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Transcription and translation are at the heart of metabolism and signal transduction.

In this study, we developed an effective biophysical modeling approach to simulate

transcription and translation processes. The model, composed of coupled ordinary

differential equations, was tested by comparing simulations of two cell free synthetic

circuits with experimental measurements generated in this study. First, we considered

a simple circuit in which sigma factor 70 induced the expression of green fluorescent

protein. This relatively simple case was then followed by a more complex negative

feedback circuit in which two control genes were coupled to the expression of a third

reporter gene, green fluorescent protein. Many of the model parameters were estimated

from previous biophysical studies in the literature, while the remaining unknown model

parameters for each circuit were estimated by minimizing the difference between model

simulations and messenger RNA (mRNA) and protein measurements generated in this

study. In particular, either parameter estimates from published studies were used directly,

or characteristic values found in the literature were used to establish feasible ranges

for the parameter estimation problem. In order to perform a detailed analysis of the

influence of individual model parameters on the expression dynamics of each circuit,

global sensitivity analysis was used. Taken together, the effective biophysical modeling

approach captured the expression dynamics, including the transcription dynamics, for

the two synthetic cell free circuits. While, we considered only two circuits here, this

approach could potentially be extended to simulate other genetic circuits in both cell

free and whole cell biomolecular applications as the equations governing the regulatory

control functions are modular and easily modifiable. The model code, parameters, and

analysis scripts are available for download under an MIT software license from the

Varnerlab GitHub repository.
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1. INTRODUCTION

Cell free systems are a widely used research tool in systems and synthetic biology and a promising
platform for the manufacturing of proteins and chemicals (Vilkhovoy et al., 2020). A distinctive
feature of cell free systems is the absence of cellular growth and maintenance, thereby allowing the
direct allocation of carbon and energy resources toward a product of interest. Cell free systems are
also more amenable than living systems to observation and manipulation, hence allowing rapid
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tuning of reaction conditions. Arguably, the most widely used
cell free technology is cell free protein synthesis (CFPS), an in
vitro platform for protein transcription (TX) and translation
(TL). Transcription and translation, the processes by which
information stored in DNA is converted to a working protein,
are at the center of metabolism and signal transduction programs
important to biotechnology and human health. For example,
evolutionarily conserved developmental programs such as the
epithelial to mesenchymal transition (EMT) (Thiery, 2003), or
retinoic acid induced differentiation (Nilsson, 1984), rely on
multiple rounds of highly coordinated gene expression. From the
perspective of biotechnology, even relatively simple industrially
important organisms such as Escherichia coli, have intricate
transcriptional regulatory networks which control the metabolic
state of the cell in response to changing nutrient conditions (Orth
et al., 2010; Vilkhovoy et al., 2016). Understanding the dynamics
of regulatory networks can be greatly facilitated by mathematical
models. A majority of these models fall into three categories:
logical, continuous, and stochastic models (Karlebach and
Shamir, 2008). Logical models such as Boolean networks (Glass
and Kauffman, 1973) developed using a variety of approaches and
data (Pratapa et al., 2020) represent the state of each network
entity as a discrete variable, provide a quick but qualitative
description of the behavior of the regulatory network. Linear and
non-linear ordinary differential equation (ODE) models fall into
the second category, and they generally provide a detailed picture
of the network dynamics, although they can be non-physical
models, e.g., relying on a gene signal perspective (Bonneau et al.,
2006). Lastly, stochastic models describe the interactions between
individual molecules, and discrete reaction events (McAdams
and Arkin, 1997; Mettetal et al., 2006; Kaufmann and van
Oudenaarden, 2007; Raj and van Oudenaarden, 2008). Model
choice depends on criteria such as speed, the level of detail
required and the quantity of experimental data available to
estimate the model parameters. While the end goal of the models
might be to accurately predict in vivo behavior, living systems
do not necessarily provide an ideal experimental platform. For
example, although there have been significant advancements in
metabolomics (e.g., Park et al., 2016), the rigorous quantification
of intracellular messenger RNA (mRNA) copy number or protein
abundance remains challenging. Toward this challenge, cell free
systems offer several advantages for the study of transcription and
translation processes.

Cell free biology has historically been an important tool to
study the fundamental biological mechanisms involved with
gene expression. In the 1950s, cell free systems were used to
explore the incorporation of amino acids into proteins (Borsook,
1950; Winnick, 1950a,b), and the role of adenosine triphosphate
(ATP) in protein production (Hoagland et al., 1956). Further,
E. coli extracts were used by Nirenberg and Matthaei in 1961
to demonstrate templated translation (Matthaei and Nirenberg,
1961; Nirenberg and Matthaei, 1961), leading to a Nobel Prize
in 1968 for deciphering the codon code. More recently, as
advancements in extract preparation and energy regeneration
have extended their durability, the usage of cell free systems has
also expanded to both small- and large-scale biotechnology and
biomanufacturing applications (Swartz, 2018; Silverman et al.,

2019). Today, cell free systems have been implemented for
therapeutic protein and vaccine production (Ng et al., 2012;
Jaroentomeechai et al., 2018; Stark et al., 2019), biosensing
(Soltani et al., 2018), genetic part prototyping (Moore et al.,
2017) and minimal cell systems (Yue et al., 2019). The versatility
of cell free systems offers a tremendous opportunity for the
systems-level experimental and computational study of biological
mechanism. For example, a number of ordinary differential
equation based cell free models have been developed (Stögbauer
et al., 2012; Mavelli et al., 2015; Matsuura et al., 2017; Doerr
et al., 2019; Marshall and Noireaux, 2019). However, despite the
obvious advantages offered by a cell free system, experimental
determination of the kinetic parameters for these models is often
challenging. For instance, the cell free modeling study of Horvath
and coworkers (which included a description of transcription
and translation, and the underlyingmetabolism supplying energy
and precursors for transcription and translation), had over 800
unknownmodel parameters (Horvath et al., 2020). Moreover, the
construction, identification and validation of the Horvath model
took well over a year to complete. Thus, constructing, identifying
and validating biophysically motivated cell free models, which
are simultaneously manageable, is a key challenge. Toward this
challenge, effective modeling approaches which coarse grain
biological details but remain firmly rooted in a biophysical
perspective, could be an important tool.

In this study, we developed an effective biophysical modeling
approach to simulate cell free transcription and translation
processes. The model used classical biophysical arguments to
formulate kinetic expressions for the rates of transcription and
translation. These rates were then used in material balance
equations (ordinary differential equations) to simulate themRNA
and protein concentration as a function of time for different
cell free genetic circuits. The model was effective as it neglected
potentially important mechanistic factors, and the integration of
transcription and translation with metabolism. For example, the
model did not consider how the transcription and translation
rate was influenced by the availability of metabolic resources,
e.g., energy or building block concentration. Nor did the model
consider potentially important biology, for example the role of
elongation factors or protein folding chaperones (among many
other potentially important factors). We tested this approach by
comparing simulations of two cell free synthetic circuits with
messenger RNA (mRNA) and protein measurements (deGFP)
generated in this study using the E. coli based myTXTL cell
free system. First, we considered a simple circuit (C1) in which
endogenous sigma factor 70 (σ70) induced the expression of a
fast maturing dual emission green fluorescent protein variant
(deGFP). This relatively simple case was then followed by a more
complex negative feedback circuit (C2) where two control genes
were coupled to the expression of deGFP. The second circuit is an
extension of the first, with the presence of additional regulatory
elements. Characteristic values for many of the model parameters
were estimated from published biophysical studies or took the
form of corrections to order of magnitude literature estimates,
while the remaining unknown model parameters for each circuit
were estimated by minimizing the difference between simulated
and measured mRNA and protein concentrations. In particular,
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either parameter estimates from published studies were used
directly, or characteristic values found in the literature were used
to establish feasible ranges for the parameter estimation problem.
Next, in order to provide a detailed insight into the influence
of individual model parameters on the expression dynamics of
each circuit, Morris sensitivity analysis was employed. For C1,
the sensitivity results were informative, but expected. However,
for C2, the analysis hierarchically stratified the parameters (and
associated model species) into local vs. global categories. For
example, parameters that controlled the abundance of lambda
phage repressor protein (cI-ssrA), a master circuit regulator
in C2, were globally important as they influenced all other
species. On the other hand, the parameters that influenced
deGFP levels (the endpoint of both circuits) were only locally
important to deGFP. Taken together, the effective biophysical
modeling approach captured the expression dynamics, including
the transcription dynamics, for two synthetic cell free circuits.
While, we considered only two circuits here, this approach could
potentially be extended to simulate other genetic circuits in both
cell free and whole cell biomolecular applications. The model
code, parameters, and analysis scripts are available under an MIT
software license from the Varnerlab GitHub repository1.

2. MATERIALS AND METHODS

2.1. Cell Free Protein Synthesis Reactions
The cell free protein synthesis (CFPS) reactions were carried out
using the myTXTL Sigma 70 Master Mix (Arbor Biosciences) in
1.5 mL Eppendorf tubes. The working volume of all the reactions
was 12 µL, composed of the Sigma 70 Master Mix (9 µL) and the
plasmids (3 µL total): P70a-deGFP (5 nM) for the single-gene
system; P70a-deGFP-ssrA (8 nM), P70a-S28 (1.5 nM), and P28a-
cI-ssrA (1 nM) for the negative feedback circuit. The plasmids
were bought in lyophilized form (Arbor Biosciences) and purified
using QIAprep Spin Miniprep Kit (Qiagen) using cell lines
DH5-Alpha (for P28a-cI-ssrA) or KL740 (for P70a-deGFP, P70a-
deGFP-ssrA, and P70a-S28). The CFPS reactions were incubated
at 29◦C.

2.2. mRNA and Protein Quantification
Following each CFPS run, the total RNA was extracted
from 1 µL of the reaction mixture using PureLink RNA
Mini Kit (Thermo Fisher Scientific) and stored at −80◦C.
The quantitative RT-PCR reactions were done using Applied
BiosystemsTM TaqManTM RNA-to-CTTM 1-Step Kit and Custom
TaqMan Gene Expression Assays (Thermo Fisher Scientific). An
mRNA standard curve was used to determine absolute mRNA
concentrations for each of the samples. The mRNA standards
were prepared as follows: separate CFPS reactions for 5 nM of
plasmids (P70a-S28, P70a-deGFP, and P70a-deGFP-ssrA) were
carried out for 2 h. Total RNA was extracted using the full
reaction volume. This was followed by the removal of 16S
and 23S rRNA using the MICROBExpressTM Bacterial mRNA
Enrichment Kit (Life Technologies Corporation). Lastly, the
MEGAclearTM Kit (Life Technologies Corporation) was used

1Varnerlab. Github reposistory for tx/tl model code. Available online at https://
github.com/varnerlab/Biophysical-TXTL-Model-Code.

to further purify the mRNA. The mRNA concentrations were
determined using the QubitTM RNA assay kit (ThermoFisher
Scientific). At least three technical replicates were performed
for each standard. The concentration of cI-ssrA mRNA was
quantified using the deGFP-ssrA mRNA standard. Green
fluorescent protein (deGFP) fluorescence wasmeasured using the
Varioskan Lux plate reader at 488 nm (excitation) and 535 nm
(emission). At the end of the CFPS run, 3 µL of the reaction
mixture was diluted in 33 µL phosphate buffered saline (PBS)
and stored at−80◦C. The fluorescence was measured in triplicate
with 10 µL each of this mixture. For all measurements, at least
three biological replicates were performed.

2.3. Synthetic Circuit Architecture
The two genetic circuits (C1 and C2) used in this study were based
upon the bacterial sigma factor regulatory system (Figure 1).
Sigma factor 70 (σ70), endogenously present in the extract,
was the primary driver of each circuit. In C1, σ70 induced
green fluorescent protein (deGFP) expression was explored in
the absence of additional regulators or protein degradation
(Figure 1A). In C2, σ70 induced the expression of sigma factor
28 (σ28) and deGFP-ssrA (Figure 1B). Sigma 28 induced the
expression of the lambda phage repressor protein cI-ssrA, which
was under the σ28 responsive P28 promoter. The cI-ssrA protein
repressed the P70a promoter, thereby down-regulating σ28
and deGFP-ssrA transcription (Marshall and Noireaux, 2018).
Simultaneously, the C-terminal ssrA degradation tags present on
the deGFP and cI proteins were recognized by the endogenous
ClpXP protease system in the cell free extract, thereby promoting
the degradation of these proteins into peptide fragments (Flynn
et al., 2003; Garamella et al., 2016). In addition, messenger RNAs
(mRNAs) were always subject to degradation due to the presence
of degradation enzymes in the extract (Karzbrun et al., 2011;
Garamella et al., 2016). Taken together, the interactions of the
components manifested in an accumulation of deGFP protein for
C1, and a pulse signal of deGFP-ssrA in C2. Studying C1 allowed
us to estimate parameters governing the interaction of σ70 with
the P70a promoter. Whereas, the C2 allowed us to characterize
the interaction of σ28 with the P28 promoter, the strength of
the transcriptional repression by cI-ssrA, and the kinetics of
protein degradation by the endogenous ClpXP protease system.
Finally, both circuits tested the effective model formulation for
the transcription and translation rates.

2.4. Formulation and Solution of Model
Equations
Consider a cell free synthetic circuit composed of the genes
G = 1, 2, . . . ,N . Each gene in the circuit is described by two
differential equations, one for mRNA (mj) and a second for the
corresponding protein (pj):

ṁj = rX,juj (. . .) − θm,jmj j = 1, 2, . . . ,N (1)

ṗj = rL,jwj (. . .) − θp,jpj (2)

The term rX,juj (. . .) in the mRNA balance, which denotes the
regulated rate of transcription for gene j, is the product of a
kinetic limit rX,j (nM h−1) and a transcription control function
0 ≤ uj (. . .) ≤ 1 (dimensionless). Similarly, the rate of translation
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FIGURE 1 | Schematic of the cell free gene expression circuits used in this study. (A): Sigma factor 70 (σ70) induced expression of deGFP. (B): The circuit components

encode for a negative feedback loop motif. Sigma factor 28 and deGFP-ssrA genes on the P70a promoters are expressed first because of the endogenous presence

of sigma 70 factor in the extract. Sigma factor 28, once expressed, induces the P28a promoter, turning on the expression of the cI-ssrA gene which represses the

P70a promoter. The circuit is modified from a previous study (Garamella et al., 2016) by including an ssrA degradation tag on the cI gene.

of mRNA j, denoted by rL,jwj, is also the product of the kinetic
limit of translation (nM h−1) and a translational control
term 0 ≤ wj (. . .) ≤ 1 (dimensionless). Lastly, θ⋆,j denotes
the first-order rate constant (h−1) governing degradation of
protein and mRNA. The model equations, encoded in the
Julia programming language (Bezanson et al., 2017), were
automatically generated using the JuGRN tool2. The model
equations were solved numerically using the Rosenbrock23
routine of the DifferentialEquations.jl package
(Rackauckas and Nie, 2017).

2.4.1. Transcription and Translation Kinetic Limits

The key idea behind the transcription and translation kinetic
limit expressions is that the polymerase (or ribosome) acts as a
pseudo-enzyme; it binds a gene (or message), reads the gene (or
message), and then dissociates. Thus, we used a strategy similar
to classical enzyme kinetics to derive expressions for rX,j (or
rL,j); we proposed a set of elementary reactions for transcription
and translation, one of which we assumed was rate limiting, and
then invoked the pseudo state assumption for each intermediate
complex to develop the overall rate expression. Following this
approach, the details of the derivation of rX,j (or rL,j) are given
in the Supplementary Materials. The transcription kinetic limit
rX,j is given by:

rX,j = Vmax
X,j

(

Gj

τX,jKX,j +
(

1+ τX,j
)

Gj +OX,j

)

(3)

2Varnerlab. Gene Regulatory Network Generator in Julia (JuGRN). Available
online at https://github.com/varnerlab/JuGRN-Generator.

where Vmax
X,j denotes the maximum transcription rate (nM/h)

of gene j, Gj denotes the concentration of gene j (nmol/L),
KX,j denotes the saturation constant for transcription of gene
j (nmol/L), τX,j denotes the time constant for transcription
(dimensionless) and:

OX,j =

N
∑

i= 1,j

KX,jτX,j

KX,iτX,i

(

1+ τX,i
)

Gi (4)

denotes the coupling of the transcription of gene j with the other
genes in the system through competition for RNA polymerase.

In a similar way, we developed an expression for the
translational kinetic limit:

rL,j = Vmax
L,j

(

mj

τL,jKL,j +
(

1+ τL,j
)

mj +OL,j

)

(5)

where Vmax
L,j denotes the maximum translation rate (nM/h), KL,j

denotes the saturation constant for translation of mRNAmessage
j (nmol/L), τL,j denotes the time constant for translation of
message j (dimensionless) and:

OL,j =

N
∑

i= 1,j

KL,jτL,j

KL,iτL,i

(

1+ τL,i
)

mi (6)

describes the coupling of the translation of mRNA j with
other messages in the system because of kinetic competition
for available ribosomes. The saturation and time constants for
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each case (which are unknown and must be estimated from
experimental data) are defined in the Supplementary Materials.
Lastly, in this study, the OX,j and OL,j terms were neglected as
both circuits had either only one, or a small number of genes.

The maximum transcription rate Vmax
X,j was formulated as:

Vmax
X,j ≡ RX,T

(

v̇X

lG,j

)

(7)

where RX,T denotes the total RNA polymerase concentration
(nM), v̇X denotes the RNA polymerase elongation rate (nt/h) and
lG,j denotes the length of gene j in nucleotides (nt). Similarly, the
maximum translation rate Vmax

L,j was formulated as:

Vmax
L,j ≡ KPRL,T

(

v̇L

lP,j

)

(8)

where RL,T denotes the total ribosome pool, KP denotes the
polysome amplification constant, v̇L denotes the ribosome
elongation rate (amino acids per hour), and lP,j denotes the length
of protein j (aa).

2.4.2. Control Functions u and w

Values of the control functions u (. . .) and w (. . .) describe
the regulation of transcription and translation. Ackers et al.,
borrowed from statistical mechanics to recast the u (. . .) function
as the probability that a system exists in a configuration which
leads to expression (Ackers et al., 1982). The idea of recasting
u (. . .) as the probability of expression was also developed
(apparently independently) by Bailey and coworkers in a series
of papers modeling the lac operon (see Lee and Bailey, 1984).
More recently, Moon and Voigt adapted a similar approach when
modeling the expression of synthetic circuits in E. coli (Moon
et al., 2012). The u (. . .) function is formulated as:

u (. . .)j =

∑

i∈{χ}

Wifi (. . .)

∑

j∈Cj

Wjfj (. . .)
(9)

where Wi (dimensionless) denotes the weight of configuration
i, while fi (· · · ) (dimensionless) is a binding function (taken
to be a hill-type function) describing the fraction of bound
activator/inhibitor for configuration i. The summation in the
numerator of Equation (9) is over the set of promoter
configurations leading to expression (denoted as χ), while the
summation in the numerator is over the set of all possible
configurations for gene j (denoted as Cj). Thus, u (. . .)j can be
thought of as the fraction of all possible configurations that lead
to expression. The weights Wi are related to the Gibbs energy of
configuration i: Wi = exp (−1Gi/RT) where 1Gi denotes the
molar Gibbs energy for configuration i (kJ/mol), R denotes the
ideal gas constant (kJ mol−1 K−1), and T denotes the system
temperature (Kelvin) (Ackers et al., 1982). The value of the
binding function depends on the concentrations of the different
transcriptional elements and their dissociation constants. The
temporal evolution of u, therefore, is tied to the dynamics of its

transcriptional elements, and its value lies between 0 and 1. In
the case of circuit C1, u did not vary during the course of the
reaction because the concentration of its activator, σ70, was fixed.
For this case, u approximately equalled 0.95. However, in the
second circuit, C2, u varied with time because of the change in
levels of σ28 and cI-ssrA proteins.

We accounted for the experimentally observed loss of
translational activity through the translational control function
w (. . .). Loss of translational activity could be a function of many
factors, including depletion of metabolic resources. However, in
this study, we modeled the loss of translational activity as an
exponential decay process with half-life τL,1/2:

ǫ̇ = −

(

0.693

τL,1/2

)

ǫ (10)

where ǫ denotes the fraction of remaining translational activity.
Initially we assumed translation to be fully active, ǫ(0) = 1.
Solving equation (10) yields ǫ(t) = exp

(

−0.693 · t/τL,1/2
)

. Over
time, as the cell free reaction progressed, the translational activity
decreased with a half-life τL,1/2 which was estimated from
experimental data. The translational control variable was then
given by wi = ǫ for all translation processes.

2.5. Estimation of Model Parameters
Model parameters were estimated from published studies, were
specified by experimental conditions (Table 1) or were estimated
byminimizing the squared difference betweenmodel simulations
and messenger RNA (mRNA), or protein measurements
generated in this study. For the P70-deGFP model (C1), 11
parameters were estimated, while 33 parameters were estimated
for the negative feedback model (C2).

The minimization problem to estimate the unknown model
parameters was structured as a multiobjective optimization
problem in which each measured mRNA or protein trajectory
was treated as a separate objective. The minimization problem
was solved using the Pareto Optimal Ensemble Technique
in the Julia programming language (JuPOETs) (Bassen et al.,
2017). JuPOETs is a multiobjective optimization approach which
integrates simulated annealing with Pareto optimality to estimate
parameter values on or near the optimal tradeoff surface between
N potentially competing objectives (squared difference between
model simulations and experimental measurements). JuPOETs
minimized a problem of the form:

min
k

Ej =

Tj
∑

i= 1

(

M̂ij − xij(k)

)2

j = 1, 2, . . . ,N (11)

subject to

ẋ = f
(

x, k
)

(12)

L ≤ k ≤ U (13)

x (to) = xo (14)

where Equation (12) denotes the model equations, Equation
(13) denotes the parameter bounds, and Equation (14) denotes
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TABLE 1 | Characteristic parameters for TX/TL model equations.

Description Parameter Value Units Reference

RNA polymerase concentration RX,T 0.06–0.075 µM a

Ribosome concentration RL,T < 2.3 µM a,b

σ70 concentration σ70 <35 nM a

initial σ28 concentration σ28 <20 nM a

Transcription elongation rate v̇X 12–30 nt/s a,d

Translation elongation rate v̇L 1–2 aa/s a,b

Transcription saturation coefficient KX 0.036 µM i

Polysome amplification constant KP 10.0 constant e

Transcription initiation time kXI 22 s i

Translation initiation time kLI 1.5 s e

Default mRNA degradation coefficient θm 3.75 h-1 a

Default protein degradation coefficient θp 0.462–1.89 h-1 f,g

Gene concentration σ28 1.5 nM c

Gene concentration cI-ssrA 1.0 nM c

Gene concentration deGFP-ssrA 8.0 nM c

Gene length σ28 811 nt h

Gene length cI-ssrA 850 nt h

Gene length deGFP-ssrA 782 nt h

Protein length σ28 240 aa h

Protein length cI-ssrA 248 aa h

Protein length deGFP-ssrA 237 aa h

Key to references used in the table: (a) Garamella et al. (2016), (b) Underwood et al. (2005), (c) set by experiment, (d) Kassavetis and Chamberlin (1981), (e) estimated in this study,

(f) Niederholtmeyer et al. (2015) and Vilkhovoy et al. (2018), (g) Grilly et al. (2007), (h) calculated from plasmid sequence, (i) McClure (1980).

the initial conditions. The objective function(s) Ej measured the
squared difference between model simulations and experiment j
(either a protein or mRNA trajectory). The symbol M̂ij denotes
an experimental observation at time index i from experiment
j, while the symbol xij denotes the model simulation output
at time index i from experiment j. The quantity i denotes the
sampled time-index and Tj denotes the number of time points for
experiment j. For the P70-deGFP model (C1), E1 corresponded
to mRNA deGFP, while E2 corresponded to the deGFP protein
concentration. On the other hand, for the negative feedback
model (C2), E1 corresponded tomRNA deGFP-ssrA, E2 tomRNA
σ28, E3 to mRNA cI-ssrA and E4 to the deGFP-ssrA protein
concentration. Lastly, we penalized accumulation of the cI-ssrA
protein (unmeasured) reaching unrealistically high levels with a
term of the form: E5 = C × max (0, xcI − UcI) where C denotes
a penalty parameter (C = 1×105), xcI denotes the maximum
simulated cI-ssrA protein concentration, and UcI denotes a
concentration upper bound (UcI = 100µM). This bound was
chosen to be approximately five-fold higher than the protein
levels observed in an uninhibited circuit (e.g., C1).

The lower and upper bounds for unknown model parameters
were established from previously published studies, or from
previous model analysis; parameter values estimated for the
P70-deGFP model were also used to establish ranges for the
negative feedback model. JuPOETs searched over 1Gi, KL, and
τL,1/2 values directly, while other unknown parameter values
took the form of corrections to order of magnitude characteristic
literature estimates. For example, we set the mRNA degradation

rate constant (θm) to a characteristic value taken from literature.
Then, the degradation constant for any particular mRNA was
represented as: θm,i = αiθm, where αi was an unknown (but
bounded) modifier. In this way, we guaranteed the parameter
search (and the resulting estimated parameters) were within a
specified range of literature values. We used this procedure for
all degradation constants (both mRNA and protein) and all time
constants (for both transcription and translation). The baseline
parameter values are given in Table 1. JuPOETs was run for 20
generations for both models, and all parameters sets with Pareto
rank less than or equal to two were collected for each generation.
The JuPOETs parameter estimation routine is encoded in the
sa_poets_estimate.jl script in the model repositories.

JuPOETs uses a simulated annealing approach to generate
candidate parameter solutions whose Pareto rank is then
evaluated; ranks below a threshold are kept while higher
rank solutions are discarded. Thus, all the advantages (and
disadvantages) associated with simulated annealing have been
inherited by JuPOETs; for example, the time required to generate
a family of low rank solutions will be significantly longer than
a derivative based approach. Beyond these specific performance
issues, a unique pathology of JuPOETs is the use of Pareto
rank as a surrogate for training error. JuPOETs attempts to
find low rank solutions, but rank is a relative measure of the
quality of a solution. Thus, during the early iterations, low rank
solutions often have large errors. As the iteration count increases
the approach tends to find low error solutions with low rank,
however, for complex models the rate of convergence to these
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FIGURE 2 | Model simulations vs. experimental measurements for σ70 induced deGFP expression. (A): Simulated and measured deGFP mRNA concentration vs.

time using the small circuit G20 ensemble (N = 140). (B): Simulated and measured deGFP protein concentration vs. time using the small circuit G20 ensemble (N =

140). (C): Global sensitivity analysis of the P70-deGFP circuit parameters. Morris sensitivity coefficients were calculated for the unknown model parameters, where the

range for each parameter was established from the ensemble. Uncertainty: Simulations and uncertainty quantification are shown for the generation 20 (G20) ensemble

which yielded N = 140 parameter sets that were rank two or below. The parameter ensemble was used to calculate the mean (dashed line) and the 95% confidence

estimate of the simulation (gray region). Additionally, the 99% confidence estimate of the mean simulation is shown in orange. Individual parameter set trajectories are

shown in blue. Points denote the mean experimental measurement while error bars denote the 95% confidence estimate of the experimental mean computed from at

least three replicates.

low rank low error solutions is slow. To address this concern, we
periodically switch to single objective mode where we minimize
the total training error (summation of all objective functions)
instead of finding low rank solutions. The best solutions from
single objective mode can then be used to restart the multi-
objective calculation. This hybrid approach, which was used in
this study, has previously been shown to increase the rate of
finding low rank and low error solutions (see Bassen et al., 2017).

2.6. Morris Sensitivity Analysis
Morris sensitivity analysis was used to understand which model
parameters were sensitive (Morris, 1991). The Morris method
is a global method that computes an elementary effect value
for each parameter by sampling a model performance function,
in this case the area under the curve for each model species
in their respective timeplots, over a range of values for each
parameter; the mean of elementary effects measures the direct
effect of a particular parameter on the performance function,
while the variance of each elementary effect indicates whether
the effects are non-linear or the result of interactions with
other parameters (large variance suggests connectedness or non-
linearity). The Morris sensitivity coefficients were computed
using the DiffEqSensitivity.jl package (Rackauckas
and Nie, 2017). The parameter ranges were established by
calculating the minimum and the maximum value for each
parameter in the parameter ensemble generated by JuPOETs.
Each range was then subdivided into 10,000 samples for
the sensitivity calculation. Elementary effect values were then
calculated one at a time by measuring the perturbation in the
AUC on changing one parameter, where the AUC was calculated
by solving the set of ODEs for each change. In order to calculate
the mean and variance, the top 1000 perturbations with the

highest spread in parameter values were used. In total, the model
was evaluated 10000n times, where n is the number of parameters
varied. TheMorris sensitivity coefficients are calculated using the
compute_sensitivity_coefficients.jl script in the
model repositories.

3. RESULTS

3.1. Modeling and Analysis of the C1 Circuit
The effective biophysical transcription and translation model
captured σ70 induced deGFP expression at the mRNA and
protein level within the experimental error for C1 (Figure 2).
JuPOETs produced an ensemble (N = 140) of the 11 unknown
model parameters which captured the transcription of mRNA
(Figure 2A) and the translation of deGFP protein (Figure 2B).
The mean and standard deviation of key parameters is given in
Table 2. The deGFPmRNA reached its steady state concentration
of approximately 580 nM within 2 h, and stayed at this level
for the remainder of the reaction. Thus, the cell free reaction
maintained continuous transcriptional activity with an average
mRNA lifetime of 27 min; Garamella et al. (2016) reported a
similar lifetime of 17–18 min. On the other hand, deGFP protein
concentration increased more slowly, and began to saturate
between 8 and 10 h at approximately 15 µM. Given there was
negligible protein degradation (the mean deGFP half-life was
estimated to be∼11 days, which was similar to the value of 6 days
estimated by Horvath et al., albeit in a different cell free system,
Horvath et al., 2020). The saturating protein concentration
suggested that the translational capacity of the cell free system
decreased over the course of the reaction. The decrease in
translational capacity, which could stem from several sources,
was captured in the simulations using amonotonically decreasing
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TABLE 2 | Estimated parameter values for the P70-deGFP model (C1).

Description Parameter Value (µ ± σ ) Units

Translation saturation coefficient KL 483.13 ± 10.10 µM

Half-life translation τL,1/2 4.03 ± 0.031 h-1

Time constants

deGFP transcription τX,GFP 0.61 ± 0.04 dimensionless

deGFP translation τ L,GFP 0.16 ± 0.003 dimensionless

mRNA and protein half-life

mRNA deGFP ln(2)/θm,GFP 13.5 ± 2.47 min

Protein deGFP ln(2)/θp,GFP 10.86 ± 0.78 days

Protein σ70 ln(2)/θp,σ70 3.65 ± 0.17 days

Free energies

RNAP + deGFP gene 1GGFP,RX 28.82 ± 1.75 kJ mol-1

RNAP + σ70 + deGFP gene 1GGFP,σ70 –20.38 ± 1.91 kJ mol-1

Binding parameters

Hill coefficient deGFP gene + σ70 nGFP,σ70 1.12 ± 0.06 dimensionless

Dissociation constant deGFP gene + σ70 KGFP,σ70 24.19 ± 2.18 µM

The mean and standard deviation of each parameter value was calculated over the ensemble of parameter sets meeting the rank selection criteria (N = 139).

translation capacity state variable ǫ, and the translational control
variable w (. . .). In particular, the mean half-life of translational
capacity was estimated to be τL,1/2 ∼ 4 h in the C1 experiments.
Taken together, JuPOETs produced an ensemble of model
parameters that captured the experimental training data. Next,
we considered which C1 model parameters were important to
the model performance using Morris sensitivity analysis, a global
sensitivity analysis method.

The importance of C1 model parameters was quantified
using Morris sensitivity analysis (Figure 2B). The Morris
method computes the influence of each parameter, known
as the elementary effect, on a model performance function.
The mean of elementary effects measures the direct effect of
a particular parameter, while the variance indicates whether
the effects are non-linear or the result of interactions with
other parameters (large variance suggests non-linearity). The
performance function was defined as the integrated area under
the curve (AUC) for each mRNA and protein species in their
respective timeplots, calculated for each parameter value range.
The Morris sensitivity measures (mean and variance) were
binned into categories based upon their relative magnitudes,
from no influence (white) to high influence (black). Only four
parameters (translation saturation coefficient KL, translational
capacity half-life τL,1/2, translation time constant, and protein
degradation constant) influenced the protein level. On the
other hand, six parameters influenced both mRNA and protein
abundance; all six of these parameters were either directly or
indirectly associated with transcription. Thus, these parameters
influenced the production or stability of mRNA which in turn
influenced the protein level. In particular, the mRNA degradation
constant and the cooperativity of σ70 in the P70a promoter
function had the largest direct effect and variance. Surprisingly,
the 1G of σ70/RNAP/promoter configuration was the least
influential of the six parameters and had a small elementary
effect variance. Taken together, Morris sensitivity analysis of

the C1 model parameters highlighted the hierarchical structure
of the transcriptional and translational model, suggesting
experimentally tunable parameters such as mRNA stability
were globally important. Next, we used the ensemble of P70a,
time constant and degradation parameters estimated for C1 to
constrain the analysis of C2.

3.2. Modeling and Analysis of the C2 Circuit
The effective biophysical transcription and translation model
captured the deGFP-ssrA expression dynamics in the negative
feedback circuit C2 (Figure 3A). JuPOETs produced an ensemble
(N = 498) of the 33 unknown model parameters which captured
transcription and translation dynamics for σ28, cI-ssrA and
deGFP-ssrA. Themean and standard deviation of key parameters
is given in Table 3. Compared with the estimated parameters for
C1, the C2 model had almost a two fold change in the half life of
translation and the translation saturation coefficient. Similarly,
there were variations in the values of the transcription and
translation time constants for the two systems. However, for both
circuits, the small values of the transcription and translation time
constants qualitatively suggested elongation limited reactions;
the exception was σ28 translation which was closer to initiation
limited. Unlike C1, the mRNA expression pattern for σ28 and
deGFP-ssrA both showed an initial spike, to a concentration
similar with the previous pseudo steady state, before the cI-
ssrA regulator protein could be expressed. However, once cI-
ssrA began to accumulate, the concentrations of the regulated
mRNAs dropped by approximately an order of magnitude
compared with the unregulated case. Again, as shown with C1,
the regulated mRNA concentrations reached an approximate
steady-state. This further confirmed continuous transcription
and mRNA degradation throughout the cell free reaction. The
mean estimated mRNA lifetime for cI-ssrA and deGFP were
similar (approximately 16 min), while the degradation of σ28
mRNA was predicted to be slower (mean mRNA lifetime
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FIGURE 3 | Model simulations vs. experimental measurements for the negative feedback deGFP-ssrA circuit. (A): Model simulations of the negative feedback

deGFP-ssrA circuit using the G20 ensemble (N = 498). Uncertainty: Simulations and uncertainty quantification are shown for the generation 20 (G20) ensemble which

yielded N = 489 parameter sets (rank two or below). The parameter ensemble was used to calculate the mean (dashed line) and the 99% confidence estimate of the

simulation (gray region). Additionally, the 99% confidence estimate of the mean simulation is shown in orange. Individual parameter set trajectories are also shown in

blue. Points denote the mean experimental measurement while error bars denote the 95% confidence estimate of the experimental mean computed from at least

three replicates. (B): Global sensitivity analysis of the negative feedback deGFP-ssrA circuit parameters. Morris sensitivity coefficients were calculated for the unknown

model parameters, where the range for each parameter was established from the ensemble.

was estimated to be approximately 30 min). Lastly, the mean
peak degradation rate for GFP was approximately 47 nM/min,
while the mean peak cI-ssrA degradation rate was predicted to
be approximately 63 nM/min; both of these degradation rate
estimates were consistent with the previously reported range of
15–150 nM/min measured by Garamella et al. (2016).

The secondary effect of cI-ssrA repression was visible in the
cI-ssrA mRNA expression pattern. The expression of cI-ssrA was
induced by σ28, however, σ28 expression was repressed by cI-ssrA,
thereby completing a negative feedback loop. Initially, before
appreciable levels of cI-ssrA had been translated, the cI-ssrA
transcription rate was maximum (approximately 200 nM/h).
However, the transcription rate decreased to approximately
12 nM/h after 2 h and remained constant for the remainder
of the cell free reaction. Similarly, transcription rates for σ28
(approximately 1,200 nM/h) and deGFP-ssrA (approximately
750 nM/h) were initially at a maximum due to the presence
of endogenous σ70, but then quickly dropped as cI protein
accumulated. Protein synthesis followed a similar trend, with
the translation rates for σ28 and deGFP-ssrA initially present
at their maximum values before quickly dropping. After 1 h,
deGFP levels reached a peak and decayed due to the ClpXP-
mediated degradation, whereas σ28 protein levels continued to
slowly rise at a steady rate (approximately 15 nM/h). The C2

model also predicted the expected lag present during the initial
phase of cI-ssrA protein synthesis due to the need for σ28
protein to reach appreciable levels. Moreover, the combination
of high cI-ssrA mRNA abundance (expressed because σ28 does
not have a degradation tag) and ClpXP-mediated degradation
led to the saturation of the cI-ssrA protein concentration.
However, the cI-ssrA protein concentration could not be verified
because we did not have an experimental measurement for this
species. Taken together, the effective model simulated cell free
expression dynamics for C2. Next, we considered which C2model
parameters were important using Morris sensitivity analysis.

Morris sensitivity analysis of the negative feedback circuit
C2 stratified the parameters into locally and globally important
groups (Figure 3B). The influence of 33 parameters was
computed using the AUC of each mRNA and protein species as
the performance function. The Morris sensitivity metrics (mean
and variance) were binned into categories based upon their
relative magnitudes, from no influence (white) to high influence
(black). Some parameters affected only their respective mRNA
or protein target, whereas others had widespread effects. For
example, the time constant (tc) modifiers, stability of deGFP-
ssrA protein and mRNA, and the binding dissociation constant
(K) and cooperativity parameter (n) of cI-ssrA and σ70 for the
deGFP-ssrA promoter affected only the values of deGFP-ssrA
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TABLE 3 | Estimated parameter values for the negative feedback circuit (C2).

Description Parameter Value (µ ± σ ) Units

Translation saturation coefficient KL 253.75 ± 14.12 µM

Half-life translation τL,1/2 8.86 ± 0.85 h-1

Time constants

cI-ssrA transcription τX,cI < 0.001 dimensionless

deGFP transcription τX,GFP 0.045 ± 0.003 dimensionless

σ28 transcription τX,σ28 0.0018 ± 0.0003 dimensionless

cI-ssrA translation τ L,cI 0.054 ± 0.004 dimensionless

deGFP translation τ L,GFP 0.058 ± 0.007 dimensionless

σ28 translation τ L,σ28 1.1 ± 0.13 dimensionless

mRNA and protein half-life

mRNA cI-ssrA ln(2)/θm,cI 8.1 ± 0.60 min

mRNA deGFP ln(2)/θm,GFP 7.74 ± 1.13 min

mRNA σ28 ln(2)/θm,σ28 14.96 ± 1.60 min

Protein cI-ssrA ln(2)/θp,cI 0.46 ± 0.043 days

Protein deGFP-ssrA ln(2)/θp,GFP 0.051 ± 0.002 days

Protein σ28 ln(2)/θp,σ28 7.65 ± 0.91 days

Protein σ70 ln(2)/θp,σ70 14.86 ± 2.30 days

Free energies

RNAP + cI gene 1GcI,RX 46.57 ± 4.28 kJ mol-1

RNAP + σ28 + cI gene 1GcI,σ28 −1.10 ± 0.04 J mol-1

RNAP + deGFP gene 1GGFP,RX 41.94 ± 1.80 kJ mol-1

RNAP + σ70 + deGFP gene 1GGFP,σ70 −27.67 ± 1.79 kJ mol-1

RNAP + cI + deGFP gene 1GGFP,cI −7.21 ± 1.14 kJ mol-1

RNAP + σ28 gene 1Gσ28 ,RX 46.67 ± 3.18 kJ mol-1

RNAP + σ70 + σ28 gene 1Gσ28 ,σ70 −10.46 ± 1.15 kJ mol-1

RNAP + cI + σ28 gene 1Gσ28 ,cI −12.89 ± 1.44 kJ mol-1

Hill coefficients

cI gene + σ28 ncI,σ28 1.88 ± 0.28 dimensionless

deGFP gene + σ70 nGFP,σ70 1.53 ± 0.14 dimensionless

deGFP gene + cI nGFP,cI 0.698 ± 0.133 dimensionless

σ28 gene + σ70 nσ28 ,σ70 1.10 ± 0.10 dimensionless

σ28 gene + cI nσ28 ,cI 1.51 ± 0.25 dimensionless

Dissociation constants

cI gene + σ28 KcI,σ28 1.09 ± 0.088 µM

deGFP gene + σ70 KGFP,σ70 86.87 ± 7.13 µM

deGFP gene + cI KGFP,cI 3.83 ± 0.41 µM

σ28 gene + σ70 Kσ28 ,σ70 1.35 ± 0.26 µM

σ28 gene + cI Kσ28 ,cI 0.0389 ± 0.0068 µM

The mean and standard deviation for each parameter was calculated over the ensemble of parameter sets (N = 498).

protein and mRNA. On the other hand, the tc, stability, K and n
parameters for σ70, σ28, or cI-ssrA influenced mRNA and protein
expression globally. The σ70 and σ28 proteins acted as inducers
or repressors for more than one gene product: σ70 induced both
deGFP-ssrA and σ28, and cI-ssrA protein repressed both of these
genes. Degradation constants (denoted as stability) affected the
half-lives of the transcribedmessages or the translated proteins in
the mixture, while the time constant modifiers changed the time
required to form the open gene complex (or translationally active
complex). Dissociation and cooperativity constants affected the
binding interactions of the inducer (or repressor in the case
of cI-ssrA) in the promoter control function. Varying these
parameters, therefore, had a strong effect on their respective
targets. Similarly, the translation saturation and its half-life,

which captured the depletion in the translation activity over the
course of the reaction, not only affected protein levels but also
mRNA levels. This is because these parameters tuned the rate of
formation of cI-ssrA, which in turn affected the mRNA levels
of its gene targets. Given that cI-ssrA was the main regulator
(repressor) of the circuit, the parameters that dictated the levels of
cI-ssrA mRNA and protein had a global effect. We also observed
high sensitivity variance for several parameters, in particular
involving cI-ssrA. For example, the time constant modifiers for
cI-ssrA mRNA and protein had a two-pronged effect. On the
one hand, they positively influenced the transcription/translation
rates of the gene and mRNA products, directly increasing the cI-
ssrA protein. On the other hand, increased cI-ssrA expression
reduced the level of σ28, in turn reducing the cI-ssrA levels
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over time. Taken together, Morris sensitivity analysis of the C2
model stratified that parameters into local and globally important
groups, with the parameters governing the synthesis rates of
the cI-ssrA mRNA and protein being globally important. The
sensitivity analysis also gave insight into the organization of the
circuit, suggesting cI to be highly connected within the circuit.

4. DISCUSSION

In this study, we developed an effective biophysical modeling
approach to simulate transcription (TX) and translation (TL)
processes occurring in a cell free system. We tested this approach
by simulating the dynamics of two cell free synthetic circuits (C1
and C2).

The model formulation, and parameter values were
mechanistic and largely derived from literature. For example,
characteristic values for τX and KX , the time and saturation
constants for transcription, were approximated from in vitro
experiments using an abortive initiation assay (McClure, 1980).
The RNAP and ribosome elongation rates were taken from
Garamella et al. (2016), while other parameters were estimated
from BioNumbers (Milo et al., 2010). Similarly, the weights
appearing in the transcription control function u(. . . ) were
based upon the Gibbs energies of the respective promoter
configurations, while the form of the transcriptional control
functions was derived from a statistical mechanical treatment
of promoter activity (Ackers et al., 1982; Lee and Bailey, 1984;
Moon et al., 2012). However, there were parameters that were
not available from literature; in these cases multiobjective
optimization was used to estimate these parameters from
mRNA and protein measurements. For C1, sigma factor 70
(σ70) induced expression of green fluorescent protein (deGFP),
the time constants, degradation rates, and other parameters
governing deGFP expression were estimated frommeasurements
of deGFP mRNA and protein. These estimates were then
used to constrain the parameter search for C2, which involved
deGFP expression subject to negative feedback and programmed
protein degradation. We estimated which model parameters
were important to the performance of C1 and C2 using Morris
sensitivity analysis. Sensitivity analysis results for C1 were
expected; the time constant for transcription, the stability of the
deGFP message and the cooperativity of σ70 were all important
parameters. On the other hand, the sensitivity analysis results for
C2 were more nuanced, with parameters (and associated species)
being stratified into locally and globally important groups;
the performance of C2 was most sensitive to the parameters
controlling the cI-ssrA mRNA and protein abundance.

The effective TX/TL modeling approach described here has
several potential applications. For example, a challenge of in vivo
constraint based modeling is the description of gene expression
(Covert and Palsson, 2002). Boolean and probabilistic approaches
(Covert et al., 2001, 2004; Chandrasekaran and Price, 2010)
have been developed to address this challenge. However, the
transcriptional state of a boolean gene is either on or off
based on the state of its regulators, thus, gene expression is
coarse-grained. The current modeling approach could be an
interestingmechanistic alternative to the boolean framework that
utilizes a continuous description of gene expression dynamics

and transcriptional regulation. In particular, the rules encoding
typical boolean gene expression networks are easily translatable
into the rational promoter functions described here, however,
the estimation of the parameters appearing in these promoter
functions, especially in an in vivo context, remains an open
question. Another application could be the extension of the
current model to other prokaryotic or eukaryotic systems with
a few changes. For example, in order to adopt it for an in vivo
system, the dilution of resources due to growth (proportional
to the cellular doubling time) would be added as a first order
term to the mRNA and protein balance equations. Additionally,
the competition for RNAP and ribosomes, denoted respectively
as OX,j and OL,j in the study, and assumed to be negligible
due to the presence of only three genes in the system, would
need to be taken into account; this term would serve to change
the rates of transcription and translation of the added genes
because of the presence of a large amount of endogenous
genes in the in vivo system. Moreover, characteristic literature-
based parameter values would be different for cellular processes
compared to the in vitro ones used in this study, and they
would thus need to be adjusted accordingly. For the case of
a mammalian or a yeast in vivo system, a few more changes
to the current model are necessary because the mechanistic
processes of gene expression and regulation are different in these
two types of systems. For example, a key difference present in
eukaryotes is the addition of an intron splicing step during the
synthesis of a mature mRNA from a pre-mRNA. In addition,
the gene regulation mechanisms are vast and composed of
numerous elements in eukaryotes. Finally, especially in in vivo
systems, addition of exogenous genes often leads to a tug-of-
war of carbon and energy resources between cellular growth
processes and the expression of these genes, driving cellular
resources away from the latter. Synthetic biology studies often
neglect the role that metabolism plays in the expression of
synthetic circuits. Ultimately, metabolism is centrally important
to the operation of any synthetic circuit; gene expression is
strongly dependent upon the metabolic resources provided
by catabolic processes. It is imperative that this metabolic
burden by the addition of exogenous genes be incorporated
in the in vivo model description to accurately capture the
expression behavior. We have recently started to explore this
question by integrating effective transcription and translation
models with metabolic networks in cell free reactions e.g.,
Vilkhovoy et al., 2018; Horvath et al., 2020, and also developing
experimental tools to measure metabolite concentrations in cell
free systems (Vilkhovoy et al., 2019). However, these previous
transcriptional and translational models (and similar precursor
models simulating eukaryotic processes, Gould et al., 2016;
Tasseff et al., 2017) were less developed than those presented here.
Taken together, the effective modeling approach described here
can potentially be used to simulate transcription and translation
processes in a variety of applications.

There have been many studies looking into oscillatory and
other dynamic behavior of synthetic circuits (see Prangemeier
et al., 2020). A negative feedback loop, such as the one explored
here, has the potential to give rise to oscillations. Yelleswarapu
et al. carried out TX/TL reactions, with a circuit similar to C2, in
both batch and continuous conditions (Yelleswarapu et al., 2018).
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Similar to our study, no oscillations were observed in the batch
reaction. However, oscillations were observed in the continuous
reaction. There are several possible reasons why no oscillations
were seen in our (or the Yelleswarapu et al.) batch study; as it was
carried out in batch, dilution of the expressed protein or mRNA
species due to an inlet feed was not possible. Thus, mRNA species
reached a pseudo steady state (after approximately 2 h) because
of ribonuclease degradation (Garenne et al., 2019). On the other
hand, in general protein species were not at steady-state; only
proteins tagged with a ssrA tag were able to be degraded by the
ClpXP system, thereby allowing a steady-state. Thus, the batch
system likely evolved dynamically through a set of concentration
profiles that were not consistent with oscillations.

The effective TX/TLmodel described the experimental mRNA
and protein training data. However, there were several important
questions to be addressed by future studies. First, the model
formulation described the data, but did not predict dynamics
outside of the training set. If this approach is to be useful to
the synthetic biology community, or more broadly as an effective
biophysical technique to model in vivo gene expression dynamics
for applications such as regulatory flux balance analysis, we need
to have confidence that the modeling approach is predictive.
Thus, while we have established a descriptive model, we have yet
to establish a predictive model. Next, there were several technical
or mechanistic questions that should be explored further. For
example, cI-ssrA represses the activity of the P70a promoter via
interaction with its OR2 and OR1 operator sites; in this study
we considered only a single operator site suggesting that we
potentially underestimated the potency of cI repression in the
deGFP and σ28 promoter functions, see the multiplication rule
(Lucks et al., 2011). Further, we used a first order approximation
of ClpXP mediated protein degradation, while Garamella et al.
(2016) described this degradation as zero order. Similarly, we did
not establish the concentration of ClpXP in the commercially
available cell free reaction mixture. The levels of this protein
complex could be an important factor controlling protein
degradation. Next, we should compare the current modeling
approach, and the values estimated for the model parameters,
with the study of Marshall and Noireaux (2019). For example,
one of the potential limitations of the current study (that was
addressed by Marshall and Noireaux, 2019) is that we did not
consider a separate species for dark GFP. In our previous RNA
circuit modeling (Hu et al., 2015), we did include this term,
but failed to do so here. We expect inclusion of a dark vs.
light GFP species could influence the values for the estimated
parameters, particularly the translation time constants. However,
previous reports suggested the in vitromaturation time of deGFP
was approximately 8 min (Shin and Noireaux, 2010), much
faster than the typical maturation times for GFP of 1 h in vivo
(Sniegowski et al., 2005; Iizuka et al., 2011). Thus, the impact
of including a dark vs. light GFP species may not be worth the
increased model complexity. Lastly, we should validate the values
estimated for the binding function parameters and the promoter
configuration free energies. Maeda et al. measured the binding
affinities of the seven E. coli σ factors with RNAP (Maeda et al.,
2000); while not directly comparable, these measurements give
an order of magnitude characteristic value for the dissociation

constants appearing in the promoter binding functions. Further,
there have been several studies that have quantified the binding
energies of promoter configurations (e.g., Ackers et al., 1982;
Brewster et al., 2012; Tapia-Rojo et al., 2012, 2014). A perfunctory
inspection of the values estimated in this study suggested our
estimated free energy values, while the same order of magnitude
as previous studies in many cases, did have values that were off by
a factor of up to an order of magnitude compared with literature
(albeit for different promoters). In particular, the positive Gibbs
energy estimated for free RNAP binding leading to transcription
was likely too large, while the magnitude of other values such
as the energy of cI repression of σ28 expression was likely
too small. Thus, these other studies could serve as a basis to
validate our estimates, and perhaps more importantly constrain
the parameter search space for future studies.
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