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Inertial measurement units (IMUs) are increasingly used to estimate movement quality

and quantity to the infer the nature of motor behavior. The current literature contains

several attempts to estimate movement smoothness using data from IMUs, many of

which assume that the translational and rotational kinematics measured by IMUs can

be directly used with the smoothness measures spectral arc length (SPARC) and log

dimensionless jerk (LDLJ-V). However, there has been no investigation of the validity of

these approaches. In this paper, we systematically evaluate the use of these measures

on the kinematics measured by IMUs. We show that: (a) SPARC and LDLJ-V are valid

measures of smoothness only when used with velocity; (b) SPARC and LDLJ-V applied

on translational velocity reconstructed from IMU is highly error prone due to drift caused

by integration of reconstruction errors; (c) SPARC can be applied directly on rotational

velocities measured by a gyroscope, but LDLJ-V can be error prone. For discrete

translational movements, we propose a modified version of the LDLJ-V measure, which

can be applied to acceleration data (LDLJ-A). We evaluate the performance of these

measures using simulated and experimental data. We demonstrate that the accuracy

of LDLJ-A depends on the time profile of IMU orientation reconstruction error. Finally,

we provide recommendations for how to appropriately apply these measures in practice

under different scenarios, and highlight various factors to be aware of when performing

smoothness analysis using IMU data.

Keywords: movement smoothness, inertial measurement units, movement kinematics, assessment, jerk, SPARC

1. INTRODUCTION

Inertial Measurement Units (IMUs) are becoming ubiquitous in everyday objects we carry, e.g.,
smartphones, smart watches, smart clothing, etc. This, along with the availability of relatively
inexpensive IMUs, has sparked their use for movement analysis in different disciplines, such as
movement neuroscience (e.g., Shull et al., 2014; Picerno, 2017a; O’Reilly et al., 2018), movement
biomechanics and sports science (e.g., Li et al., 2016; Salmond et al., 2017; Johnston et al., 2019),
and neurorehabilitation (e.g., Dobkin, 2013; Hubble et al., 2015; Vienne et al., 2017; Wang et al.,
2017; Brognara et al., 2019; Parker et al., 2020).

Quantitative measures of movement smoothness are of great interest as they allow us to
evaluate the evolution of motor skill learning or recovery (Toosizadeh et al., 2015; Trehan et al.,
2015; Moghaddas et al., 2019). Intuitively, movement smoothness is understood as a measure of
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non-intermittency, i.e., how uninterrupted a movement is,
or how closely it resembles a movement with an initial
period of acceleration followed by a period of deceleration
(Hogan and Sternad, 2007, 2009; Balasubramanian et al., 2012,
2015). There have been several attempts to formally develop
quantitative measures of movement smoothness (Rohrer and
Hogan, 2006; Hogan and Sternad, 2007, 2009; Balasubramanian
et al., 2012, 2015), but there is still no consensus on the most
appropriate measure to use in different tasks or with different
measurement technologies. This has led to the adoption of
diverse measures that, when applied to the same data set,
can generate contradicting results, leading to inconsistent and
potentially incorrect interpretations (Figure 1).

To ensure appropriate quantification and interpretation of
movement smoothness, valid, consistent, and reliable measures
should be used. Previous work (Balasubramanian et al.,
2012, 2015) has shown that, among several commonly used
smoothness measures, only spectral arc length (SPARC) and
log dimensionless jerk (LDLJ-V) possess these properties. Thus,
SPARC and LDLJ-V have been used in multiple studies using
data from different motion sensing technologies [e.g., image-
based motion capture in Gulde and Hermsdörfer (2018), robotic
devices in Colombo et al. (2017), IMUs in Rihar et al. (2014), or
depth cameras in Abdi et al. (2016)]. In many cases, especially
when movement velocity is not directly available, SPARC or
LDLJ-V have been loosely adapted to other kinematic variables,
e.g., acceleration from IMUs. Possible adaptations of these
measures for different signals were tentatively proposed in
Balasubramanian et al. (2015); however, they were not supported
by any mathematical arguments or experimental validation.
Thus, the properties of these adapted smoothness measures are

FIGURE 1 | Different measures of smoothness can lead to vastly different conclusions. In this example, three jerk-based smoothness measures (middle) were

applied to arm movements performed by a post-stroke subject in multiple directions (left), over 30 training sessions (right). The trends suggest three conflicting

outcomes: Jerk (RMS) shows reduction in movement smoothness, indicating that the training was detrimental; Jerk (Mean abs.) indicates that the training had no

effect; and Jerk (LDLJ) indicates that the training was beneficial. Data from Balasubramanian et al. (2012) with permission.

unknown. Further, it is likely that the smoothness values derived
from different variables (e.g., velocity or acceleration) are not
directly comparable and may lead to different interpretations
(e.g., Figure 1).

In this paper, we present a systematic investigation of the
use of SPARC and LDLJ-V to evaluate movement smoothness
using IMU data, i.e., linear acceleration from the accelerometer,
and angular velocity from the gyroscope. For translational
movements measured with IMUs (accelerometer), we show that
SPARC cannot be used, and we propose a modification to
the LDLJ-V to work with movement acceleration, LDLJ-A. For
rotational movements, we show that SPARC can be directly
applied to gyroscope data, while LDLJ-V is prone to errors.
Using simulated and experimental data, we show conditions
under which movement smoothness analysis can be carried
out on both translational and rotational movements using an
IMU. We also present an analysis of the nature of errors in
movement smoothness analysis from IMU data. We strongly
believe that the methods proposed in this paper are critical
to (a) standardize analysis methods used in similar contexts
(e.g., movement type, measurement technology, etc.); (b) avoid
biased or inappropriate selection of smoothness measures; and
(c) facilitate interpretation and direct comparison of results
between studies.

2. THEORETICAL BACKGROUND

To better understand the issues related to estimation of
movement smoothness from IMU data, it is important to start
with the construct of movement smoothness. Several groups
have proposed that movement smoothness can be understood
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through the concept of submovements: “...smooth movements
are movements composed of a few submovements that are
closely spaced in time, while unsmooth movements would result
from the superposition of a larger number of submovements
with loose temporal packing” (Balasubramanian et al., 2012).
Therefore, a valid and consistent movement smoothness measure
must (Balasubramanian et al., 2012): (a) be dimensionless, i.e.,
independent of the movement amplitude and duration, and
(b) have a monotonic response to change in the submovement
characteristics in a movement.

With this in mind, we describe two main problems associated
with the use of IMU data to estimate movement smoothness:

1. movement smoothness using SPARC and LDLJ-V requires
knowledge of velocity; and

2. IMUs measure in their local reference frames, and
reconstructing these data in an Earth-fixed reference frame is
prone to errors that can greatly affect smoothness estimates.

2.1. Why SPARC and LDLJ Should Only Be
Computed From Movement Velocity
Movement smoothness is a measure of movement quality, and
intuitively, it should be an intrinsic property of a movement
and not depend on the kinematic variables (position, velocity,
acceleration, etc.) selected to quantify it. This means that given
two movements Ma and Mb, one could determine the same
relative smoothness of these movements from different space
representations, e.g., their velocities or accelerations. Although
this idea is appealing on an intuitive level, mathematically it does
not hold, because not all representations are equally informative
aboutmovement smoothness. Although thismight seem obvious,
several studies have estimated movement smoothness applying
SPARC or LDLJ-V directly to acceleration signals, which
is incorrect.

Movement smoothness is related to the concept of
intermittency of the movement, which is also associated
with the idea of temporal dispersion of submovements. One
interpretation of movement intermittency is the presence of
movement arrest period (MAP), which is a continuous interval
of time within the overall movement duration where there
is no movement, i.e., where all derivatives of position are
uniformly zero. Movement velocity is the most direct indicator
of movement intermittency caused by MAPs. This is because
all time intervals with uniformly zero velocity are MAPs, while
non-zero velocities indicate movement. This unique relationship,
however, is lost with higher derivatives (acceleration, jerk, etc.),
e.g., intervals with zero acceleration can either indicate an MAP
or an interval with constant velocity.

SPARC uses submovements as a model of movement
generation, resulting in the definition in Equation (1). This
formulation quantifies dispersion of submovements in time,
resulting in a monotonic response to the motion characteristics
so that the smoothness measure decreases with the number
of submovements and the inter-submovement interval
(Balasubramanian et al., 2015). Because of its reliance on
MAPs, and despite its dimensionless nature, SPARC applied
to acceleration data looses its interpretability as a movement

smoothness measure (see Appendix C). At the very best, one
possible interpretation of SPARC applied to acceleration data
from a movement M is that it represents the smoothness of a
movement M̃ whose velocity profile is the same as movement
M’s acceleration profile.

On the other hand, LDLJ-V does not rely directly on
the concept of MAPs to quantify movement intermittency,
but rather does this through the jerk term, i.e., changes to
the movement acceleration. However, to make the measure
dimensionless, the integrated squared jerk must be multiplied by
a normalization factor. The definition of LDLJ-V in Equation
(2) uses a normalization factor that depends on the peak of
the speed profile vpeak. Although this is not the only way
to obtain a dimensionless measure, this specific normalization
factor results in a measure that has a monotonic response to
changes in the submovement characteristics of the underlying
movement. If another normalization factor is used, this property,
which is essential for the validity of the measure, might not
necessarily hold.

These aspects are highly relevant for movement analyses
where velocity cannot be reliably reconstructed, as in the case
of IMUs.
SPARC:

λvS (v) , −

∫ ωc

0
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1
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(
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LDLJ based on velocity (LDLJ-V):
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;

vpeak , max
t∈[t1 ,t2]

‖v (t)‖2 ,

(2)

where v (t) represents the velocity (linear or angular) of
a movement in the time domain, F (·) is the Fourier
transform operator, ωc is an adaptive cut-off frequency (see
Balasubramanian et al., 2015 for details), and t1 and t2 are
the movement start and stop times, respectively. In this paper,
we assume that the models of movement generation used
by SPARC and LDLJ-V to quantify translational movement
smoothness are the same as their rotational counterparts—i.e., we
can simply replace translational variables by the corresponding
rotational ones.

2.2. The Kinematics Measured by an IMU
In human movement analysis, we are typically interested in
translational and rotational motions of a single or a chain of
body segments (e.g., arm or leg) relative to a body coordinate
frame B (e.g., located at the shoulder or pelvis). Consider the
scenario depicted in Figure 2A, where an IMU is placed at the
wrist to measure the quality of discrete arm movements. Since
movement smoothness should be computed from velocity, we
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FIGURE 2 | (A) Different coordinate frames of interest in movement analysis:

inertial or earth-fixed O, body B, and sensor S reference frames. (B) Different

technologies used to capture the kinematics of S: motion capture using

reflective markers (MoCap) or Inertial Motion Units (IMUs). This setup was used

to collect the data presented in section 4.

are interested in the translational and rotational velocities of
the wrist S, with respect to the shoulder reference frame B,
i.e., BẋBS and B

ωBS, respectively (refer to section Notatiion
for details about conventions for the mathematical symbols).
Note that both frames S and B move relative to an earth-
fixed referenceO.

An IMU typically includes a 3-axis accelerometer, which
measures its linear acceleration Sa (t), and a 3-axis gyroscope,
which measures its angular velocity Sw (t), expressed in the local
(IMU sensor) reference frame S:

Sa (t) = SẍOS (t) + Sg = S

O
R (t)

(

OẍOS (t) + Og
)

(3)

Sw (t) = S
ωOS (t) = S

O
R (t) O

ωOS (t) , (4)

where Og is the gravity vector, OxOS (t) is the position of the
IMU reference frame S with respect to O expressed in frame O,
S

O
R (t) is the rotation matrix representing O in S. For simplicity,

we will drop the notation indicating the dependence on time t
(e.g., Sa (t) will be written as Sa). In the analysis presented here,
we do not consider the contributions of measurement noise, as
our primary goal is to demonstrate the effect of the physics of
IMUs on smoothness analysis. Some work on the effect of noise
on smoothness analysis can be found in Balasubramanian et al.
(2012) and Balasubramanian et al. (2015).

Although important, the choice of reference frame when
computing movement smoothness is rarely, if at all, discussed
in existing literature. Theoretically, any reference frame could be
used; however, to ensure consistency and the ability to compare
results across studies, an Earth-fixed frame is a convenient
choice as it is absolute to all researchers (at least those that
are on Earth) and thus tends to be the reference frame of
choice. Otherwise, comparisons would require accounting for the
relative movement between the selected reference frames, which
are typically not available.

It should be noted that B is physically attached to S through
a set of rigid bodies interconnected through joints, and thus
movements of B will be transmitted to S. Therefore, we can
rewrite Equation (3) as (derivation in Appendix A):

Sa = Sg+S

B
R BẍBS+

SẍOB+2 S

O
R O

B
Ṙ BẋBS+

S

O
R O

B
R̈ BxBS, (5)

where the accelerometer readings from the IMU Sa are
composed of

• Linear acceleration due to gravity
(

Sg
)

;
• Linear acceleration of S with respect to B

(

SẍBS
)

;
• Linear acceleration of B with respect toO (SẍOB);
• Coriolis acceleration of S due to rotation of frame B
(

2 S

O
R O

B
Ṙ BẋBS

)

; and
• Linear acceleration of S due to angular acceleration of frame B
(

S

O
R O

B
R̈ BxBS

)

;

Note that one could easily derive BẋBS from position kinematics
measured with optical motion capture systems. This, however, is
not straightforward with IMU data.

Similarly, Equation (4) can be expressed as

Sw = S

O
R O

B
R
(

B
ωBS + B

ωOB

)

= S
ωBS + S

ωOB, (6)

where the gyroscope data Sw is composed of:

• Angular velocity of S with respect to B
(

S
ωBS

)

,
• Angular velocity of B with respect toO

(

S
ωOB

)

;

all expressed in the IMU sensor reference frame S.
Thus, in general, a single IMU cannot be directly used to

analyze and interpret movements of isolated limbs without the
knowledge of the translational and rotational kinematics of B
with respect to O. This fact is perhaps obvious, but we think
it is important to remark because this has been neglected in
several previous studies. For example, there have been studies
where researchers want to investigate arm movement control
during activities of daily living, and IMUs are placed at the
wrist but no information about the trunk is considered; or
walking experiments where IMUs are placed at the ankles only.
In such studies, reported movement smoothness results should
be interpreted as the smoothness of the whole kinematic chain
and body with respect to an Earth-fixed reference frame, and not
just of the isolated limb on which the sensor is placed.
The special case where the body reference frame is fixed.

In many experimental setups in movement neuroscience and
neurorehabilitation, B is fixed with respect toO (e.g., the trunk is
strapped to a chair). This ensures that the movement kinematics
of the body parts of interest S with respect to B are related
to the kinematics of S with respect to O through fixed affine
transformation for position and linear transformation for its
derivatives. If B is fixed with respect to O (i.e., SxOB and O

B
R are

constant), Sa reduces to

Sa = S

B
R BẍBS +

Sg (7)

H⇒ BẋBS =

∫ t

t1

B

S
R
(

Sa− Sg
)

dt + c = B

O
R OẋOS, (8)

where c is a constant. Considering only discrete movements,
i.e., movements that are start and end with postures where all
derivatives of position are zero, this implies that c = 0.
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Then, themovement smoothness of the translational motion of S,
when B is fixed, is

λv
(

BẋBS
)

= λv
(

B

O
R OẋOS

)

= λv
(

OẋOS
)

(9)

for both SPARC and LDLJ-V, since B

O
R is fixed with respect

to time.
For rotations, similar to the translational motion case, if B is

fixed, i.e., BωOB = 0, then,

B
ωBS = B

S
R Sw = B

O
R O

ωOS. (10)

Using the assumption that the smoothness of rotational
movements can be analyzed in the same way as translational
movements, Equation (10) allows us to estimate movement
smoothness, when B is fixed, as

λv
(

B
ωBS

)

= λv
(

B

O
R O

ωOS

)

= λv
(

O
ωOS

)

. (11)

In other words, movement smoothness is invariant under fixed
translation and rotation of reference frames.

2.3. Smoothness of Discrete Movements
From IMUs
In theory, and in the absence of noise, the most straightforward
approach to estimate movement smoothness from IMU data
would be to reconstruct translational and angular velocities with
respect to O (O ˆ̇xOS and O

ω̂OS) from the IMU measurements
(Figure 3; Equations 3 and 4), then use SPARC or LDLJ-V to
estimate smoothness. This requires one to first estimate the
orientation of the IMU during the course of the observed
movement, i.e., compute O

S
R̂, which is an estimate of the

orientation of the IMU. However, in practice, errors in
orientation reconstruction of S with respect to O result in
errors in O ˆ̇xOS and O

ω̂OS, thus leading to inaccurate estimates
of movement smoothness. Here, we analyze these issues for
translational and rotational movements, and propose alternative
ways to compute movement smoothness from IMU data. We
will only consider discrete movements in our analysis, i.e.,
movements that start and end with a posture (Hogan and
Sternad, 2007), such that,

OẋOS (t1) =
OẋOS (t2) = 0 H⇒

∫ t2

t1

OẍOS (t) dt = 0.

(12)
There are multitude ways orientation of an IMU can be
reconstructed by combining acceleration, gyroscope, and
magnetometer data (see Kok et al., 2017 for a review).
Widely used methods include reconstruction by means of
Kalman filtering (Luinge and Veltink, 2005; Sabatini, 2011) or
complementary filters (Mahony et al., 2008; Madgwick et al.,
2011).

2.3.1. Translational Motion

To analyze the effects of kinematic reconstruction errors,
the reconstructed linear acceleration from IMU data can be
expressed as:

O ˆ̈xOS =
O

S
R̂ Sa− Og (13)

FIGURE 3 | Reconstruction of kinematic variables of interest for estimating

smoothness from IMU data.

Let δR = O

S
R̂ S

O
R be the orientation reconstruction error; when

orientation reconstruction is perfect, δR = I. Equation (13) can
be written as:

O ˆ̈xOS =
O

S
R̂ S

O
R
(

OẍOS +
Og
)

− Og

= δR OẍOS + (δR− I) Og

= OẍOS + (δR− I)
(

OẍOS +
Og
)

= OẍOS + δa,

(14)

O ˆ̇xOS =

∫ t

t1

O ˆ̈xOS dt =
OẋOS +

∫ t

t1

δa dt

= OẋOS + δv,

(15)

where δa, δv are the linear acceleration and velocity
reconstruction errors, respectively.

Thus, in the case of translational motion, using SPARC
(

λvS

)

or LDLJ-V
(

λvL

)

is problematic because of drift in
O ˆ̇xOS caused by integration of δa and noise in the sensor
data (which is not considered in these equations) (Thong
et al., 2004; Kok et al., 2017; Picerno, 2017b; Alvarez et al.,
2018). In human movement analysis, the magnitude of gravity
Og is much larger than linear accelerations of typical arm
movements, which can result in significant drift in O ˆ̇xOS due
to reconstruction errors; this problem is exacerbated in the case
of slow, long-duration movements, as seen in patients with
movement impairments.

2.3.1.1. Proposed solution: LDLJ-A for acceleration data
As discussed in section 2.1, applying SPARC or LDLJ-V to
acceleration signals does not provide the smoothness of the
movement represented by these acceleration signals. It is not
clear how SPARC could be calculated from acceleration data,
given that there is no simple relationship between the Fourier
magnitude spectra of velocity and acceleration signals. However,
we can obtain jerk from acceleration, and choose an appropriate
normalization factor to allow the LDLJ-V to work directly with
acceleration data, which results in the new measure (LDLJ-A)
applied to acceleration (see Appendix B for details about its
properties). This measure avoids integration of the reconstructed
acceleration signal, and thus the errors associated with drift in the
reconstructed velocity.
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LDLJ based on acceleration (LDLJ-A):

λaL
(

OẍOS
)

, − ln

(

t2 − t1

a2
peak

Ij

)

;

Ij ,

∫ t2

t1

∥

∥

O...xOS (t)
∥

∥

2
2 dt;

apeak , max
t∈[t1 ,t2]

∥

∥

OẍOS (t)
∥

∥

2 ;

OẍOS (t) , OẍOS (t) −
1

t2 − t1

∫ t2

t1

OẍOS (t) dt

(16)

where OẍOS is the mean subtracted acceleration. For discrete
movements, OẍOS = OẍOS (Equation 12). However, for
reconstructed acceleration data O ˆ̈xOS from discrete movements,
the mean might not be zero due to imperfect removal of gravity,
and data segmentation practices to determine movement onset
and termination. Removing the mean reduces the amount of
overestimation in the acceleration peak of O ˆ̈xOS. It should be
noted that the mean value of O ˆ̈xOS does not affect the jerk integral
term Ij.

2.3.2. Rotational Motion

Dealing with rotational motion data from an IMU is easier,
since: (a) the sensor directly measures angular velocity via the
gyroscope, albeit in the local sensor reference frame, and (b) the
signal is not affected by gravity.

For SPARC, the sensor orientation is irrelevant, since the
operator ‖·‖2 is rotation invariant. The rotational speed can be
computed directly from the gyroscope data, i.e.,

∥

∥
O

ωOS

∥

∥

2 =
∥

∥
S

O
R O

ωOS

∥

∥

2 =
∥

∥
Sw
∥

∥

2. Therefore, λ
v
S

(

O
ωOS

)

= λvS

(

Sw
)

.
On the other hand, LDLJ-V requires O

ω̂OS, which is affected
by the orientation reconstruction error:

O
ω̂OS = O

S
R̂ Sw = δR O

ωOS

= O
ωOS + (δR− I) O

ωOS

= O
ωOS + δω,

(17)

where δω is the rotational velocity reconstruction error. Since
the rotational jerk is estimated by double differentiation,
it is important to understand how errors in orientation
reconstruction affect the computation of LDLJ-V from
gyroscope data.

We note that there is an alternative formulation to compute
the magnitude of rotational jerk (and thus LDLJ-V) that is
unaffected by the sensor rotation (see Appendix D for details).
However, this formulation was found to be sensitive to practical
implementation issues (e.g., choice of numerical differentiation
methods, sampling frequency, etc.) and thus, needs further
investigation before general recommendations can be made for
its use in movement smoothness analysis.

In the next sections, we analyze the effect of reconstruction
errors on the smoothness estimates of translational and rotational
movements using simulated (section 3) and experimental
(section 4). For experimental data, we also analyze the agreement
between smoothness measures calculated from camera-based
motion capture and IMU data.

3. VALIDATION USING SIMULATED DATA

3.1. Simulation Data: Methods
We simulated discrete point-to-point movements to test the
proposed methods with knowledge of the ‘ground truth’ and full
control over reconstruction errors. To cover a wide range of
movements that are relevant for human movement analysis, 1s
duration, 15cm length minimum jerk trajectories with varying
number of via-points were generated. The following parameters
were used:
(i) Number of via-points: the number of via-points (spatio-
temporal constraints) can affect movement smoothness. We used
a subset of simulated discrete point-to-point movements from
the analysis presented in Appendix B; twenty-five different trials
with different number of via-points (Nvia = {1, 2, 5, 10}) were
selected for this analysis.
(ii) Movement duration: for a fixed movement amplitude,
movement duration controls the magnitude of the acceleration
and velocity. Acceleration of shorter duration movements are
dominated by the linear acceleration component SẍOS, while
longer duration movements are dominated by the gravity
component Sg. Each of the 1s duration simulated movements
were time-scaled to T = {2.5, 5, 10, 20} s. The corresponding
velocity and acceleration were scaled as

vT =
v1

T
aT =

a1

T2

where v1 and a1 are the velocity and acceleration of the 1s
duration movement.
(iii) Orientation reconstruction error: orientation reconstruction
errors were simulated as stochastic time-series of rotation
matrices, using the following parameterization,

δR (t) = Rz (α (t)) Ry (β (t)) Rx (γ (t)) , (18)

where Rx (·) ,Ry (·) , and Rz (·) are the elementary rotation
matrices about the x, y, and z axes, respectively; α (t) ,β (t) ,
and γ (t) are Euler angles that determine the amount of
rotation about each axis. The time-series of these Euler angles
were realizations of Gaussian Brownian noise (integration of
white noise), which were low-pass filtered through a moving
average filter (window size of 0.5s). The angles were scaled
such that maxt |α (t)| = maxt |β (t)| = maxt |γ (t)| = θmax,
θmax ∈ {5◦, 25◦, 50◦}. θmax determines the maximum amount
of orientation reconstruction error represented by δR. For each
movement trial with a fixed number of via points and duration,
we simulated five different realizations of the Euler angles for
each value of θmax.

The simulated movements and orientation reconstruction
errors were used to generate the reconstructed linear acceleration
and angular velocity data as (from Equations 15 to 17)

O ˆ̈xOS = δR OẍOS + (δR− I) Og
O

ω̂OS = δR O
ωOS = δR OẋOS

where OẋOS and OẍOS are the simulated minimum jerk
movements, and δR is the simulated sensor orientation
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reconstruction error (Equation 18). For the gyroscope
data, we simply treated the simulated linear movements as
rotational movements.

The values for the different factors used in the simulation
analysis (Table 1) resulted in a total of 6,000 movements (= 4
number of via points × 25 repetitions × 4 movement durations
× 3 orientation errors× 5 repetitions).

Movement smoothness of the simulated movements using
the reconstructed linear acceleration and angular velocity were
estimated by:

• Applying λaL to the original movement acceleration OẍOS and

the reconstructed acceleration O ˆ̈xOS.
• Applying λvS and λvL to the original angular velocity

O
ωOS and

reconstructed angular velocity O
ω̂OS.

3.2. Simulation Data: Analysis
To better understand how the reconstruction error
affects smoothness estimates, we quantified the following
properties of δR:

• First derivative: From Equation (18)

˙δR =
d

dt
(δR) = α̇

∂Rz

∂α
RyRx + β̇Rz

∂Ry

∂β
Rx

+ γ̇RzRy
∂Rx

∂γ
H⇒

∥

∥ ˙δR
∥

∥

2 ∝ θmax (19)

• Dynamic range, defined as

1δR , max
ti ,tj∈[t1 ,t2]

∥

∥

∥
δR (ti)

⊤ δR
(

tj
)

− I
∥

∥

∥

2
, (20)

which provides a measure of the largest mismatch between two
rotation matrices in the time series δR (t).

It should be noted that the magnitudes of
∥

∥ ˙δR
∥

∥

2 and 1δR

are unaffected by fixed offsets in the orientation reconstruction
error. ˙δR and 1δR play an important role in determining how
the nature of orientation reconstruction errors affect movement
smoothness estimated using LDLJ-A (refer to Appendix E).

In the case of translational movements, the relative magnitude
of the true linear acceleration and gravity is useful to
gauge the relevance of the sensor measurement to quantify
the movement in question. A rough estimate that can be
obtained from accelerometer data is the sensor-to-gravity

TABLE 1 | Summary of parameters used to analyze the effect of reconstruction

error on movement smoothness.

Parameter Values

No. of via points {1, 2, 5, 10} (25 reps)

Duration (s) {2.5, 5, 10, 20}

Reconstruction error {5◦, 25◦, 50◦} (5 realizations)

A total of 6,000 simulated movements were generated.

ratio (SGR):

SGR =
1

∥

∥Og
∥

∥

2

√

1

t2 − t1

∫ t2

t1

∥

∥Sa
∥

∥

2
2 dt. (21)

SGR can only assume non-negative real values. An accelerometer
that is free-falling with respect to an Earth-fixed reference frame
will measure 0 acceleration, and thus SGR = 0. In general,
increasing values of SGR greater than 1 indicate an increasing
contribution from the movement’s linear acceleration.

We also evaluated the effect of orientation reconstruction
error on the magnitudes of jerk and mean-subtracted
acceleration. Effects were further quantified in terms of the
percentage relative error in the jerk integral and acceleration
peak terms:

% Jerk Error , 100×

(

Îj − Ij

Ij

)

and

% Accl. Peak Error , 100×

(

âpeak − apeak

apeak

)

(22)

where Îj is the integral of the squared magnitude of the
reconstructed linear acceleration.

Smoothness estimates from the original and reconstructed
data were compared using Pearson correlation coefficients.
Further, the relative error ǫ between the smoothness of the
original and reconstructed movements was calculated as:

ǫ =
λ
(

ŷ
)

− λ
(

y
)

|λ
(

y
)

|
, (23)

where λ (·) is the smoothness measure, y and ŷ are the
original and reconstructed movement kinematic variables of
interest, respectively.

Finally, we analyzed how the correlation and relative error ǫ

varied as a function of SGR. This was done by first selecting all
movements with SGR greater than or equal to a threshold, and
then estimating the correlation coefficient and the relative error
ǫ for this set of movements; these plots were generated for SGR
thresholds ∈ [1.0, 1.05, 1.1, 1.2, 1.5, 1.75, 2.0, 2.5].

All simulated data and Python code for their analysis
presented in this paper is available here.

3.3. Simulated Data: Results and
Discussion
Orientation reconstruction error δR has varying effects on
the reconstructed acceleration and jerk (Figure 4). Movements
with larger acceleration and jerk magnitudes had lower relative
errors in jerk integral and peak acceleration. The relative
errors for longer duration movements were higher than for
shorter duration movements; this is due to increased relative
contribution from the gravity term compared to the linear
acceleration in longer duration movements (refer to Appendix E
for details). Furthermore, for a given movement duration,
movements with larger number of via points tend to have
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less relative errors due to their larger acceleration and jerk.
We demonstrate in Appendix E that errors in the jerk integral
and acceleration peak are determined by the derivative ˙δR

and the dynamic range 1δR of the orientation reconstruction
errors, respectively, rather than the magnitude of the orientation
reconstruction error ‖δR− I‖2.

Orientation reconstruction errors also affect smoothness
estimates of translational movements (Figure 5):

• Movements with fewer submovements (i.e., smoother
movements) tend to have larger errors in their smoothness
estimates. This is seen in the larger spread of points about
the y = x line for movements with high original smoothness
values (Figure 5A). This is because, in the simulated
movements, for a given movement duration movements

with fewer number of via points have lower acceleration and
jerk magnitudes.

• Movements with larger linear acceleration relative to
gravity (SGR ≥ 1.05) have smoothness values that are better
correlated (Figure 5A) to that of the original movement, and
have smaller reconstruction errors (Figure 5B). Increasing
SGR results in better agreement between the smoothness
values of the original and reconstructed movements
(Figure 5D).

• Larger orientation reconstruction errors (θmax) resulted
in poorer correlation between the true and reconstructed
smoothness values (Figure 5C). For a given amount of
orientation reconstruction error, the correlation decreases
with increasing movement duration due to reduction in the
acceleration and jerk magnitudes.

FIGURE 4 | Effect of orientation reconstruction error on the magnitudes of reconstructed mean-subtracted acceleration
(
∥

∥

∥

OẍOS −OẍOS

∥

∥

∥

2

)

and jerk
(
∥

∥

∥

O
...
xOS

∥

∥

∥

2

)

for

simulated data with zero (black), 5◦ (blue) and 25◦ (red) orientation error magnitudes. Sample simulated movements of 2.5s (top row) or 5s (bottom row) duration, with

1 (two columns on left) or 5 (two columns on right) via points. The percent relative error in the jerk integral and peak acceleration terms are in the legends of

each subplot.

FIGURE 5 | Simulation-based evaluation of LDLJ-A as smoothness estimate for translational movements. (A) Smoothness of reconstructed movements as a function

of smoothness of the corresponding original movement for all simulated movements (blue), and movements with SGR ≥ 1.05 (orange), with corresponding Pearson

correlation coefficients ρ. (B) Histogram of the relative error between smoothness of the original and the reconstructed movements for SGR < 1.05 (blue) and

SGR ≥ 1.05 (orange). (C) Correlation between smoothness of original and reconstructed movements as a function of movement duration for different orientation

reconstruction errors. (D) Correlation (red) and relative error (green) between smoothness from original and reconstructed movement as a function of SGR.
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For rotational movements (Figure 6), as expected, there
was perfect correlation between smoothness of the original
and reconstructed movements for SPARC regardless of
reconstruction error (ρ = 1). However, LDLJ-V had a much
lower correlation of ρ = 0.51 overall due to the orientation
reconstruction errors. As expected, the correlation increased
with decreasing orientation reconstruction error (Figure 6A).
Additionally, correlation was poorer for smoother movements.
The error in smoothness is larger for smoother movements,
reaching up to 100% relative error (Figure 6B), due to the
error in jerk calculation from O

ω̂OS. In this case, the errors in
smoothness estimate are entirely due to the jerk integral term,
which depends on both ˙δR and ¨δR. The long tail of the histogram
of the errors implies that there can large errors in smoothness
estimated using LDLJ-V.

4. VALIDATION USING HUMAN
MOVEMENT DATA

4.1. Human Movement Data: Methods
To evaluate the consistency of estimating movement smoothness
in practice, we applied the SPARC, LDLJ-V, and LDLJ-A to
human arm movement data collected simultaneously with an
optical passive marker-based motion capture system (MoCap)
and IMUs.We used a set of 250 upper-limbmovements, collected
from 4 post-stroke individuals with different levels of arm
impairment. Data were not collected for the specific purpose
of this paper; they were collected during the patients’ stay at
the cereneo center for Neurology and Rehabilitation (Vitznau,
Switzerland) as part of a different research study (BASEC ID
2017-00199). We only used anonymized data from patients who
authorized ‘further use of data’. The analysis presented here
does not fall into the category of Human Research, according to

the Human Research Act (Art. 2) defined by the Swiss Federal
Council; thus, no further ethical approval was required.

The kinematic dataset consisted of patients performing all
tasks of the ARAT (Arm Research Action Test) with both
their right and left arms. An optical motion capture system
(Qualysis, Göteborg, Sweden) and one IMU worn on each wrist
(ZurichMOVE, ETH Zurich, Switzerland) were used to track the
kinematics of both arms and body. Motion capture is the process
of recording movements of objects in 3D space (Winter, 2009).
In our case, reflective markers were placed on the body and
recorded by cameras that emit infrared light. The images from
multiple cameras are used to reconstruct the body’s movement
on the computer (we refer the interested reader to Colyer et al.
(2018) for a historic perspective and further details). To track
the movement simultaneously with the two systems, a cluster of
passive-reflective markers was attached to each of the IMUs as
shown in Figure 2B.

Marker data for each ARAT task were tracked and exported
to Visual3D (C-Motion, Germantown MD, USA), then low-pass
filtered with a zero-lag 2nd order Butterworth filter with cut-off
frequency at 20 Hz. A rigid-body model was used to calculate
the position (OxOS), angular velocity (Oω̂OS) and orientation
(O
S
R̂MoCap) of each cluster of markers representing the IMUs.
Data from the IMUs were a collected as continuous data

streams, and the MoCap data were used to align the data in
time and segment it into each ARAT task. Data from each
IMU consisted of acceleration (Sa), angular velocity (Sw), and
quaternions representing the orientation of the IMU, which were
used to compute the orientation of the sensor O

S
R̂IMU.

Linear velocity was obtained by numerical differentiation of
position data OxOS (MoCap data) or integration of the rotated

accelerometer signal minus gravity
(

O

S
R̂IMU

Sa− Og
)

(IMU

data). To further understand the effect of changes in orientation

FIGURE 6 | Evaluation of λv
S
and λvL to estimate smoothness of simulated rotational movements. (A) Smoothness of original λv∗

(

OωOS

)

vs. reconstructed movements

λv∗

(

Oω̂OS

)

for SPARC λv
S
(black circles) and LDLJ-V λvL with maximum orientation reconstruction errors of 5deg (blue), 25deg (orange), and 50deg (green). The

Pearson correlation coefficients are in the legend. (B) Histogram of the relative error between the λvL smoothness of the original and reconstructed movements.
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in smoothness estimates, we added ‘noise’ to the reconstructed
orientation of the sensor O

S
R̂IMU. For each of the 250 upper-limb

movements, 100 stochastic time-series rotation matrices (Rnoise)
with varying Euler angles ranging from 5 deg to 50 deg were
generated, similarly to how orientation reconstruction errors
were generated in section 3. This resulted in 25,000 movements
with varying orientation estimates given by Rnoise

O

S
R̂IMU.

Smoothness measures were computed for both IMU and
MoCap data. For SPARC, the adaptive cut-off frequency was
chosen to be less than or equal to 6 Hz (i.e.,ωc ≤ 12π in Equation
(1)). Thus, for LDLJ-V, signals were low-pass filtered with a
zero-lag 2nd order Butterworth filter with a cut-off frequency
at 6 Hz.

4.2. Human Movement Data: Analysis
The agreement between IMU andMoCap smoothness values was
quantified using Bland-Altman analysis (Giavarina, 2015) as a
percentage relative to the smoothness quantified from MoCap
(relative error), as MoCap is the ‘gold standard’ technology for
movement analysis. Limits of agreement are reported as 1.96
times the standard deviation of the computed values and are
shown in the figures with a 95% confidence interval.

4.3. Human Movement Data: Results and
Discussion
For linear velocity, MoCap- and IMU-based smoothness
estimates were highly uncorrelated for both SPARC (ρ = −0.11;
Figure 7A) and LDLJ-V (ρ = −0.10; Figure 7B). As expected
(see section 2.3.1), the drift caused by integration significantly
affected the smoothness estimated from the IMU data. For

SPARC, the drift causes a relative increase in the DC frequency
component of the speed signal. This, in turn, decreases the
adaptive cut-off frequency ωc (Equation 1), resulting in a shorter
spectral arc length, and thus a smoother estimate. For LDLJ-V, the
drift results in the over-estimation of vpeak, resulting in a smaller
normalization factor, and thus a smoother estimate.

MoCap- and IMU-derived smoothness computed using
LDLJ-A (Figure 7C) were highly correlated (ρ = 0.98). The
limits of agreement indicate that IMU-derived estimates were
smoother than those derived from MoCap, with a mean bias
of 2.6% (range from −4.5 to 9.6%). One explanation for
the bias could be the amplification of noise in the MoCap
position data due to triple numerical differentiation needed
for computing LDLJ-A, resulting in less smooth values. The
overestimation of smoothness computed from IMU data was also
seen with simulated movements in Figure 5A, where movements
with smoothness values less than −4 are mostly on or above
the identity line; the smoothness values of all movements in
Figure 7C are also lower than−4.

Despite the large number of experimental movements with
SGR < 1.05, points in Figure 7C had little spread compared to
Figure 5A, and the IMU- and MoCap-based smoothness were
highly correlated. This was likely due to small reconstruction
errors in O

S
R̂IMU from this particular IMU sensor. Indeed, when

simulated noise was added to O

S
R̂IMU (see Figure 8A), the relative

error between MoCap and IMU increased significantly.
For rotational movement, the MoCap- and IMU-derived

smoothness values were highly correlated for both SPARC (ρ =

0.96; Figure 7D) and LDLJ-V (ρ = 0.99; Figure 7E). While
SPARC resulted in almost no significant bias in relative error

FIGURE 7 | Comparison between smoothness estimates from Motion Capture (MoCap) and IMU data during upper-limb movements of stroke survivors. (A) SPARC

(linear velocity). (B) LDLJ-V (linear velocity). (C) LDLJ-A (linear acceleration). (D) SPARC (angular velocity). (E) LDLJ-V (angular velocity).
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(0.2%), LDLJ-V had a relative error bias of 2.5%. On the other
hand, the limits of agreement were smaller for LDLJ-V (−2.5 to
7.5%) compared to SPARC (−15.8 to 16.2%). The poorer levels
of agreement of SPARC than of LDLJ-V was surprising, given
that: (a) for angular velocity, SPARC is unaffected by rotation
O

S
R̂IMU; and (b) SPARC has been shown to be more robust to

noise than LDLJ-V (Balasubramanian et al., 2012, 2015). The
high correlation between MoCap- and IMU-derived smoothness
values for LDLJ-V agrees with the simulated data. These
experimental rotational movements were relatively unsmooth,
which tend to have better agreement with the true smoothness
values for relatively small reconstruction errors (Figure 6). This
is further discussed in section 5.2.

5. DISCUSSION

Quantification of movement smoothness is considered to be
of great importance in movement sciences and biomechanics,
to gain insights about the underlying mechanisms generating
the observed motor behavior. IMUs are increasingly used
to measure movement kinematics, but they do not directly
measure position kinematics, have a time-varying frame of
reference, and are noisy—which make deriving high-quality
velocity and orientation kinematics in a frame of interest
non-trivial. These issues put into question the appropriateness
of IMU data to quantify movement smoothness in practice
using SPARC and LDLJ-V. In this paper, we systematically
analyzed the difficulties of using IMUs formovement smoothness
analysis of translational and rotational movements. A summary
of recommendations for the measures to use for analyzing
movement smoothness using IMU data is in Figure 9 and
discussed below.

5.1. Translational Movement Smoothness
Estimation of linear velocity is required to compute SPARC
and LDLJ-V. In the case of an IMU, this requires integration
of the accelerometer signals, which are affected by rotational
movements of the sensor and are noisy. Even with good estimates
of the IMU’s orientation, reconstruction errors and accelerometer
noise can translate into drift in the reconstructed linear velocity.
This, in turn, affects the reliability of the smoothness measures
(see Figures 7A,B). Thus, SPARC and LDLJ-V should not be

used on translational velocity kinematics obtained from an

IMU. There are, however, several techniques that can be used
to obtain improved reconstructions of translational kinematics
from fused information from multiple IMUs (Kok et al., 2017),
which could enable the use of SPARC and LDLJ-V on IMU
data. However, such pose reconstruction methods rely on
application-specific models, constraints, and assumptions, which
can introduce systematic biases in the reconstructed velocity.
Thus, the same motion, processed by different algorithms,
could result in significantly different movement smoothness
estimates. To our knowledge, there have been no studies
evaluating the sensitivity of smoothness measures on such
translational velocity reconstruction algorithms from IMUs.
Thus, at this point, estimating smoothness with SPARC and

LDLJ-V using such algorithms are best avoided until their
reliability is established.

Since jerk can be derived from acceleration data, jerk-based
measures can potentially be calculated from acceleration with
the appropriate modifications in the scaling factor. This resulted
in the LDLJ-A proposed in Equation (16), which can be used
with acceleration data. The analyses presented in this study
show that the LDLJ-A can be a good alternative to estimate

translational movement smoothness from IMU acceleration

data. However, its use requires a reasonably well-reconstructed
movement acceleration signal, and its accuracy is determined by
the nature of the error in the IMU’s orientation reconstruction,
and the relative magnitude of the movement’s translational
acceleration with respect to gravity. This was illustrated with
simulated (Figures 5C,D), and experimental data (Figure 8).
Unfortunately, the extent of the orientation reconstruction error
and the relative magnitude of linear acceleration with respect
to gravity are often unknown in experimental or real-life data.
In such a scenario, the SGR metric (Equation 21) can be
used to provide some confidence in the smoothness estimates.
Movements with an SGR of at least 1.05 were found to be
less sensitive to different amounts of orientation reconstruction
errors (Figures 5A, 8).

Estimating movement smoothness from an accelerometer
without an estimate of its orientation should ideally be avoided
except under the special circumstance where there is a good
reason to believe that the sensor did not undergo much rotation,
and the SGR is greater than 1.05 (the larger the SGR, the better the
estimates). In this very specific case, one could potentially apply
LDLJ-A directly on the accelerometer data Sa (t).

5.2. Rotational Movement Smoothness
Analyzing rotational movements from IMU data is simpler
than the translational case because gyroscopes directly measure
rotational velocity and are unaffected by gravity. SPARC can be

applied to gyroscope data without any modifications. LDLJ-
V needs the gyroscope data to be corrected for sensor rotation
(Equation 15), and thus, can be affected by reconstruction error.
We note that there is another approach that can theoretically
circumvent the need for orientation reconstruction (described
in Appendix D), but this approach suffers from practical
implementation issues which need further investigation.

In experimental data, we found that smoothness computed
from IMU and MoCap data had better agreement when using
LDLJ-V than SPARC. This is in contrast to our previous
studies (Balasubramanian et al., 2012, 2015), in which we
consistently found that SPARC is more reliable and less
sensitive to noise than LDLJ-V. When looking closer at the
SPARC results from section 4, we observed that the SPARC
performance was poorer than LDLJ-V for less smooth (and
also longer duration) movements. Movements that exhibited
poorer levels of agreement had significant differences in spectral
arc length, consequence of the integration of slight differences
between the IMU and MoCap magnitude spectrum curves
(at frequencies lower than 6 Hz). However, LDLJ-V was
most probably insensitive to those differences because of the
logarithmic transformation which compressed the differences
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FIGURE 8 | Effect of orientation reconstruction error on LDLJ-A for experimental and simulated data. (A) Agreement between MoCap and IMU from experimental

data, when simulated noise (Rnoise) is added to the rotation matrix O
S
R̂IMU obtained from patient data. (B) Relative error ǫ (defined in Equation 23) when simulated

reconstruction error δR is added to synthetic movement data. Here, the metric RMS (‖δR− I‖2) is used as measure of orientation reconstruction error.

in dimensionless jerk (the argument of the log function in
Equation 16) between the IMU- and MoCap-based estimates.
This problem was observed primarily for movements with a
large number of submovements or undulations; such complex
movements were not considered in our previous studies, and
thus, this characteristic of SPARC was unnoticed. Future work
could investigate possible transformations on SPARC (similar to
the logarithm) that can alleviate this behavior.

One must not forget that the results for LDLJ-V and SPARC
reported from experimental data only reflect the characteristics
of the specific dataset presented here. It remains to be seen
how these measures behave on a different set of movements.
Since the correlation between the IMU- and MoCap-derived
smoothness were very high for both SPARC and LDLJ-V, we
cannot recommend the use of one measure over the other
- both approaches seem like good candidates for analyzing
movement smoothness of rotational movements measured
by IMUs.

Furthermore, the good results from LDLJ-V in Figure 7E

are in agreement with the simulated data. The results from
the simulated data indicate that smoothness estimated from
LDLJ-V has small errors for relatively unsmooth movements
with small reconstruction errors (Figure 6A). The movements
of the human subjects had lower smoothness (less than −10)
relative to the simulated data (between −14 and −5). It is
also possible that the IMU orientation reconstruction errors
in the human data were small, which could also contribute to
these results; the assumption of small orientation reconstruction
error is also consistent with the good results seen with LDLJ-A
for translational movements (Figure 7C); see also section 4.3).
LDLJ-V can result in highly erroneous smoothness estimates for
relatively smooth movements, and thus its use should be avoided

for rotational movements if accurate orientation reconstruction
cannot be guaranteed.

5.3. Limitations
It is crucial to mention some of the shortcomings of the current
study to ensure the results are interpreted appropriately.

1. The work presented here is only an initial step toward
standardizing methods for estimatingmovement smoothness

from IMUmeasurements that is consistent with its definition,
and with other movement measurement technologies. Further
work is required before a good, well-accepted method can be
established in the field.

2. The formulations presented here are only valid for discrete
movements, i.e., movements that start and end with a static
posture (Hogan and Sternad, 2007). Further work is required
to establish methods for computing movement smoothness of
rhythmic movements, such as walking.

3. The preliminary validation of the different proposed
approaches in this work are based on a limited set of simulated
and experimental data. Thus, it is possible that part of the
study outcomes are specific to these datasets. We attempted
to mitigate this by including a broad range of behaviors in
the simulated and experimental movements, resulting in a
wide range of smoothness values. The movement simulated
in this study have characteristics (number of submovements,
duration etc.) that are commonly observed in data from
patients with movement impairments (Rohrer et al., 2004).
The smoothness values of most of the simulated movements
shared the same range of values are the patient data presented
in the paper (-6 to -4 for the LDLJ-A). Nevertheless, the
recommendations made in this study must be validated using
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FIGURE 9 | Summary diagram of recommendations for analyzing movement smoothness of discrete movements (i.e., with a clear start and end with zero velocity)

using IMU data.

a larger experimental dataset with more subjects and a wider
range of movement tasks.

4. The tracking of rotational movements with MoCap was found
to be quite noisy, which could have been the reason for the bias
and the wider limits of agreement for SPARC and LDLJ-V. A
future validation study could quantify the noise characteristics
of IMU and MoCap systems to better evaluate their effects on
smoothness measures.

6. CONCLUSION

In this paper, we carried out a systematic analysis to
identify appropriate methods to analyze smoothness of discrete
movements measured by an IMU, that are consistent with
analyses performed with measurement technology in which
movement velocity relative to a fixed reference frame can be
reliably obtained. Our results suggest that there is no single

optimal approach for analyzing both translational and rotational
movements measured by an IMU. The most appropriate
method for estimating movement smoothness depends on two
factors: (a) the type of movement (rotational or translational),
and (b) the accuracy of the estimate of the IMU’s orientation.
Based on our analysis, the recommendations for analyzing
translational and rotational motions for smoothness analysis
are summarized in Figure 9. Future studies must evaluate these
recommendations on larger datasets consisting of different types
of movements.
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NOTATION

r : scalar (lowercase italic letter)
r : vector (lowercase bold letter)
R : matrix (uppercase bold letter)
A : coordinate frame (calligraphy uppercase letter)
A : origin of coordinate frameA

CxAB : position vector of point B w.r.t point A expressed in
frame C

C
ωAB : angular velocity vector of frame B w.r.t frame A

expressed in frame C
A
B
R : rotation matrix that maps vectors expressed in frame

B to frameA
t : time
t1 : start time of a discrete movement (onset)
t2 : stop time of a discrete movement (termination)
g : gravitational acceleration constant (9.81m/s2)

λ
†
∗ : smoothness measure using method ∗ ∈ {S, L}, where

S and L correspond to SPARC and LDLJ respectively,
and evaluated from data type † ∈ {p, v, a, j}, where p, v,
a, and j correspond to position, velocity, acceleration
and jerk, respectively.
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