cytosolic TG fraction from the microsomal fraction, containing VLDL particles. The experimental data shows that hepatic TG is

predominantly stored in the cytosolic fraction, which confirmed the model estimations presented in Figure 5. Note the 20-fold scale difference in both y-axis. The bars

indicate mean + standard deviation, *p < 0.05, Mann-Whitney U-test.
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FIGURE 7 | Hepatic accumulation of triglycerides. (A) The sum of fluxes contributing to the hepatic TG pool. (B) The sum of fluxes that catabolize hepatic TG. (C) The

difference between additive and subtractive TG fluxes. Note the 10-fold smaller scale of the y-axis in (C) compared to (A,B). (D) The fractional contribution of the

various fluxes included in Fa. (E) The time to peak (time to maximal fractional contribution) of the various processes. The areas and bars represent median ± median

absolute deviation. The solutions of group G0.05 are displayed.

with T0901317 for 1 day, and untreated controls (Hijmans
et al., 2015). A description of the experimental materials and
procedures is available in section 5. The contribution of plasma
palmitate to hepatic palmitate and stearate were unchanged after
1 day of LXR activation (Figures 8A,B). However, LXR activation
increased the flux from plasma palmitate to liver palmitoleate and
oleate (Figures 8C,D), thereby confirming the model prediction
obtained via ADAPT that FFA uptake increases within 1 day of
treatment with T0901317.

3. DISCUSSION

Biomedical applications of systems biology require to consider

the complexity of the physiological system in humans or in

the animals used to study human disease, including its highly

interconnected structure and nonlinear dynamic behavior. The
study of progressive adaptations during disease or intervention
is complicated by the multilevel characteristics (metabolome,

proteome, and transcriptome) of the underlying biological
systems and the timescales on which these occur (seconds to
years). Physiological parameters with diagnostic value are hidden
in complicated, multivariate datasets. Time-series measurements
of the metabolome provide information-rich data about the
status of a biological system (Smilde et al., 2010). Gene expression
data is abundant in literature and online repositories. However,
it is not trivial to integrate multi-omics data, and hence to
exploit the full potential of the information contained in these
data. Multi-omics data is high-dimensional because the number
of features and outcome variables is larger than the number
of samples. Despite developments in machine/deep learning
methods, data-driven approaches have fundamental limitations
to model high-dimensional time series data. Mathematical
modeling can construct computer simulation models from
expert-based domain knowledge that can make transparent
and explainable predictions of biological systems (mechanism-
based systems biology models, van Riel, 2006). We proposed
a combination of mathematical models and machine learning,
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FIGURE 8 | The hepatic uptake of FFA is increased. Additional experiments were performed in which 13C-palmitate was infused into C57Bl/6J mice that were treated

with T0901317 for 1 day, and untreated controls. The different graphs present the contribution of plasma palmitate to hepatic palmitate (A), stearate (B), palmitoleate

(C), and oleate (D). The contribution of plasma palmitate to hepatic palmitoleate and oleate was increased after 1 day of LXR activation, thereby confirming the model

estimation presented in Figure 7. The bars represent mean + standard deviation, *p<0.05, Mann–Whitney U-test.

implemented in ADAPT. ADAPT is less susceptible to data bias
than data-driven, machine learning methods. Moreover, ADAPT
quantifies uncertainty in the model and its predictions.

ADAPT is rooted in methods and techniques like system
identification (from systems theory, Ljung, 1998), state-
estimators (such as the Kalman filter, currently applied in
navigation and positioning technology; Kalman, 1960) and data
assimilation (in geosciences, such as weather forecasting, Asch
et al., 2016). Characteristic is the use of a dynamical model
of the system being analyzed in combination with statistical
methods to incorporate measured data. Like a state-estimator,
ADAPT combines dynamic models based on system knowledge
with measurements and statistical models of uncertainties
and variation in the process. The computer simulation model
contains the elements and the dynamics of how the (complex)
biological system operates. ADAPT connects the real biological
system and the corresponding virtual model by different types
of data, and the model updates (“learns”) as the biological
counterparts changes. The algorithm requires time-series data
to execute the model. It provides estimates for unobserved
system variables and at time points for which data is not
available. These state estimates are the “predictions” that can
be made with ADAPT. In studies in humans and animals it is
relatively easy to collect blood to perform measurements in. Via
these measurements one often aims to get information about
processes in organs and tissues. ADAPT enables the translation

of plasma time-series metabolomics data to information about
metabolic processes in tissues and between organs. In dedicated
experiments with metabolic tracers and liver tissue was collected
we have been able to validate estimates (predictions) of metabolic
pools and fluxes to explain the development of hepatic steatosis
as side-effect of treatment with a synthetic LXR agonist.

The application of advanced simulation models in
(biomedical) systems biology and systems medicine requires
credible models, that have been scrutinized on verification,
validation and uncertainty quantification (Viceconti et al., in
press). ADAPT addresses two major types of uncertainty in
model estimation that impact model credibility and applicability:
parametric uncertainty and structural uncertainty. First,
parametric uncertainty concerns the problem of parameter
identifiability. Values of model parameters are inferred from
experimental data, but not all parameters might be identifiable
from the available data (Raue et al., 2009; Vanlier et al., 2013).
Since model parameters are estimated by calibrating the model
to experimental data, uncertainty in the data (noise, errors)
will propagate into the parameter estimates. Uncertainty in
the parameter estimates subsequently will limit the accuracy of
the model predictions. We used a stochastic data model from
which samples were generated using a Monte Carlo approach.
ADAPT was run for all samples hereby quantifying confidence
in the estimated parameter trajectories. Parameter estimation
in nonlinear dynamic models remains a computationally
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challenging task due to its non-convexity (presence of local
optima) and ill-conditioning (Gábor and Banga, 2015). ADAPT
uses a global scatter search to initialize a multi-start, gradient-
based, interior point local optimization method. This approach
was shown to be a successful strategy with a good performance
in a benchmark study (Villaverde et al., 2019). A local solver
(lsqnonlin in Matlab) is started from multiple start points to
sample multiple basins of attraction associated with possible
local minima in the cost function (the negative log-likelihood).
The scatter search was made more efficient by only selecting the
10% of the most promising sampled parameters sets (lowest SSE)
as start values for the local solver to estimate the model for the
untreated condition (multistart with preselection).

Second, lack of knowledge about components and their
quantitative interactions introduces uncertainty about the
model structure. Structural uncertainty resides in simplifications
that are inherent to the process of model building and
assumptions that are made in case the nature and/or
kinetic details of certain interactions are unknown (or
disputed). The network topology of metabolic pathways
is (relatively) well-known. Network structures impose
strong constraints on the solution space of mathematical
models, a characteristic that is employed in constraint-
based simulation and analysis of (genome-scale) metabolic
network models (Orth et al., 2010). Mathematical modeling
of signal transduction and gene regulatory networks is more
difficult. Insufficient information is available to formulate
accurate mathematical descriptions of these networks. Making
wrong and/or too strong assumptions about interactions
and their kinetics could largely bias the model. Instead
of adding equations with structural uncertainty, ADAPT
introduces freedom in model parameters to compensate for
unmodeled regulation.

ADAPT combines differential equationmodels of the network
topology and mass fluxes in metabolic pathways with machine
learning to model temporal metabolic data (Tiemann et al., 2013;
Rozendaal et al., 2018b). A more complete understanding of
underlying biological adaptations requires integration of other
molecular data, such as transcriptomics and proteomics. Here we
have extended ADAPT to integrate metabolic and transcriptomic
time-series data. ADAPT uses numerical optimization for
learning and updating of model parameters, to estimate the
current state of the system and forecast its future trajectory. A
new regularization function was added to the learning algorithm
that is used to estimate model parameters. The new version of
ADAPT uses the metabolite data as input to estimate trajectories
of metabolic parameters and takes the gene expression data
as additional information to refine the trajectories. The gene
expression data was included implicitly in the model by
incorporation in the regularization function (composed of two
components χ2

g1
and χ2

g2
), where it was implicitly used to

guide and constrain the dynamic variations in the parameter
trajectories. First, parameter adaptations were preferred such
that resulting parameter trajectories and corresponding gene
expression profiles display temporal correlation. Secondly, the
gene expression data was used to prevent unnecessary (random)
fluctuations in parameter trajectories, that could be the result

of poor identifiability of certain parameters. The importance
(weight) of each objective function component is determined by
the corresponding regularization constant. The penalty function
is a refinement of the regularization function described in
Tiemann et al. (2013). χ2

g2
effectuates that changing a parameter

is costly, which will therefore be avoided unless it is required to
describe the metabolic data. This results in parameter trajectories
that are steady and smooth (enforcing temporal sparsity in the
solutions). However, in the present study, the penalty of changing
a parameter is reduced when corresponding gene expression
level changes.

Regularization is a key component of ADAPT. It provides
the possibility to extend the biological realism of the simulations
by including post-transcriptional control that was not accounted
for in the mathematical model. Regularization also improves
numerical performance by resolving ill-conditioning of the
estimation problem. Regularization is known to be beneficial for
inverse problems, of which parameter estimation is an example.
Regularized regression, like LASSO, is used to prevent overfitting
and perform feature selection in computational statistics and
machine learning (e.g., Imangaliyev et al., 2018). Regularization
for estimatingmodels of dynamical systems has been investigated
in much lesser extent (Chen, 2013). We and others have
shown that regularization can be very effective to mitigate ill-
conditioning when estimating dynamic systems biology models
(van Riel et al., 2013; Gábor and Banga, 2015). In ADAPT
regularization is extended beyond so-called ridge regression (also
known as Tikhonov regularization), in which the regularization
function penalizes deviations of the parameter estimates from
their reference (nominal) values or a priori defined target values
(Cedersund and Roll, 2009; Dolejsch et al., 2019). Regularized
estimations ensure a trade-off between bias and variance,
reducing overfitting, and allowing the incorporation of prior
knowledge in a systematic way.

Previously we had applied a model of hepatic lipid and
plasma lipoprotein metabolism using an earlier version of
ADAPT and discovered how pharmacological activation of LXR
induced the reverse cholesterol pathway, but with counter-
intuitive behavior of scavenger receptor class B1 (SR-B1), a
receptor that facilitates the hepatic uptake of cholesterol from
HDL particles (Tiemann et al., 2013). Here we have included
gene expression data that was not available in the previous
work to study the development of hepatic steatosis, which is a
serious side effect of pharmacological activation of LXR. Results
from the computational analysis showed that the additional
integration of gene expression data effectively constrained
and improved estimations (model predictions). of the hepatic
storage of triglycerides in cytosolic and nascent VLDL fractions
(Figure 5). Without the gene expression data it was not possible
to accurately estimate how the total triglyceride content is
distributed between these fractions. Interestingly, when the gene
expression data was included, model predictions indicated that
the increased triglyceride fluxes are predominantly stored in the
cytosol, rather than being transferred to nascent VLDL. Hepatic
fractionation experiments were subsequently performed that
confirmed this prediction, providing an independent validation
of the model.
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As LXR induces the expression of lipogenic genes, such as Fas
and Scd1, it was expected that de novo lipogenesis would be the
major metabolic route contributing to development of hepatic
steatosis. Experimental data shows that the hepatic triglyceride
level was already increased within 1 day of treatment. The
parameter and flux trajectories obtained with ADAPT were used
to quantitatively analyze the contribution of all metabolic routes
included in the mathematical model to the accumulation of
hepatic triglycerides. Remarkably, the computational analysis
revealed that plasma FFA provided a major contribution to the
supply of hepatic triglycerides. Moreover, a peak contribution of
hepatic FFA uptake was observed at 1 day of treatment, while the
contribution of de novo lipogenesis increased gradually up to 1
week of treatment. The computational results clearly indicated
that an increased uptake of FFA precedes the induction of de
novo lipogenesis. This predictionwas validated in an independent
experiment with a metabolic tracer. To establish whether the
flux of FFA from plasma to the liver is increased upon LXR
activation, 13C-palmitate was infused via jugular vein catheter
into C57Bl/6J mice that were treated with T0901317 for 1 day,
and untreated controls. Indeed, an increased incorporation of
13Cwas observed in the hepatic triglyceride levels of palmitoleate
and oleate confirming plasma as main source, as predicted by
the model. Our findings might also be relevant to understand
the development of steatosis, non-alcoholic fatty liver disease
(NAFLD) and non-alcoholic steatohepatitis (NASH) associated
with Metabolic Syndrome (Rozendaal et al., 2018b). Increased
flux of FFA and glycerol from lipolysis of white adipose
tissue (O’Donovan et al., 2019) has been associated with liver
steatosis and NAFLD, also contributing to impaired postprandial
repression of endogenous glucose production occurring in Type
2 Diabetes (Perry et al., 2015; Roden and Shulman, 2019).

ADAPT can be used to extract information on disease
development and effects of medication that cannot be directly
observed from the data. The computational model functions as
a state-estimator applied to monitor the effect of therapeutic
interventions and detect critical transitions of the system. Future
developments include applications in so-called digital twinning
in which computer simulation models are connected to their
biological counterparts by different types of data and the model
automatically updates as the biological counterpart changes (van
Riel et al., 2020).

4. CONCLUSIONS

The development of computational models and techniques to
study molecular adaptations during disease or intervention are
important challenges in the field of biomedical systems biology
and systems medicine. ADAPT combines the data-driven power
of machine learning with that of knowledge-based, mechanistic
simulation models. We presented an extension of ADAPT
to integrate metabolomic and transcriptomic time-series data
using a novel regularization approach. The gene expression
data effectively constrained and improved model predictions,
providing new insights in triglyceride metabolism related to
drug-induced development of hepatic steatosis.

5. MATERIALS AND METHODS

The computational workflow of ADAPT is described. First,
the mathematical modeling of metabolic pathways and the
identification of molecular adaptations are discussed. Second, the
methodology to integrate gene expression data is presented.

5.1. Continuous Descriptions of the
Experimental Data
Progressive diseases affect multiple processes operating at
different levels (metabolome, proteome, and transcriptome)
and different timescales (seconds to years). During disease
development metabolic parameters (and consequently metabolic
fluxes and concentrations) can be expected to change over time.
The concept of time-dependent model parameters is introduced
to study these adaptations. ADAPT identifies necessary dynamic
changes in the model parameters to describe the transition
between experimental data obtained during different stages
(time points) of the disease. To estimate dynamic trajectories
of model parameters, continuous dynamic descriptions of the
experimental data were used as input for ADAPT. Cubic
smoothing splines were calculated to describe the dynamics of
the experimental data. To account for experimental variance
and biological variation a collection of splines was calculated
using a Monte Carlo approach. Different random samples
of the experimental data were generated assuming Gaussian
distributions with means and standard deviations according
to the data. Subsequently, for each generated sample a cubic
smoothing spline was calculated (Figure 9).

In the present study, a distinction between two types of data
wasmade. First, metabolic data was acquired, e.g., concentrations
and fluxes of metabolites in plasma and tissue compartments.

The splines describing this data are denoted by Edm(t).
Secondly, experimental data derived from the transcriptome
level was considered, e.g., mRNA expression levels of genes.

Corresponding splines are denoted by Edt(t).

5.2. Mathematical Modeling of the
Metabolome Level
Mathematical modeling was centered on metabolic pathways.
Pathways at the proteome and transcriptome levels that
modulate the metabolic processes were not modeled explicitly
as insufficient information of the underlying network structure
and interaction mechanisms was available. The metabolic model
is defined by a set of (non)linear ordinary differential equations
(state-space structure):

Ėx(t) = NEf (Ex(t), Ep, Eu) with Ex(t0) = Ex0

Ey(t) = Eg(Ex(t), Ep, Eu)
(4)

where Ėx is a vector of first derivatives of molecular species (or
state variables) Ex with respect to time. The right-hand side of the
equation is given by the topology of the network (stoichiometric

matrix N) and a set of functions Ef that describe the interactions
between the species. The initial concentrations of Ex are given by
Ex0. The vector Ey represents the model outputs, which are given
by a set of functions Eg that map the model states to specific
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FIGURE 9 | Pre-processing of experimental data for ADAPT. The experimental data consists of time course, longitudinal data obtained at multiple, discrete points in

time, describing the transition of the biological system. In (A), the black error bars represent mean and standard deviation of the data at each point in time. A time

continuous description of the data is obtained by spline interpolation. To account for experimental and biological uncertainties, a Monte Carlo approach is used. The

data is randomly sampled assuming a data error model based on Gaussian distributions with means and standard deviations according to the experimental data (A;

blue circles). A cubic smoothing spline (B; green line) is fitted through these samples. This process is repeated, obtaining a collection of splines (C).

quantities of interest. The outputs usually are quantities that have

been experimentally measured. Both functions Ef and Eg depend on
kinetic parameters Ep and optional external inputs Eu. In principle,
the generic set of equations in (4) can be used to describe
any biomolecular reaction network. Here we use the system of
ordinary differential equations to describe metabolic networks.

5.3. Dynamic Parameters to Describe
Metabolic Adaptations
Details of the ADAPT methodology have been described
in Tiemann et al. (2013) and are repeated here briefly for
consistency. Dynamic adaptations in metabolic processes are
identified by inferring necessary dynamic changes in the model
parameters which are therefore time-dependent. To this end, a
simulation of the treatment was divided in Nt steps of 1t time
period using the following discretization:

EX(n1t) = Ex(1t, Ep(n1t))

EY(n1t) = Eg(EX(n1t), Ep(n1t))

EX(0) = Ex0(Ep(0))

(5)

with 0 ≤ n ≤ Nt and Nt1t the time period of the entire
experiment. The simulation is initiated (n = 0) using the initial
values of the model states Ex0 obtained with parameter set Ep(0)
representing the untreated phenotype. Subsequently, for each
step n > 0 the system is simulated for a time period of 1t
using the final values of the model states of the previous step
n − 1 as initial conditions. Parameters Ep(n1t) are estimated by

minimizing the difference between the data interpolants Edm(n1t)
and corresponding model outputs EY(n1t). Here, the previously
estimated parameter set Ep((n − 1)1t) is provided as initial
set for the optimization algorithm. The parameter optimization
problem is given by:

Êp(n1t) = arg min
Ep(n1t)

χ2
d (Ep(n1t)) (6)

χ2
d (Ep(n1t)) =

Ny
∑

i=1

(

Yi(n1t)− dm,i(n1t)

σm,i(n1t)

)2

(7)

where Êp(n1t) represents the optimized parameter set and χ2
d

is the weighted sum of squared errors (SSE), with Ny the
number of model outputs (equal to the number of measured
variables). Parameter trajectories were estimated using 200 time
steps (Nt = 200).

A Monte Carlo approach was employed to account for
methodological and experimental uncertainties. First, a global
scatter search was used to initialize a multi-start local
optimization method (Tiemann et al., 2011). 2 × 105 parameter
vectors were sampled from a widely dispersed range of initial
parameter values (10−6 to 106). For each parameter vector χ2

d
|n=0

was computed (SSE at t = 0). 2 × 104 (10%) of the best
performing parameter sets (with lowest χ2

d
|n=0) were selected

and used to initiate the optimization procedure and estimate

Êp(0), using a gradient-based, interior point local optimization
method (lsqnonlin in Matlab). This resulted in a collection of
parameter sets that describe the untreated phenotype. Secondly,
in each optimization series a different spline function for
Edm was used. Finally, distributions of parameter trajectories
(and consequently state and flux trajectories) are obtained that
describe the transition of the phenotype during the disease
or intervention.

5.4. Implicit Integration of the
Transcriptome Level
Time-course data of relative gene expression levels was used as
an additional source of information to constrain the dynamic
behavior of parameter trajectories. However, note that pathways
at the transcriptome level were not modeled explicitly due to
the lack of sufficient quantitative information about the gene
regulatory networks regulating the response to LXR activation.
Therefore, the parameter trajectory estimation protocol, as
formulated in Equations (6) and (7), was modified to integrate
gene expression data. ADAPT is based on the assumption that
changes in metabolic parameters are reflected by changes in
corresponding enzymes, which in turn are reflected by changes
in corresponding gene expression levels. This implies there is
a functional relationship between a metabolic parameter pi and
corresponding gene expression level dt,i.
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5.4.1. Maximization of the Temporal Correlation
The optimization problem presented in Equation (6)
was extended as follows. For clarity we introduce the
following definitions: Ep[·n] = Ep[0,1t, · · · n1t] and
Edt[·n] = Edt[0,1t, · · · n1t], which represents the parameter
trajectories from time step 0 to n and corresponding gene
expression data, respectively. During a re-optimization of the
metabolic parameters Ep from step n − 1 to step n, a 1Ep is
preferred such that resulting parameter trajectories Ep[·n] and

corresponding gene expression profiles Edt[·n] display temporal
correlation.This was effectuated by including an additional
component χ2

g1
in the objective function which maximizes the

temporal correlation between these profiles:

χ2
g1
(Ep(n1t)) =

Np
∑

i=1

Vi(n1t) (8)

where Np is the number of parameters, and Vi(n1t) is given by:

Vi(n1t) =















1

Nci

Nci
∑

j=1

(

1− ρij(n1t)
)2

if Nci > 0

0 otherwise

(9)

where Nci is the number of genes assigned to parameter i, and
ρij(n1t) is given by:

ρij(n1t) =
Cov(Epi[·n], Edt,ij[·n])

σ (Epi[·n])σ (Edt,ij[·n])
(10)

Equation (10) represents the Pearson correlation coefficient
between a parameter trajectory and corresponding gene
expression data, which is bounded between −1 (maximal
negative correlation) and 1 (maximal positive correlation). Note
that multiple genes can be assigned to a parameter, which could
be useful for instance when a cascade of molecular processes is
integrated in a single mathematical reaction equation.

5.4.2. Constraining the Magnitude of Dynamic

Variations in Trajectories
The gene expression data was also used to constrain the
magnitude of dynamic variations in the parameter trajectories.
It was assumed that parameters are less likely to change
when corresponding gene expression levels remain unchanged,
compared to scenarios when expression of the genes is induced
or repressed. Therefore, in latter cases parameter adaptations are
less penalized compared to former cases. This was effectuated
by including an additional objective function χ2

g2
which utilizes

the time derivative of gene expression profiles to penalize
parameter fluctuations:

χ2
g2
(Ep(n1t)) =

Np
∑

i=1

Wi(n1t) (11)

withWi(n1t) given by:

Wi(n1t) =















1

Nci

Nci
∑

j=1

(

Pi(n1t)

Gij(n1t)

)2

if Nci > 0

Pi(n1t) otherwise

(12)

with Pi(n1t) and Gij(n1t) defined as:

Pi(n1t) =
1

pi(0)

pi(n1t)− pi((n− 1)1t)

1t
(13)

Gij(n1t) =
1

dt,i,j(0)

d

dt
dt,i,j(t)

∣

∣

∣

∣

t=n1t

(14)

where Pi(n1t) represents the normalized derivative of parameter
i at time step n. Relative derivatives were used to assign
equal relevance to all parameters and to avoid domination
of the optimization by large absolute values. Furthermore,
Gij(n1t) represents the normalized derivative of the spline
function (evaluated at time step n) that describes corresponding
gene expression data. To avoid division by zero (when
Gij(n1t) = 0), the minimal absolute value of Gij(n1t) was
truncated at 10−6. Note that Pi(n1t) effectuates that changing
a parameter is costly, which will therefore be avoided unless it
is required to describe the experimental data. However, when
accompanied by a change in gene expression level, the penalty
of changing corresponding parameter is reduced (because P is
divided by G).

Objective functions χ2
g1

and χ2
g2

were formulated as soft
constraints by introducing constants λg1 and λg2 , which
determine the contribution strengths of the functions. This
implies that metabolic parameters and corresponding gene
expression levels do not necessarily have to display temporal
correlation when this is in contradiction to the metabolic data.
This provides the possibility to account for post-transcriptional
control. In summary, an optimized parameter set is defined
as follows:

Êp(n1t) = arg min
Ep(n1t)

(

χ2
d (Ep(n1t))+ λg1χ

2
g1
(Ep(n1t))

+λg2χ
2
g2
(Ep(n1t))

)

(15)

The determination of the regularization constants is discussed in
Supplementary Material (section 3.1).

5.5. Implementation Details
The mathematical model and ADAPT were implemented
in MATLAB (The Mathworks, Natick, Massachusetts,
USA). The code is available on GitHub (https://github.com/
nvanriel/ADAPT, https://github.com/rcqsnel/adapt-modeling-
framework, and https://github.com/yvonnerozendaal). The
ordinary differential equations were solved with compiled MEX
files using numerical integrators from the SUNDIALS CVode
package (2.6.0, Lawrence Livermore National Laboratory,
Livermore, California) (Hindmarsh et al., 2005). An absolute
and relative tolerance of 10−6 were used. The MATLAB
nonlinear least-squares solver lsqnonlin (from the Optimization

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 16 February 2021 | Volume 8 | Article 536957

https://github.com/nvanriel/ADAPT
https://github.com/nvanriel/ADAPT
https://github.com/rcqsnel/adapt-modeling-framework
https://github.com/rcqsnel/adapt-modeling-framework
https://github.com/yvonnerozendaal
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


van Riel et al. Metabolic Trajectory Modeling

Toolbox), which uses an interior reflective Newton method
(Coleman and Li, 1996), was used to estimate model
parameters. The termination tolerances for the objective
function and the parameter estimates were set to 10−10,
the maximum number of iterations allowed was set to 103

and the maximum number of function evaluations allowed
to 105. Parameter trajectories were estimated using 200
time steps. The MATLAB function csaps (from the Curve
Fitting Toolbox) was used to calculate cubic smoothing
splines using the default smoothness setting (= 1) and the
roughness dependent on the variation in the data: (1/std)2 (std:
standard deviation).

5.6. Experimental Procedures
The experimental procedures have been described previously
(Tiemann et al., 2013; Hijmans et al., 2015). Information
about the fractionation experiments is provided in the
Supplementary Material. Experimental procedures were
approved by the Ethics Committee for Animal Experiments of
the University of Groningen.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the article/
Supplementary Material.

ETHICS STATEMENT

The animal study was reviewed and approved by Institutional
Animal Care and Use Committee of the University of Groningen.

AUTHOR CONTRIBUTIONS

NR and AG conceived and designed the study. NR, AG, and
PH supervised the research. CT developed the software and

performed the simulations. CT and NR analyzed the results
and wrote the paper. NR, PH, and AG read and revised the
paper. All authors contributed to the article and approved the
submitted version.

FUNDING

This research was funded by the European Union FP7-HEALTH
(Grant 305707): A systems biology approach to RESOLVE the
molecular pathology of two hallmarks of patients with metabolic
syndrome and its co-morbidities; hypertriglyceridemia and low
HDL-cholesterol, and supported by the NWO Complexity in
Health and Nutrition program (project nr. 645.001.003).

ACKNOWLEDGMENTS

We want to acknowledge multiple people who contributed
to the development of ADAPT in the past years: Joep
Vanlier, Fianne Sips, Yvonne Rozendaal, Roderick Snel,
Pascal van Beek, and Yared Paalvast. We also thank
Maaike Oosterveer and Brenda Hijmans for providing the
experimental data.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fbioe.
2020.536957/full#supplementary-material

REFERENCES

Asch, M., Bocquet, M., and Nodet, M. (2016). Data Assimilation: Methods,

Algorithms, and Applications. SIAM. doi: 10.1137/1.9781611974546

Cave, M. C., Clair, H. B., Hardesty, J. E., Falkner, K. C., Feng, W., Clark, B. J., et al.

(2016). Nuclear receptors and nonalcoholic fatty liver disease. Biochim. Biophys.

Acta 1859, 1083–1099. doi: 10.1016/j.bbagrm.2016.03.002

Cedersund, G., and Roll, J. (2009). Systems biology: model based evaluation and

comparison of potential explanations for given biological data. FEBS J. 276,

903–922. doi: 10.1111/j.1742-4658.2008.06845.x

Chen, L. L. T. (2013). What can regularization offer for estimation of dynamical

systems? IFAC Proc. Vol. 46, 1–8. doi: 10.3182/20130703-3-FR-4038.00155

Coleman, T., and Li, Y. (1996). An interior trust region approach for

nonlinear minimization subject to bounds. SIAM J. Optimiz 6, 418–445.

doi: 10.1137/0806023

de Winter, W., DeJongh, J., Post, T., Ploeger, B., Urquhart, R., Moules, I., et al.

(2006). Amechanism-based disease progressionmodel for comparison of long-

term effects of pioglitazone, metformin and gliclazide on disease processes

underlying type 2 diabetes mellitus. J. Pharmacokinet. Pharmacodyn. 33,

313–343. doi: 10.1007/s10928-006-9008-2

Deneer, R., Boxtel, A. G. M. V., Boer, A.-K., Hamad, M. A. S., van Riel, N. A. W.,

and Scharnhorst, V. (2020). Detecting patients with PMI post-CABG based

on cardiac troponin-T profiles: a latent class mixed modeling approach. Clin.

Chim. Acta 504, 23–29. doi: 10.1016/j.cca.2020.01.025

Dolejsch, P., Hass, H., and Timmer, J. (2019). Extensions of ℓ1 regularization

increase detection specificity for cell-type specific parameters in dynamic

models. BMC Bioinformatics 20:395. doi: 10.1186/s12859-019-2976-1

Gábor, A., and Banga, J. R. (2015). Robust and efficient parameter

estimation in dynamic models of biological systems. BMC Syst. Biol. 9:74.

doi: 10.1186/s12918-015-0219-2

Grefhorst, A., Elzinga, B., Voshol, P., Plösch, T., Kok, T., Bloks, V., et al. (2002).

Stimulation of lipogenesis by pharmacological activation of the liver X receptor

leads to production of large, triglyceride-rich very low density lipoprotein

particles. J. Biol. Chem. 277, 34182–34190. doi: 10.1074/jbc.M204887200

Grefhorst, A., Oosterveer, M. H., Brufau, G., Boesjes, M., Kuipers, F., and Groen,

A. K. (2012). Pharmacological LXR activation reduces presence of SR-B1 in

liver membranes contributing to LXR-mediated induction of HDL-cholesterol.

Atherosclerosis 222, 382–389. doi: 10.1016/j.atherosclerosis.2012.02.014

Grefhorst, A., and Parks, E. (2009). Reduced insulin-mediated inhibition of VLDL

secretion upon pharmacological activation of the liver X receptor in mice. J.

Lipid Res. 50, 1374–1383. doi: 10.1194/jlr.M800505-JLR200

Hall, H., Perelman, D., Breschi, A., Limcaoco, P., Kellogg, R., McLaughlin, T., et al.

(2018). Glucotypes reveal new patterns of glucose dysregulation. PLoS Biol.

16:e2005143. doi: 10.1371/journal.pbio.2005143

Hijmans, B. S., Tiemann, C. A., Grefhorst, A., Boesjes, M., Dijk, T. H. v., Tietge, U.

J. F., et al. (2015). A systems biology approach reveals the physiological origin of

hepatic steatosis induced by liver x receptor activation. FASEB J. 29, 1153–1164.

doi: 10.1096/fj.14-254656

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 17 February 2021 | Volume 8 | Article 536957

https://www.frontiersin.org/articles/10.3389/fbioe.2020.536957/full#supplementary-material
https://doi.org/10.1137/1.9781611974546
https://doi.org/10.1016/j.bbagrm.2016.03.002
https://doi.org/10.1111/j.1742-4658.2008.06845.x
https://doi.org/10.3182/20130703-3-FR-4038.00155
https://doi.org/10.1137/0806023
https://doi.org/10.1007/s10928-006-9008-2
https://doi.org/10.1016/j.cca.2020.01.025
https://doi.org/10.1186/s12859-019-2976-1
https://doi.org/10.1186/s12918-015-0219-2
https://doi.org/10.1074/jbc.M204887200
https://doi.org/10.1016/j.atherosclerosis.2012.02.014
https://doi.org/10.1194/jlr.M800505-JLR200
https://doi.org/10.1371/journal.pbio.2005143
https://doi.org/10.1096/fj.14-254656
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


van Riel et al. Metabolic Trajectory Modeling

Hindmarsh, A., Brown, P., Grant, K., Lee, S., Serban, R., Shumaker, D., et al. (2005).

SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers.

ACM Trans. Math. Softw. 31, 363–396. doi: 10.1145/1089014.1089020

Hulman, A., Witte, D. R., Vistisen, D., Balkau, B., Dekker, J. M., Herder, C.,

et al. (2018). Pathophysiological characteristics underlying different glucose

response curves: a latent class trajectory analysis from the prospective EGIR-

RISC study. Diabetes Care 41, 1740–1748. doi: 10.2337/dc18-0279

Imangaliyev, S., Prodan, A., Nieuwdorp, M., Groen, A. K., van Riel, N. A.

W., and Levin, E. (2018). Domain intelligible models. Methods. 149, 69–73.

doi: 10.1016/j.ymeth.2018.06.011

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.

J. Basic Eng. 82, 35–45. doi: 10.1115/1.3662552

Ljung, L. (1998). System Identification: Theory for the User. Pearson Education.

O’Donovan, S. D., Lenz, M., Vink, R. G., Roumans, N. J. T., Kok, T. M.

C. M. d., Mariman, E. C. M., et al. (2019). A computational model

of postprandial adipose tissue lipid metabolism derived using human

arteriovenous stable isotope tracer data. PLoS Comput. Biol. 15:e1007400.

doi: 10.1371/journal.pcbi.1007400

Orth, J. D., Thiele, I., and Palsson, B. Ø. (2010). What is flux balance analysis? Nat.

Biotechnol. 28, 245–248. doi: 10.1038/nbt.1614

Perry, R. J., Camporez, J.-P. G., Kursawe, R., Titchenell, P. M., Zhang, D., Perry,

C. J., et al. (2015). Hepatic acetyl CoA links adipose tissue inflammation

to hepatic insulin resistance and type 2 diabetes. Cell 160, 745–758.

doi: 10.1016/j.cell.2015.01.012

Pop, V., Broeren, M., Wijnen, H., Endendijk, J., van Baar, A., Wiersinga, W.,

et al. (2018). Longitudinal trajectories of gestational thyroid function: a new

approach to better understand changes in thyroid function. J. Clin. Endocrinol.

Metab. 103, 2889–2900. doi: 10.1210/jc.2017-02556

Raue, A., Kreutz, C., Maiwald, T., Bachmann, J., Schilling, M., Klingmüller,

U., et al. (2009). Structural and practical identifiability analysis of partially

observed dynamical models by exploiting the profile likelihood. Bioinformatics

25, 1923–1929. doi: 10.1093/bioinformatics/btp358

Rizzi, M., Baltes, M., Theobald, U., and Reuss, M. (1997). In vivo

analysis of metabolic dynamics in Saccharomyces cerevisiae:

II. Mathematical model. Biotechnol. Bioeng. 55, 592–608.

doi: 10.1002/(SICI)1097-0290(19970820)55:4<592::AID-BIT2>3.0.CO;2-C

Roden, M., and Shulman, G. I. (2019). The integrative biology of type 2 diabetes.

Nature 576, 51–60. doi: 10.1038/s41586-019-1797-8

Rozendaal, Y. J., Maas, A. H., van Pul, C., Cottaar, E. J., Haak, H. R.,

Hilbers, P. A., et al. (2018a). Model-based analysis of postprandial glycemic

response dynamics for different types of food. Clin. Nutr. Exp. 19, 32–45.

doi: 10.1016/j.yclnex.2018.01.003

Rozendaal, Y. J. W., Wang, Y., Paalvast, Y., Tambyrajah, L. L., Li, Z., Dijk, K.W. V.,

et al. (2018b). In vivo and in silico dynamics of the development of Metabolic

Syndrome. PLoS Comput. Biol. 14:e1006145. doi: 10.1371/journal.pcbi.10

06145

Smilde, A. K., Westerhuis, J. A., Hoefsloot, H. C. J., Bijlsma, S., Rubingh, C. M.,

Vis, D. J., et al. (2010). Dynamic metabolomic data analysis: a tutorial review.

Metabolomics 6, 3–17. doi: 10.1007/s11306-009-0191-1

Tiemann, C., Vanlier, J., Hilbers, P., and van Riel, N. (2011). Parameter adaptations

during phenotype transitions in progressive diseases. BMC Syst. Biol. 5:174.

doi: 10.1186/1752-0509-5-174

Tiemann, C., Vanlier, J., Oosterveer, M., Groen, A., Hilbers, P., and van

Riel, N. (2013). Parameter trajectory analysis to identify treatment

effects of pharmacological interventions. PLoS Comput. Biol. 9:e1003166.

doi: 10.1371/journal.pcbi.1003166

van Riel, N. (2006). Dynamic modelling and analysis of biochemical networks:

mechanism-based models and model-based experiments. Brief. Bioinformatics

7, 364–374. doi: 10.1093/bib/bbl040

van Riel, N. A., Giuseppin, M. L., TerSchure, E. G., and Verrips, C.

T. (1998). A structured, minimal parameter model of the central

nitrogen metabolism in Saccharomyces cerevisiae: the prediction of the

behavior of mutants. J. Theor. Biol. 191, 397–414. doi: 10.1006/jtbi.1997.

0600

van Riel, N. A., Mueller, R., and Dall’Ara, E. (2020). The Digital Mouse: why

computational modelling of mouse models of disease can improve translation.

bioRxiv. doi: 10.1101/2020.05.04.075812

van Riel, N. A., Tiemann, C. A., Vanlier, J., and Hilbers, P. A. (2013). Applications

of analysis of dynamic adaptations in parameter trajectories. Interface Focus

3:20120084. doi: 10.1098/rsfs.2012.0084

Vanlier, J., Tiemann, C., Hilbers, P., and van Riel, N. (2013). Parameter uncertainty

in biochemical models described by ordinary differential equations. Math.

Biosci. 246, 305–314. doi: 10.1016/j.mbs.2013.03.006

Viceconti, M., Pappalardo, F., Rodriguez, B., Horner, M., Bischoff, J., and

Musuamba Tshinanu, F. (in press). In silico trials: verification, validation

and uncertainty quantification of predictive models used in the regulatory

evaluation of biomedical products.Methods. doi: 10.1016/j.ymeth.2020.01.011

Villaverde, A. F., Fröhlich, F., Weindl, D., Hasenauer, J., and Banga, J. R. (2019).

Benchmarking optimization methods for parameter estimation in large kinetic

models. Bioinformatics 35, 830–838. doi: 10.1093/bioinformatics/bty736

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 van Riel, Tiemann, Hilbers and Groen. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 18 February 2021 | Volume 8 | Article 536957

https://doi.org/10.1145/1089014.1089020
https://doi.org/10.2337/dc18-0279
https://doi.org/10.1016/j.ymeth.2018.06.011
https://doi.org/10.1115/1.3662552
https://doi.org/10.1371/journal.pcbi.1007400
https://doi.org/10.1038/nbt.1614
https://doi.org/10.1016/j.cell.2015.01.012
https://doi.org/10.1210/jc.2017-02556
https://doi.org/10.1093/bioinformatics/btp358
https://doi.org/10.1002/(SICI)1097-0290(19970820)55:4<592::AID-BIT2>3.0.CO;2-C
https://doi.org/10.1038/s41586-019-1797-8
https://doi.org/10.1016/j.yclnex.2018.01.003
https://doi.org/10.1371/journal.pcbi.1006145
https://doi.org/10.1007/s11306-009-0191-1
https://doi.org/10.1186/1752-0509-5-174
https://doi.org/10.1371/journal.pcbi.1003166
https://doi.org/10.1093/bib/bbl040
https://doi.org/10.1006/jtbi.1997.0600
https://doi.org/10.1101/2020.05.04.075812
https://doi.org/10.1098/rsfs.2012.0084
https://doi.org/10.1016/j.mbs.2013.03.006
https://doi.org/10.1016/j.ymeth.2020.01.011
https://doi.org/10.1093/bioinformatics/bty736
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

	Metabolic Modeling Combined With Machine Learning Integrates Longitudinal Data and Identifies the Origin of LXR-Induced Hepatic Steatosis
	1. Introduction
	2. Results
	2.1. HepaLip2: Model of Hepatic Lipid and Plasma Lipoprotein Metabolism
	2.2. Pharmacological Treatment With LXR Agonists
	2.3. Calibrating the Model to the Untreated Phenotype
	2.4. Linking the Computational Model to Time-Series Data
	2.5. Estimating Time-Dependent Changes of the Model Parameters
	2.5.1. Integration of Gene Expression Data

	2.6. Setting the Regularization Constants
	2.7. Integration of Gene Data Constrains Metabolic Predictions
	2.8. Compartmentalization of Hepatic Triglycerides
	2.9. Hepatic Triglyceride Accumulation

	3. Discussion
	4. Conclusions
	5. Materials and Methods
	5.1. Continuous Descriptions of the Experimental Data
	5.2. Mathematical Modeling of the Metabolome Level
	5.3. Dynamic Parameters to Describe Metabolic Adaptations
	5.4. Implicit Integration of the Transcriptome Level
	5.4.1. Maximization of the Temporal Correlation
	5.4.2. Constraining the Magnitude of Dynamic Variations in Trajectories

	5.5. Implementation Details
	5.6. Experimental Procedures

	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


