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Various pre-trained deep learning models for the segmentation of bioimages have been
made available as developer-to-end-user solutions. They are optimized for ease of use
and usually require neither knowledge of machine learning nor coding skills. However,
individually testing these tools is tedious and success is uncertain. Here, we present
the Open Segmentation Framework (OpSeF), a Python framework for deep learning-
based instance segmentation. OpSeF aims at facilitating the collaboration of biomedical
users with experienced image analysts. It builds on the analysts’ knowledge in Python,
machine learning, and workflow design to solve complex analysis tasks at any scale
in a reproducible, well-documented way. OpSeF defines standard inputs and outputs,
thereby facilitating modular workflow design and interoperability with other software.
Users play an important role in problem definition, quality control, and manual refinement
of results. OpSeF semi-automates preprocessing, convolutional neural network (CNN)-
based segmentation in 2D or 3D, and postprocessing. It facilitates benchmarking of
multiple models in parallel. OpSeF streamlines the optimization of parameters for pre-
and postprocessing such, that an available model may frequently be used without
retraining. Even if sufficiently good results are not achievable with this approach,
intermediate results can inform the analysts in the selection of the most promising CNN-
architecture in which the biomedical user might invest the effort of manually labeling
training data. We provide Jupyter notebooks that document sample workflows based
on various image collections. Analysts may find these notebooks useful to illustrate
common segmentation challenges, as they prepare the advanced user for gradually
taking over some of their tasks and completing their projects independently. The
notebooks may also be used to explore the analysis options available within OpSeF
in an interactive way and to document and share final workflows. Currently, three
mechanistically distinct CNN-based segmentation methods, the U-Net implementation
used in Cellprofiler 3.0, StarDist, and Cellpose have been integrated within OpSeF. The
addition of new networks requires little; the addition of new models requires no coding
skills. Thus, OpSeF might soon become both an interactive model repository, in which
pre-trained models might be shared, evaluated, and reused with ease.

Keywords: deep learning, biomedical image analysis, segmentation, convolutional neural network, U-net,
cellpose, StarDist, python
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INTRODUCTION

Phenomics, the assessment of the set of physical and biochemical
properties that completely characterize an organism, has long
been recognized as one of the most significant challenges in
modern biology (Houle et al., 2010). Microscopy is a crucial
technology to study phenotypic characteristics. Advances in high-
throughput microscopy (Lang et al., 2006; Neumann et al.,
2010; Chessel and Carazo Salas, 2019), slide scanner technology
(Webster and Dunstan, 2014; Wang et al., 2019), light-sheet
microscopy (Swoger et al., 2014; Ueda et al., 2020), semi-
automated (Bykov et al., 2019; Schorb et al., 2019) and volume
electron microscopy (Titze and Genoud, 2016; Vidavsky et al.,
2016), as well as correlative light- and electron microscopy
(Hoffman et al., 2020) have revolutionized the imaging of
organisms, tissues, organoids, cells, and subcellular structures.
Due to the massive amount of data produced by these
approaches, the traditional biomedical image analysis tool of
“visual inspection” is no longer feasible, and classical, non-
machine learning-based image analysis is often not robust
enough to extract phenotypic characteristics reliably in a non-
supervised manner.

Thus, the advances mentioned above were enabled by
breakthroughs in the application of machine learning methods
to biological images. Traditional machine learning techniques,
based on random-forest classifiers and support vector machines,
were made accessible to biologists with little to no knowledge
in machine learning, using stand-alone tools such as ilastik
(Haubold et al., 2016; Berg et al., 2019; Kreshuk and Zhang,
2019) or QuPath (Bankhead et al., 2017). Alternatively, they
were integrated into several image analysis platforms such
as Cellprofiler (Lamprecht et al., 2007), Cellprofiler Analyst
(Jones et al., 2009), Icy (de Chaumont et al., 2012), ImageJ
(Schneider et al., 2012; Arganda-Carreras et al., 2017) or KNIME
(Sieb et al., 2007).

More recently, deep learning methods, initially developed
for computer vision challenges, such as face recognition or
autonomous cars, have been applied to biomedical image analysis
(Cireşan et al., 2012, 2013). The U-Net is the most commonly
used deep convolutional neural network specifically designed
for semantic segmentation of biomedical images (Ronneberger
et al., 2015). In the following years, neural networks were
broadly applied to biomedical images (Zhang et al., 2015;
Akram et al., 2016; Albarqouni et al., 2016; Milletari et al.,
2016; Moeskops et al., 2016; Van Valen et al., 2016; Çiçek
et al., 2016; Rajchl et al., 2017). Segmentation challenges like
the 2018 Data Science Bowl (DSB) further promoted the
adaptation of computer vision algorithms like Mask R-CNN (He
et al., 2017) to biological analysis challenges (Caicedo et al.,
2019). The DSB included various classes of nuclei. Schmidt
et al. use the same dataset to demonstrate that star-convex
polygons are better suited to represent densely packed cells
(Schmidt et al., 2018) than axis-aligned bounding boxes used
in Mask R-CNN (Hollandi et al., 2020b). Training of deep
learning models typically involves tedious annotation to create
ground truth labels. Approaches that address this limitation
include optimizing the annotation workflow by starting with

reasonably good predictions (Hollandi et al., 2020a), applying
specific preprocessing steps such that an existing model can be
used (Whitehead, 2020), and the use of generalist algorithms
trained on highly variable images (Stringer et al., 2020). Following
the latter approach, Stringer et al. trained a neural network to
predict vector flows generated by the reversible transformation
of a highly diverse image collection. Their model includes a
function to auto-estimate the scale. It works well for specialized
and generalized data (Stringer et al., 2020).

Recently, various such pre-trained deep learning segmentation
models have been published that are intended for non-machine
learning experts in the field of biomedical image processing
(Schmidt et al., 2018; Hollandi et al., 2020b; Stringer et al.,
2020). Testing such models on new data sets can be time-
consuming and might not always give good results. Pre-trained
models might fail because the test images do not resemble
the data network was trained on sufficiently well. Alternatively,
the underlying network architecture and specification, or the
way data is internally represented and processed might not
be suited for the presented task. Biomedical users with no
background in computer science are often unable to distinguish
these possibilities. They might erroneously conclude that their
problem is in principle not suited for deep learning-based
segmentation. Thus, they might hesitate to create annotations
to re-train the most appropriate architecture. Here, we present
the Open Segmentation Framework OpSeF, a Python framework
for deep-learning-based instance segmentation of cells and
nuclei. OpSeF has primarily been developed for staff image
analysts with solid knowledge in image analysis, thorough
understating of the principles of machine learning, and basic
skills in Python. It wraps scikit-image, a collection of Python
algorithms for image processing (van der Walt et al., 2014),
the U-Net implementation used in Cellprofiler 3.0 (McQuin
et al., 2018), StarDist (Schmidt et al., 2018; Weigert et al.,
2019, 2020), and Cellpose (Stringer et al., 2020) in a single
framework. OpSeF defines the standard in- and outputs,
facilitates modular workflow design, and interoperability with
other software (Weigert et al., 2020). Moreover, it streamlines
and semi-automates preprocessing, CNN-based segmentation,
postprocessing as well as evaluation of results. Jupyter notebooks
(Kluyver et al., 2016) serve as a minimal graphical user interface.
Most computations are performed head-less and can be executed
on local workstations as well as on GPU clusters. Segmentation
results can be easily imported and refined in ImageJ using
AnnotatorJ (Hollandi et al., 2020a).

MATERIALS AND METHODS

Data Description
Cobblestones
Images of cobblestones were taken with a Samsung Galaxy S6
Active Smartphone.

Leaves
Noise was added to the demo data from “YAPiC - Yet
Another Pixel Classifier” available at https://github.com/
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yapic/yapic/tree/master/docs/example_data using the Add Noise
function in ImageJ.

Small Fluorescent Nuclei
Images of Hek293 human embryonic kidney stained with a
nuclear dye from the image set BBBC038v1 (Caicedo et al.,
2019) available from the Broad Bioimage Benchmark Collection
(BBBC) were used. Metadata is not available for this image
set to confirm staining conditions. Images were rescaled from
360× 360 pixels to 512× 512 pixels.

3D Colon Tissue
We used the low signal-to-noise variant of the image set
BBBC027 (Svoboda et al., 2011) from the BBBC showing 3D
colon tissue images.

Epithelial Cells
Images of cervical cells from the image set BBBC038v1 (Caicedo
et al., 2019) available from the BBBC display cells stained with
a dye that labels membranes weakly and nuclei strongly. The
staining pattern is reminiscent of images of methylene blue-
stained cells. However, metadata is not available for this image
set to confirm staining conditions.

Skeletal Muscle
A methylene blue-stained skeletal muscle section was recorded
on a Nikon Eclipse Ni-E microscope equipped with a Märzhäuser
SlideExpress2 system for automated handling of slides. The
pixel size is 0.37 × 0.37 µm. Thirteen large patches of
2048 × 2048 pixels size were manually extracted from the
original 44712 × 55444 pixels large image. Color images were
converted to grayscale.

Kidney
HE stained kidney paraffin sections were recorded on a
Nikon Eclipse Ni-E microscope equipped with a Märzhäuser
SlideExpress2 system for automated handling of slides. The pixel
size is 180× 180 nm. The original, stitched, 34816× 51200 pixels
large image was split into two large patches (18432 × 6144 and
22528× 5120 pixel). Next, the Eosin staining was extracted using
the Color Deconvolution ImageJ plugin. This plugin implements
the method described by Ruifrok and Johnston (2001).

Arabidopsis Flowers
H2B:mRuby2 was used for the visualization of somatic nuclei
of Arabidopsis thaliana flower. The flower was scanned from
eight views differing by 45◦ increments in a Zeiss Z1 light-sheet
microscope (Valuchova et al., 2020). We used a single view to
mimic a challenging 3D segmentation problem. Image files are
available in the Image Data Resource (Williams et al., 2017) under
the accession code: idr0077.

Mouse Blastocysts
The DAPI signal from densely packed E3.5 mouse blastocysts
nuclei was recorded on a Leica SP8 confocal microscope using
a 40× 1.30 NA oil objective (Blin et al., 2019). Image files are
available in the Image Data Resource (Williams et al., 2017) under
the accession code: idr0062.

Neural Monolayer
The DAPI signal of a neural monolayer was recorded on a Leica
SpE confocal microscope using a 63× 1.30 NA oil objective (Blin
et al., 2019). Image files are available in the Image Data Resource
(Williams et al., 2017) under the accession code: idr0062.

Algorithm
Ideally, OpSeF is used as part of collaborative image analysis
projects, to which both the user and the image analyst
contribute their unique expertise (Figure 1A). All analyst
tasks are optimized for deployment on Linux workstations
or GPU clusters, all user tasks may be performed on any
laptop in ImageJ. If challenges arise, the image analyst
(Figure 1A) might consult other OpSeF users or the developer
of tools used within OpSeF. The analyst will – to the benefit
of future users – become more skilled using CNN-based
segmentation in analysis workflows. The user, who knows the
sample best, plays an important role in validating results and
discovering artifacts (Figure 1A). Exemplary workflows and
new models might be shared to the benefit of other OpSeF
users (Figure 1B).

OpSeF’s analysis pipeline consists of four principal sets of
functions to import and reshape the data, to preprocess it, to
segment objects, and to analyze and classify results (Figure 1C).
Currently, OpSeF can process individual tiff files and the
proprietary Leica ‘.lif ’ container file format. During import and
reshape, the following options are available for tiff-input: tile in
2D and 3D, scale, and make sub-stacks. For lif-files, only the
make sub-stacks option is supported. Preprocessing is mainly
based on scikit-image (van der Walt et al., 2014). It consists
of a linear workflow in which 2D images are filtered, the
background is removed, and stacks are projected. Next, the
following optional preprocessing operations might be performed:
histogram adjustment (Zuiderveld, 1994), edge enhancement,
and inversion of images. Available segmentation options include
the pre-trained U-Net used in Cellprofiler 3.0 (McQuin
et al., 2018), the so-called “2D_paper_dsb2018” StarDist model
(Schmidt et al., 2018) and Cellpose (Stringer et al., 2020). The
2D StarDist model (Schmidt et al., 2018) was trained on a subset
of fluorescent images from the 2018 Data Science Bowl (DSB)
(Caicedo et al., 2019). Although good performance on non-
fluorescent images cannot be taken for granted, the StarDist
versatile model, which was trained on the same data, generalizes
well and can be used to segment cells in diaminobenzidene
and hematoxylin stained tissue sections (Whitehead, 2020). We
thus used the 2D_paper_dsb2018 StarDist model for all 2D
examples. Available options for preprocessing in 3D are limited
(Figure 1B, lower panel). Segmentation in 3D is computationally
more demanding. Thus, we recommend a two-stage strategy
for Cellpose 3D. Preprocessing parameters are first explored
on representative planes in 2D. Next, further optimization
in 3D is performed. Either way, preprocessing and selection
of the ideal model for segmentation are one functional unit.
Figure 1D illustrates this concept with a processing pipeline,
in which three different models are applied to four different
preprocessing pipelines each. The resulting images are classified
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FIGURE 1 | Image analysis using OpSeF (A) Illustration on how to use OpSeF for collaborative image analysis (B) Illustration on how developers, image analysts and
users might contribute toward the further development of OpSeF. (C) OpSeF analysis pipeline consists of four groups of functions used to import and reshape the
data, to preprocess it, to segment objects, and to analyze and classify results. (D) Optimization procedure. Left panel: Illustration of a processing pipeline, in which
three different models are applied to data generated by four different preprocessing pipelines each. Right panel: Resulting images are classified into results that are
correct; suffer from under- or over-segmentation or fail to detect objects. (E) Illustration of postprocessing pipeline. Segmented objects might be filtered by their
region properties or a mask, results might be exported to AnnotatorJ and re-imported for further analysis. Blue arrows define the default processing pipeline, gray
arrows feature available options. Dark blue boxes are core components, light blue boxes are optional processing steps.

into results that are mostly correct, suffer from under- or over-
segmentation, or largely fail to detect objects. In the given
example, the combination of preprocessing pipeline three and
model two gives overall the best result. We recommend an
iterative optimization which starts with a large number of models,
and relatively few, but conceptually different preprocessing
pipelines. For most datasets, some models outperform others.
In this case, we recommend fine-tuning the most promising
preprocessing pipelines in combination with the most promising

model. OpSeF uses matplotlib (Virtanen et al., 2020) to visualize
results in Jupyter notebooks and to export exemplary results
that may be used as figures in publications. All data is managed
in pandas (Virtanen et al., 2020) and might be exported as
csv file. Scikit-image (van der Walt et al., 2014), and scikit-
learn (Pedregosa et al., 2011; Figures 1E, 2A–C) are used for
pre- and postprocessing of segmentation results, which might
e.g., be filtered based on their size, shape or other object
properties (Figure 2B). Segmentation objects may further be
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FIGURE 2 | Example of how postprocessing can be used to refine results (A) StarDist segmentation of the multi-labeled cells dataset detected nuclei reliably but
caused many false positive detections. These resemble the typical shape of cells but are larger than true nuclei. Orange arrows point at nuclei that were missed, the
white arrow at two nuclei that were not split, the blue arrows at false positive detections that could not be removed by filtering. (B) Scatter plot of segmentation
results shown in panel (A). Left panel: Mean intensity plotted against object area. Right panel: Circularity plotted against object area. Blue Box illustrates the
parameter used to filter results. (C) Filtered Results. Orange arrows point at nuclei that were missed, the white arrow at two nuclei that were not split, the blue arrows
at false positive detections that could not be removed by filtering. (D,E) Example for the use of a user-provided mask to classify segmented objects. The
segmentation results (false-colored nuclei) are superimposed onto the original image subjected to [median 3 × 3] preprocessing. All nuclei located in the green area
are assigned to Class 1, all others to Class 2. The red box indicates the region shown enlarged in panel (E). From left to right in panel (E): original image, nuclei
assigned to class 1, nuclei assigned to class 2. (F) T-distributed Stochastic Neighbor Embedding (t-SNE) analysis of nuclei assigned to class 1 (purple) or class 2
(yellow). (G) Principal component analysis (PCA) of nuclei assigned to class 1 (purple) or class 2 (yellow).

refined by a user-provided (Figures 2D,E) or an autogenerated
mask. Results might be exported to AnnotatorJ (Hollandi et al.,
2020a) for editing or classification in ImageJ. AnnotatorJ is an
ImageJ plugin that helps hand-labeling data with deep learning-
supported semi-automatic annotation and further convenient
functions to create and edit object contours easily. It has
been extended with a classification mode and import/export
fitting the data structure used in OpSeF. After refinement,
results can be re-imported and further analyzed in OpSeF.
Analysis options include scatter plots of region properties

(Figure 2B), T-distributed Stochastic Neighbor Embedding (t-
SNE) analysis (Figure 2F), and principal component analysis
(PCA) (Figure 2G).

RESULTS

We provide demonstration notebooks to illustrate how
OpSeF might be used to elucidate efficiently whether a given
segmentation task is solvable with state of the art deep
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convolutional neural networks (CNNs). In the first step,
preprocessing parameters are optimized. Next, we test whether
the chosen model performs well without re-training. Finally, we
assess how well it generalizes on heterogeneous datasets.

Preprocessing can be used to make the input image more
closely resemble the visual appearance of the data on which the
models for the CNNs bundled with OpSeF were trained on, e.g.,
by filtering and resizing. Additionally, preprocessing steps can be
used to normalize data and reduce heterogeneity. Generally, there
is not a single, universally best preprocessing pipeline. Instead,
well-performing combinations of preprocessing pipelines and
matching CNN-models can be identified. Even the definition of a
“good” result depends on the biological question posed and may
vary from project to project. For cell tracking, very reproducible
cell identification will be of utmost importance; for other
applications, the accuracy of the outline might be more crucial.
To harness the full power of CNN-based segmentation models
and to build trust in their more widespread use, it is essential to
understand under which conditions they are prone to fail.

We use various demo datasets to challenge the CNN-based
segmentation pipelines. Jupyter notebooks document how OpSeF
was used to obtain reliable results. These notebooks are provided
as a starting point for the iterative optimization of user projects
and as a tool for interactive user training.

The first two datasets – cobblestones and leaves – are
generic, non-microscopic image collections, designed to illustrate
common analysis challenges. Further datasets exemplify the
segmentation of a monolayer of fluorescent cells, fluorescent
tissues, cells in which various compartments have been stained
with the same dye, as well as histological sections stained with
one or two dyes. The latter dataset exemplifies additionally how
OpSeF can be used to process large 2D images.

Nuclei and cells used to train CNN-based segmentation
are most commonly round or ellipsoid shaped. Objects in
the cobblestone dataset are approximately square-shaped. Thus,
the notebook may be used as an example to explore the
segmentation of non-round cells (e.g., many plant cells, neurons).
Heterogeneous intensities within objects and in the border
region, as well as a five-fold variation of object size, challenge
segmentation pipelines further. In the first round of optimization,
minor smoothing [median filter with 3 × 3 kernel (median
3 × 3)] and background subtraction were applied. Next, the
effect of additional histogram equalization, edge enhancement,
and image inversion was tested. The resulting four preprocessed
images were segmented with all models [Cellpose nuclei, Cellpose
Cyto, StarDist, and U-Net]. The Cellpose scale-factor range [0.2,
0.4, 0.6] was explored. Among the 32 resulting segmentation
pipelines, the combination of image inversion and the Cellpose
Cyto 0.4 model produced the best results in both training images
(Figures 3A–C) without further optimization. The segmentation
generalized well to the entire dataset. Only in one image,
three objects were missed, and one object was over-segmented.
Borders around these stones are very hard to distinguish for a
human observer, and even further training might not resolve
the presented segmentation tasks (Figures 3D–F). Cellpose has
been trained on a large variety of images and had been reported
to perform well on objects of similar shape [compare Figure 4,

FIGURE 3 | Cobblestones notebook: Segmentation of non-roundish cells
(A,B) Segmentations (red line) of the Cellpose Cyto 0.4 model are
superimposed onto the original image subjected to [median 3 × 3]
preprocessing. The inverted image (not shown) was used as input to the
segmentation. Outlines are well defined, no objects were missed, none
over-segmented. These settings fit accurately to the entire dataset (train and
test) shown in panels (C,D). Only in one image, three objects were missed
and one was over-segmented. Borders around these stones are hard to
discern. Individual objects are false color-coded in panels (C,D). The red
squares in panel (D) highlight one of the two problematic regions shown as a
close-up in panels (E,F).

Images 21, 22, 27 in Stringer et al. (2020)]. Thus, it is no surprise
that Cellpose outperformed the StarDist 2D model (Schmidt
et al., 2018), which had been trained only on fluorescent images.

Segmentation of the leaves dataset seems trivial and could
easily be solved by any threshold-based approach. Nevertheless,
it challenges CNN-based segmentation due to the presence of
concave and convex shapes. Moreover, objects contain dark lines,
vary 20-fold in area, and are presented on a heterogeneous
background. Preprocessing was performed as described for the
cobblestone dataset. The most promising result was obtained
with the Cellpose Cyto 0.5 model in combination with [median
3 × 3 & image inversion] preprocessing (Figures 4A,B) and the
StarDist model with [median 3 × 3 & histogram equalization]
preprocessing (Figure 4C). Outlines were well defined, few
objects were missed (blue arrow in Figure 4A), few over-
segmented (green and orange arrow in Figures 4B,C). The
Cellpose Cyto 0.7 model gave similar results.

Maple leaves (orange arrows in Figures 4B,C) were most
frequently over-segmented. Their shape resembles a cluster of
touching cells. Thus, the observed over-segmentation might
be caused by the attempt of the CNN to reconcile their
shapes with structures it has been trained on. Oak leaves were
the second most frequently over-segmented leaf type. These
leaves contain dark leaf veins that might be interpreted as
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FIGURE 4 | Leaves notebook: Segmentation of rare concave cells (A–C) Segmentation results (red line) of the Cellpose Cyto 0.5 and 0.7 and StarDist model are
superimposed onto the original image subjected to [median 3 × 3] preprocessing. The inverted image (not shown) was used as input to the segmentation. Outlines
are well defined, few objects were missed (A: blue arrow), some over-segmented (B,C: green and orange arrow). Green arrow points at an oak leave with prominent
leaf veins, orange arrow at maple leaves with less prominent leave veins. (D–F) Results of further optimization. Further smoothing (E) reduced the rate of false
negatives (blue arrow) and over-segmentation in the Cellpose Cyto model. However, object outlines were less precise (E).

cell borders. However, erroneous segmentation mostly does
not follow these veins (green arrow in Figure 4B). Next, the
effect of stronger smoothing [mean 7 × 7] was explored.
The Cellpose nuclei model (Figure 4E) reduced the rate of
false-negative detections (Figure 4D blue arrow) and over-
segmentation (Figure 4F orange arrow) at the expense of loss
in precision of object outlines. Parameter combinations tested in
Figures 4D,E generalize well in the entire dataset.

Next, we used OpSeF to segment nuclei in a monolayer of
cells. Most nuclei are well separated. We focused our analysis
on the few touching nuclei. Both the Cellpose nuclei model
and the Cellpose Cyto model performed well across a broad
range of scale-factors. Interestingly, strong smoothing made the
Cellpose nuclei but not the Cellpose Cyto model more prone to
over-segmentation (Figure 5A). The StarDist model performed
well, while the U-Net failed surprisingly, given the seemingly
simple task. Pixel intensities have a small dynamic range, and
nuclei are dim and rather large. To elucidate whether any of
these issues led to this poor performance, we binned the input
2 × 2 (U-Net+BIN panel in Figure 5A) and adjusted brightness
and contrast. Adjusting brightness and contrast alone had no
beneficial effect (data not shown). The U-Net performed much
better on the binned input. Subsequently, we batch-processed
the entire dataset. StarDist was more prone to over-segmentation
(green arrow in Figure 5B), but detected smaller objects more
faithfully (orange arrow in Figure 5B). This might indicate
that the size of test objects was larger than the size of train
objects. StarDist was more likely to include atypical objects, e.g.,
nuclei during cell division that display a strong texture (blue
arrow in Figure 5B). Substantial variation in brightness was

well tolerated by both models (white arrow in Figure 5B). Both
models complement each other well.

We also tested a more complex dataset: 3D colon tissue from
the Broad Bioimage Benchmark Collection. This synthetic dataset
is ideally suited to assess segmenting clustered nuclei in tissues.
We chose the low signal-to-noise variant, which allowed us to test
denoising strategies. Sum, maximum, and median projection of
three Z-planes was tested in combination with the preprocessing
variants previously described for the monolayer of cells dataset.
Twelve different preprocessing pipelines were combined with all
models [Cellpose nuclei, Cellpose Cyto, StarDist, and U-Net].
The Cellpose scale-factor range [0.15, 0.25, 0.4, 0.6] was explored.
Many segmentation decisions in the 3D colon tissue dataset are
hard to perform even for human experts. Within this limitation,
[median projection & histogram equalization] preprocessing
produced reasonable results without any further optimization in
combination with either Cellpose nuclei 0.4 or the StarDist model
(Figures 5C,D). Only a few cell clusters were not segmented
(Figures 5C,D white arrow). Both models performed equally well
on the entire data set.

We subsequently tried to segment a single layer of irregular-
shaped epithelial cells, in which the nucleus and cell membranes
had been stained with the same dye. In the first run, minor
[median 3 × 3] or strong [mean 7 × 7] smoothing was
applied. Next, the effect of additional histogram equalization,
edge enhancement, and image inversion was tested. The resulting
eight preprocessed images were segmented with all models
[Cellpose nuclei, Cellpose Cyto, StarDist, and U-Net]. The
Cellpose scale-factor range [0.6, 0.8, 1.0, 1.4, 1.8] was explored.
The size of nuclei varied more than five-fold. We thus focused
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FIGURE 5 | Segmentation of dense fluorescent nuclei (A) Segmentation of the sparse nuclei data set. Example of two touching cells. The segmentation result (red
line) superimposed onto the original image subjected to [median 3 × 3] preprocessing. Columns define the model used for segmentation, the rows the filter used for
preprocessing. Cellpose nuclei model and the Cellpose Cyto model performed well across a large range of scale-factors. The U-Net failed initially. Improved results
after binning are shown in the lower right panel. (B) Comparison of Cellpose nuclei (CP) and StarDist (SD) segmentation results (red line). StarDist is more prone to
over-segmentation (green arrow), but detects smaller objects more reliably (orange arrow) and tends to include objects with strong texture (blue arrow). Strong
variation in brightness was tolerated well by both models (white arrow). (C,D) 2D Segmentation of colon tissue from the Broad BioImage Benchmark Collection with
Cellpose nuclei (CP) or StarDist (SD). Both models gave reasonable results. Only a few dense clusters could not be segmented (white arrow).

our analysis on a cluster of particularly large nuclei and a
cluster of small nuclei. The Cellpose nuclei 1.4 and StarDist
model detected both small and large nuclei similarly well
(Figure 6A). StarDist segmentation results included many cell-
shaped false positive detections. Given the model was trained
on different data, retraining would be the best way to improve
performance. Alternatively, false-positive detections, which were
much larger than true nuclei, could be filtered out during
postprocessing. While the U-Net did not perform well on the
same input [median 3 × 3] (Figure 6A), it returned better
results (Figure 6A) upon [mean 7× 7 & histogram equalization]
preprocessing. As weak smoothing was beneficial for the Cellpose
and StarDist pipelines and stronger smoothing for the U-Net
pipelines, we explored the effect of intermediate smoothing
[median 5 × 5] for Cellpose and StarDist and even stronger
smoothing [mean 9 × 9] for the U-Net pipelines. A slight
improvement was observed. Thus, we used [median 5 × 5]
preprocessing in combination with Cellpose nuclei 1.5 or StarDist
model to process the entire dataset. Cellpose frequently failed
to detect bright, round nuclei (Figure 6B, arrows) and StarDist
(Figure 6C) had many false detections. Thus, re-training or
postprocessing is required.

In the DSB, most algorithms performed better on images
classified as small or large fluorescent, compared to images
classified as “purple tissue” or “pink and purple” tissue. We
used methylene blue-stained skeletal muscle sections as a sample
dataset for tissue stained with a single dye and Hematoxylin
and eosin (HE) stained kidney paraffin sections as an example
for multi-dye stained tissue. Analysis of tissue sections might
be compromised by heterogenous image quality cause e.g., by

artifacts created at the junctions of tiles. To account for these
artifacts all workflows used the fused image as input to the
analysis pipeline.

While most nuclei in the skeletal muscle dataset are well
separated, some form dense clusters, others are out of focus
(Figure 7A). The size of nuclei varies ten-fold; their shape
ranges from elongated to round. The same preprocessing and
model as described for the epithelial cells dataset were used; the
Cellpose scale-factor range [0.2, 0.4, 0.6] was explored. [Median
3× 3 & invert image] preprocessing combined with the Cellpose
nuclei 0.6 model produced satisfactory results without further
optimization (Figure 7B). Outlines were well defined, some
objects were missed, few over-segmented. Neither StarDist nor
the U-Net performed similarly well. We could not overcome
this limitation by adaptation of preprocessing or binning.
The performance of other – most likely more appropriate –
StarDist model (2D_versatile_fluo, 2D_versatile_he) was not
tested. Processing of the entire dataset identified inadequate
segmentation of dense clusters (Figure 7C, white arrow)
and occasional over-segmentation of large, elongated nuclei
(Figure 7C, orange arrow) as the main limitations. Nuclei that
are out-of-focus were frequently missed (Figure 7C, blue arrow).
Limiting the analysis to in-focus nuclei is feasible.

Cell density is very heterogeneous in the kidney dataset.
The Eosin signal from a HE stained kidney paraffin section
(Figures 8A,B) was obtained by color deconvolution. Nuclei
are densely packed within glomeruli and rather sparse in the
proximal and distal tubules. Two stitched images were split using
OpSeF’s “to tiles” function. Initial optimization was performed
on a batch of 16 image tiles, the entire dataset contains 864 tiles.
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FIGURE 6 | Segmentation of multi-labeled cells (A) Images of large epithelial cells from the 2018 Data Science Bowl collection were used to test the segmentation of
a single layer of cells. These cells vary in size. The Cellpose nuclei 1.4 model and [median 3 × 3] preprocessing gave a reasonable segmentation for large and small
nuclei. StarDist segmentation based on the same input detected nuclei more reliably. However, many false-positive detections were present. Interestingly, the shape
of false detections resembles the typical shape of cells well. The U-Net did not perform well with the same preprocessing, but with [mean 7 × 7 & histogram
equalization] preprocessing. (B,C) [Median 5 × 5] preprocessing in combination with the Cellpose 1.5 nuclei or the StarDist model was applied to the entire data set.
(B) The Cellpose model missed reproducibly round, very bright nuclei (blue arrow). (C) StarDist predicted many false-positive cells.

The same preprocessing and model were used as described for
the skeletal muscle dataset, the Cellpose scale-factor range [0.6,
0.8, 1.0, 1.4, 1.8] was explored. [Median 3 × 3 & histogram
equalization] preprocessing in combination with the Cellpose
nuclei 0.6 model produced fine results (Figure 8C). [Mean 7 × 7
& histogram equalization] preprocessing in combination with
StarDist performed similarly well (Figure 8C). The latter pipeline
resulted in more false-positive detections (Figure 8C, purple
arrows). The U-Net performed worse, and more nuclei were
missed (Figure 8C, blue arrow). All models failed for dense cell
clusters (Figures 8C,D, white arrow).

Next, we sought to expand the capability of OpSeF to volume
segmentation. To this aim, we trained a StarDist 3D model using
the annotation of Arabidopsis thaliana lateral root nuclei dataset
provided by Wolny et al. (2020). Images were obtained on a
Luxendo MuVi SPIM light-sheet microscope (Wolny et al., 2020).
We first tested the model with a similar, publically available
dataset. Valuchova et al. (2020) studied differentiation within
Arabidopsis flowers. To this aim, the authors obtained eight views

of H2B:mRuby2 labeled somatic nuclei on a Zeiss Z1 light-
sheet microscope. We used a single view to mimic a challenging
3D segmentation (Figures 9A–C). Changes in image quality
along the optical axis, in particular, deteriorating image quality
deeper in the tissue (Figure 9C) are a major challenge for
any segmentation algorithm. While the segmentation quality
of the interactive H-Watershed ImageJ plugin (Vincent and
Soille, 1991; Najman and Schmitt, 1996; Lotufo and Falcao,
2000; Schindelin et al., 2015), a state of the art traditional
image processing method, is still acceptable in planes with good
contrast (Figure 9B, xy Slice), results deeper in the tissue are
inferior to CNN-based segmentation (data not shown). The
H-Watershed plugin consequently fails to segment precisely in
3D (Figure 9C, zy-slices). The StarDist 3D model, which was
trained on a similar dataset, performs slightly better than the
Cellpose nuclei model. To evaluate the performance of these
models further, we used the DISCEPTS dataset (Blin et al., 2019).
DICEPTS stands for “DifferentiatingStemCells & Embryos are a
PainToSegment” and contains various datasets of densely packed
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FIGURE 7 | Skeletal muscle notebook: Segmenting irregular nuclei in tissue (A) A methylene blue-stained skeletal muscle section was used to test the segmentation
of tissue that has been stained with one dye. (B) Segmentation was tested on 2048 × 2048 pixels large image patches. The star shown in panels (A,B) is located at
the same position within the image displayed at different zoom factors. The segmentation result (red line) of the Cellpose nuclei 0.6 model is super-imposed onto the
original image subjected to [median 3 × 3] preprocessing. (C,D) Close-up on regions that were difficult to segment. Segmentation of dense clusters (white arrow)
often failed, and occasional over-segmentation of large, elongated nuclei (orange arrow) was observed. Nuclei that are out-of-focus (blue arrow) were frequently
missed (blue arrow).

FIGURE 8 | Kidney notebook: Segmenting cell cluster in tissues (A,B) Part of a HE stained kidney paraffin section used to test segmentation of tissue stained with
two dyes. The white box in panel (A) highlights the region shown enlarged in panel (B). Star in panels (A,B,D) marks the same glomerulus. (C) Eosin signal was
extracted by color deconvolution. The segmentation result (blue line) is superimposed onto the original image subjected to [median 3 × 3] preprocessing. Cellpose
nuclei 0.6 model with scale-factor 0.6 in combination with [median 3 × 3 & histogram equalization] preprocessing and the StarDist model with [mean 7 × 7 &
histogram equalization] performed similarly well (C,D). StarDist resulted in more false-positive detections (purple arrows). The U-Net performed worse, more nuclei
were missed (blue arrow). All models failed in very dense areas (white arrow).

nuclei that are heterogeneous in shape, size, or texture. Blin
et al. elegantly solved the segmentation challenge by labeling
the nuclear envelope. We thought to assess the performance

of models contained in OpSeF on the more challenging DAPI
signal. While the StarDist model trained on Arabidopsis thaliana
lateral root nuclei shows satisfactory performance on E3.5 mouse
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FIGURE 9 | Volume segmentation. In all images, segmented nuclei are
assigned a unique random color. (A) Side-by-side comparison of segmented
somatic nuclei of Arabidopsis thaliana flowers obtained with the Cellpose 3D
nuclei model (left) and a StarDist 3D model that was trained on a similar
dataset (right). The middle panel shows the central xy-plane of the image
volume obtained by light-sheet microscopy. The red box marks the area that
is shown enlarged in panel (B). The green line indicates the location of the
yz-plane shown in panel (C). In panels (B,C) the results obtained manually
using the interactive ImageJ H-watershed plugin are additionally shown.
Orange arrows point at non-nuclear artifact signal that is ignored by StarDist
3D model trained on a dataset containing similar artifacts. Blue arrows point at

(Continued)

FIGURE 9 | Continued
nuclear signal in a low-contrast area. (D–F) Evaluation of 3D model based on
the DISCEPTS dataset. Central xy- or yz-planes of original images (gray) are
shown side-by-side to the segmentation results of the model as indicated. All
data were obtained on confocal microscopes. (D,E) Segmentation of E3.5
mouse blastocysts. The StarDist 3D model trained on well-spaced nuclei
missed nuclei in dense-cluster (green arrow) that were reliably identified by the
Cellpose 3D cyto model. (F) Segmentation results of Cellpose nuclei model
(right panel) on the neural “monolayer” dataset (left). These cells contain – in
contrast to Arabidopsis thaliana lateral root nuclei – strong texture in their
nuclei, are densely spaced and vary in size.

blastocysts, notably, the size of nuclei is underestimated, and cells
in dense clusters are sometimes missed. Fine-tuning of the non-
maximum suppression and the detection threshold might suffice
to obtain more precise segmentation results.

Interestingly, the more versatile Cellpose cyto, rather than
the Cellpose nuclei model, is ideally suited for segmenting the
E3.5 mouse blastocysts nuclei (Figures 9D,E). Next, we used the
neural “monolayer” dataset (Figure 9F). In this dataset flat cells
form tight 3D clusters. It proved to be challenging to segment
(Blin et al., 2019). Our pre-trained StarDist model failed to give
satisfactory segmentation results (data not shown). The presented
cells contain – in contrast to Arabidopsis thaliana lateral root
nuclei – strong texture in their nuclei. The more versatile Cellpose
nuclei model displayed promising initial results with little fine-
tuning (Figure 9F) that might be further improved by re-training
the model on the appropriate ground truth.

DISCUSSION

Intended Use and Future Developments
Examining the relationship between biochemical changes
and morphological alterations in diseased tissues is crucial
to understand and treat complex diseases. Traditionally,
microscopic images are inspected visually. This approach limits
the possibilities for the characterization of phenotypes to more
obvious changes that occur later in disease progression. The
manual investigation of subtle alterations at the single-cell level,
which often requires quantitative assays, is hampered by the
data volume. A whole slide tissue image might contain over
one million cells. Despite the improvement in machine learning
technology, completely unsupervised analysis pipelines have
not been widely accepted. Thus, one of the major challenges for
the coming years will be the development of efficient strategies
to keep the human-expert in the loop. Many biomedical
users still perceive deep learning models as black boxes. The
mathematical foundation of how CNNs make decisions is
improving. OpSeF facilitates understanding the strength of
pre-trained models and network architecture on the descriptive,
operational level. Thereby, awareness of intrinsic limitations
such as the inability of StarDist to segment non-star-convex
shapes well, or issues relating to the limited field-of-view of
neural networks can be reached. It further allows us to quickly
assess how robust models are against artifacts such as shadows
present in light-sheet microscopy or how well they are in
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predicting cell shapes accurately that are neither round nor
ellipsoid shaped (e.g., neurons, amoebas). Collectively, increased
awareness of limitations and better interpretability of results
will be pivotal to increase the acceptance of machine learning
methods. It will improve the quality control of results and allow
efficient integration of expert knowledge in analysis pipelines
(Holzinger et al., 2019a,b).

As illustrated in the provided Jupyter notebooks, the U-Net
often performed worst. Why is that the case? As previously
reported the learning capacity of a single, regular U-Net is limited
(Caicedo et al., 2019). Alternatively, the similarity of train and test
images might be insufficient. Either way, the provision of a set of
U-Nets trained on diverse data, might be a promising approach
to address this limitation. [ods.ai] topcoders, the winning
team of the 2018 Data Science Bowl (Caicedo et al., 2019),
combined simple U-Nets with dedicated pre- and postprocessing
pipelines. In doing so, they outperformed teams using more
complex models like Mask R-CNN (Caicedo et al., 2019). OpSeF
allows for the straightforward integration of a large number
of pre-trained CNNs. We plan to include the possibility of
saving pixel probabilities in future releases of OpSeF. This
option will grant users more flexibility in designing custom
postprocessing pipelines that ensemble results from a set of useful
intermediate predictions.

OpSeF allows semi-automated exploration of a large
number of possible combinations of preprocessing pipelines
and segmentation models. Even if satisfactory results are not
achievable with pre-trained models, OpSeF results may be used
as a guide for which CNN architecture, re-training on manually
created labels might be promising. The generation of training
data is greatly facilitated by a seamless integration in ImageJ
using the AnnotatorJ plugin. We hope that many OpSeF users
will contribute their training data to open repositories and will
make new models available for integration in OpSeF. Thus,
OpSeF might soon become, an interactive model repository, in
which an appropriate model might be identified with reasonable
effort. Community provided Jupyter notebooks might be used
to teach students in courses how to optimize CNN based
analysis pipelines. This could educate them and make them less
dependent on turn-key solutions that often trade performance
for simplicity and offer little insight into the reasons why
the CNN-based segmentation works or fails. The better users
understand the model they use, the more they will trust them
and, the better they will be able to quality control them. We
hope that OpSeF will be widely accepted as a framework through
which novel models might be made available to other image
analysts in an efficient way.

Integrating Various Segmentation
Strategies and Quality Control of Results
Multiple strategies for instance segmentation have been pursued.
The U-Net belongs to the “pixel to object” class of methods:
each pixel is first assigned to a semantic class (e.g., cell or
background), then pixels are grouped into objects (Ronneberger
et al., 2015). Mask R-CNNs belong to the “object to pixel” class

of methods (He et al., 2017): the initial prediction of bounding
boxes for each object is followed by a semantic segmentation.
Following an intermediate approach, Schmidt et al. first predict
star-convex polygons that approximate the shape of cells and
use non-maximum suppression to prune redundant predictions
(Schmidt et al., 2018; Weigert et al., 2019, 2020). Stringer et al.
use stimulated diffusion originating from the center of a cell to
convert segmentation masks into flow fields. The neural network
is then trained to predict flow fields, which can be converted
back into segmentation masks (Stringer et al., 2020). Each of
these methods has specific strengths and weaknesses. The use
of flow fields as auxiliary representation proved to be a great
advantage for predicting cell shapes that are not roundish. At
the same time, Cellpose is the most computationally demanding
model used. In our hands, Cellpose tended to result in more
obviously erroneously missed objects, in particular, if objects
displayed a distinct appearance compared to their neighbors
(blue arrows in Figures 5B, 6B, 7D). StarDist is much less
computationally demanding, and star-convex polygons are well
suited to approximate elliptical cell shapes. The pre-trained
StarDist model implemented in OpSeF might be less precise
in predicting novel shapes it has not been trained on, e.g.,
maple leaves (Figure 4C). This limitation can be overcome
by retraining, given the object is star-convex, which includes
certain concave shapes such as maple leaves. However, some cell-
types (e.g., neurons, amoeba) are typically non star-convex, and
StarDist – due to “limitation by design” – cannot be expected
to segment these objects precisely. Segmentation errors by the
StarDist model were generally plausible. It tended to predict cell-
like shapes, even if they are not present (Figure 6B). Although the
tendency of StarDist to fail gracefully might be advantageous in
most instances, this feature requires particularly careful quality
control to detect and fix errors. The “pixel-to-object” class of
methods is less suited for segmentation of dense cell clusters. The
misclassification of just a few pixels might lead to the fusion of
neighboring cells.

OpSeF integrates three mechanistically distinct methods for
CNN-based segmentation in a single framework. This allows
comparing these methods easily. Nonetheless, we decided against
integrating an automated evaluation, e.g., by determining F1
score, false positive and false negative rates, and accuracy. Firstly,
for most projects no ground-truth is available. Secondly, we want
to encourage the user to visually inspect segmentation results.
Reviewing 100 different segmentation results opened in ImageJ
as stack takes only a few minutes and gives valuable insight
into when and how segmentations fail. This knowledge is easily
missed when just looking at the output scores of commonly used
metrics but might have a significant impact on the biological
conclusion. Even segmentation results from a model with 95%
precision and 95% recall for the overall cell population might be
not suited to determine the abundance of a rare cell type if these
cells are systematically missed, detected less accurately in the
mutant situation, or preferentially localized to areas in the tissue
that are not segmented well. Although it is difficult to capture
such issues with standard metrics, they are readily observed by a
human expert. Learning more about the circumstances in which
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certain types of CNN-based segmentation fail helps to decide
when human experts are essential for quality control of results.
Moreover, it is pivotal for the design of postprocessing pipelines.
These might select among multiple segmentation hypotheses –
on an object by object basis – the one which gives the most
consistent results for reconstructing complex cells-shapes in large
3D volumes or for cell-tracking.

Optimizing Results and Computational
Cost
Image analysis pipelines are generally a compromise between
ease-of-use and performance as well as between computational
cost and accuracy. Until now, rather simple, standard U-Nets
are most frequently used models in the major image analysis
tools. In contrast, the winning model of the 2018 Data Science
Bowl by the [ods.ai] topcoders team used sophisticated data
postprocessing to combine the output of 32 different neural
networks (Caicedo et al., 2019). The high computational cost
currently limits the widespread use of this or similar approaches.
OpSeF is an ideal platform to find the computationally most
efficient solution to a segmentation task. The [ods.ai] topcoders
algorithm was designed to segment five different classes of
nuclei: “small” and “large fluorescent,” “grayscale,” “purple
tissue” and “pink and purple tissue” (Caicedo et al., 2019).
Stringer et al. used an even broader collection of images that
included cells of unusual appearance and natural images of
regular cell-like shapes such as shells, garlic, pearls, and stones
(Stringer et al., 2020).

The availability of such versatile models is precious, in
particular, for users, who are unable to train custom models
or lack resources to search for the most efficient pre-trained
model. For most biological applications, however, no one-fits-
all solution is required. Instead, potentially appropriate models
might be pre-selected, optimized, and tested using OpSeF. Ideally,
an image analyst and a biomedical researcher will jointly fine-
tune the analysis pipeline and quality control results. This way,
resulting analysis workflows will have the best chances of being
both robust and accurate, and an ideal balance between manual
effort, computational cost, and accuracy might be reached.

Comparison of the models available within OpSeF revealed
that the same task of segmenting 100 images using StarDist took
1.5-fold, Cellpose with fixed scale-factor 3.5-fold, and Cellpose
with flexible scale-factor 5-fold longer compared to segmentation
with the U-Net.

The systematic search of the optimal parameter and ideal
performance might be dispensable if only a few images are to
be processed that can be easily manually curated, but highly
valuable if massive datasets produced by slide-scanner, light-sheet
microscopes or volume EM techniques are to be processed.

Deployment Strategies
We decided against providing OpSeF as an interactive cloud
solution. A local solution uses existing resources best, avoids
limitations generated by the down- and upload of large datasets,
and addresses concerns regarding the security of clinical datasets.
Although the provision of plugins is perceived as crucial to speed

up the adoption of new methods, image analysts increasingly
use the Jupyter notebooks that allow them to document
workflows step-by-step. This is a significant advantage compared
to interactive solutions, in which parameters used for analysis
are not automatically logged. Biologists might hesitate to use
Jupyter notebooks for analysis due to an initial steep learning
curve. Once technical challenges such as the establishment of
the conda environment are overcome, notebooks allow them to
integrate data analysis and documentation with ease. Notebooks
might be deposited in repositories along with the raw data. This
builds more trust in published results by improving transparency
and reproducibility.
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