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Drug-induced liver injury (DILI) is one of the most cited reasons for the high drug
attrition rate and drug withdrawal from the market. The accumulated large amount
of high throughput transcriptomic profiles and advances in deep learning provide an
unprecedented opportunity to improve the suboptimal performance of DILI prediction.
In this study, we developed an eight-layer Deep Neural Network (DNN) model for DILI
prediction using transcriptomic profiles of human cell lines (LINCS L1000 dataset) with
the current largest binary DILI annotation data [i.e., DILI severity and toxicity (DILIst)].
The developed models were evaluated by Monte Carlo cross-validation (MCCV),
permutation test, and an independent validation (IV) set. The developed DNN model
achieved the area under the receiver operating characteristic curve (AUC) of 0.802
and 0.798, and balanced accuracy of 0.741 and 0.721 for training and an IV set,
respectively, outperforming the conventional machine learning algorithms, including
K-nearest neighbors (KNN), Support Vector Machine (SVM), and Random Forest (RF).
Moreover, the developed DNN model provided a more balanced sensitivity of 0.839
and specificity of 0.603. Besides, we found the developed DNN model had a superior
predictive performance for oncology drugs. Also, the functional and network analysis
of genes driving the predictions revealed their relevance to the underlying mechanisms
of DILI. The proposed DNN model could be a promising tool for early detection of DILI
potential in the pre-clinical setting.

Keywords: DILI, deep learning–artificial neural network, high throughput transcriptomics, toxicity prediction
model, machine learning, risk assessment

INTRODUCTION

Drug-induced liver injury (DILI) has been recognized as a significant cause of drug attrition,
resulting in drug withdrawal from any stage of the drug development processes and post-marketing
(Hoofnagle and Björnsson, 2019; Weaver et al., 2020). DILI accounts for approximately 50% of
acute liver failure cases in the United States (Ostapowicz et al., 2002). Notably, DILI risk covers
more than 750 approved drugs (Thakkar et al., 2018). The late stage of DILI identification poses
a serious challenge to pharmaceutical professionals as well as regulatory agencies. Therefore, early
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elimination of DILI concerns in the pre-clinical setting is of great
importance for DILI management (Weaver et al., 2020).

Drug-induced liver injury is a very composite endpoint in
predictive toxicology, which interplays between drug properties
and host factors (Chen et al., 2015). Besides the clinical-driven
approaches initialized by consortiums such as DILI Network
(DILIN) (Fontana et al., 2009), considerable efforts have been
made for enhancing DILI prediction in a pre-clinical setting
(Walker et al., 2020). Poor extrapolation from pre-clinical animal
models to clinical hepatotoxicity exists. Thus, the paradigm has
been shifted to developing in vitro (Chan and Benet, 2018;
Tolosa et al., 2018; Aleo et al., 2020) and in silico (Mulliner
et al., 2016; Hong et al., 2017; Shin et al., 2020) models for
DILI prediction. Notably, toxicogenomics (TGx), integrating
genomics and computational approaches, becomes a new trend
to enhance DILI prediction (Liu et al., 2019). Wang et al.
(2019) developed Deep neural networks (DNNs) by using rat
transcriptomic profiles from the Open TG-GATEs database
(Igarashi et al., 2014) to predict three DILI endpoints including
biliary hyperplasia, fibrosis, and necrosis. The model yielded
the Matthews correlation coefficients (MCC) of 0.56∼0.89.
Although it is still elusive of the model performance in human
DILI endpoints, it is a beneficial attempt. Kohonen et al.
(2017) developed a “predictive toxicogenomics space (PTGS)”
tool composed of 1, 331 genes based on Connectivity Map
(CMap) and NCI-60 in vitro assays. The developed PTGS tool
was applied for human DILI prediction with different DILI
annotation datasets and achieved a sensitivity of 72–86% without
a loss of specificity.

It is challenging to evaluate and cross-compare the
performance metrices such as sensitivity and specificity of the
reported DILI models directly. First, there is a lack of a consistent
DILI classification scheme to standardize and unify the existing
DILI annotation strategies (Walker et al., 2020). In the past
decade, the FDA National Center for Toxicological Research
(NCTR) research team continue to minimize the discrepancies
among the different reported DILI classifications. Such efforts
were incorporated into the FDA’s Liver Toxicity Knowledge
Base (LTKB) with two developed DILI classification datasets
- LTKB Benchmark Dataset (Chen et al., 2011) and DILIrank
(Chen et al., 2016). Recently, the FDA team released DILI
severity and toxicity (DILIst) dataset (Thakkar et al., 2020). The
DILIst provides access to the largest binary DILI classification
dataset composed of 1279 drugs, accurately categorized for DILI
potential by the assimilation of highly concordant information
on DILI from clinical evidence, literature evidence, case registry
and the FDA Adverse Event Reporting System (FAERS). Second,
the sample size varies among the reported model is another
hurdle to compare their model performance. Furthermore, the
number of samples used in the published models is usually
very limited. For example, the large-scale of TGx, such as the
Open TG-GATEs database consists of 170 compounds with
four different types of assays, i.e., rat/human in vitro, and rat
in vivo single/repeated doses. However, the small number of
DILI negative compounds limits its application for predictive
DILI model development. Benefited from high-throughput
screen technologies such as L1000 (Subramanian et al., 2017)

and TempO-Seq (Bushel et al., 2018), transcriptomic profiles
for millions of compounds designed to monitor hundreds to
thousands of genes could be generated at once in high throughput
at an incredibly lower cost. Accumulated transcriptomic profiles
generated from these technologies could potentially improve
the generalization of the DILI model. Last, there is a lack of a
comprehensive assessment of machine learning (ML) algorithms
for their DILI predictive ability. So far, there have been limited
investigations that evaluated the superiority of deep learning
(DL) over conventional ML in the context of toxicity prediction.
Some observations were made with only small datasets and
were based just on chemical structure data (Muratov et al.,
2020). Further evaluation of DL algorithms in diverse biomedical
profiles is urgently needed for better understating of its potential
in DILI prediction.

In this study, we developed a DNN model for DILI prediction
based on the largest binary DILI classification dataset–DILIst as
well as the transcriptomic profiles from the Library of Integrated
Network-based Cellular Signatures (LINCS) L1000 dataset. To
our best knowledge, it is the first attempt in the community.
The developed DNN models were comprehensively evaluated
by using Monte Carlo cross-validation (MCCV), a permutation
test, and an independent validation (IV) set. The performance
of the developed DNN models was also intensively compared to
the conventional ML algorithms, including K-nearest neighbors
(KNN), Support Vector Machine (SVM), and Random Forest
(RF). Moreover, the applicability domain and biological relevance
of the proposed DNN model were also defined and investigated
through various approaches such as therapeutic class analysis,
pathway analysis, and network analysis.

MATERIALS AND METHODS

Data Preparation
Drug-Induced Liver Injury (DILI) Annotation Data
Drug-induced liver injury severity and toxicity developed by the
FDA’s NCTR was employed, which is the largest binary DILI
annotation dataset (Thakkar et al., 2020). DILIst integrated the
human hepatotoxicity-related evidence derived from approved
drug labeling, hepatotoxic case registries, FAERS, and literature
reports. The current version of DILIst contains a total of 1279
drugs, where 768 are DILI positives, and 511 are DILI negatives.

High-Throughput Transcriptomic Profiles
Drug-induced transcriptome profiles used for this study were
curated from the NIH LINCS L1000 dataset (GEO accession
number: GSE92742) (Subramanian et al., 2017). LINCS L1000
dataset consists of over 1.3 million transcriptomic profiles across
human cell lines. The data generated from LINCS L1000 has been
subjected to a data processing pipeline established by the LINCS
consortium and to produce data at five levels. In this study, we
used Level 5 moderated Z-scores data that contained 473,647
collapsed transcriptomic profiles derived from the weighted
averages of the individual replicates on 978 landmark genes. Here,
each transcriptomic profile of Level 5 represents the treatment
effect of a drug/dose/duration/cell line combination.
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Transcriptomic Profiles for Model Development
We mapped LINCS L1000 Level 5 data onto the DILIst based
on their shared drug names and related synonyms through
PubChem Identifier Exchange Service1. As a result, we obtained
23,791 transcriptomic profiles across 69 human cell lines. Here,
we hypothesized the DILI signal was embedded in transcriptomic
profiles with different drug/dose/duration/cell line combinations.
However, based on our previous study, the correlation between
liver-related cell lines and various cancer cell lines varied (Liu
et al., 2020). Therefore, we used a modified Kennard-Stone
algorithm (Kennard and Stone, 1969) for sample selection to
extract transcriptomic profiles with the most explained variance.
Accordingly, we calculated a average transcriptomic profile based
on all the 23,791 transcriptomic profiles. Then, we calculated
Euclidean distances between average transcriptomic profile
and each of 23,791 transcriptomic profiles. Transcriptomic
profiles with Euclidean distances located in two sides of the
quantile value 0.05 (e.g., a confidence interval 0.95) were
selected (see the Supplementary Figure S1). Consequently, 6,000
transcriptomic profiles were obtained for model development, of
which 3,568 were DILI positives and 2,432 were DILI negatives
(e.g., positive/negative ratio = 1.47). The detailed information,
including drug name, concentration, cell line, and DILIst label,
was listed in the Supplementary Table S1.

Description of Classifiers
The study aims to develop a DNN model based on transcriptomic
profiles for DILI prediction. Furthermore, we compared the DNN
model performance with three state-of-the-art ML algorithms,
including KNN, SVM, and RF.

Deep Neural Network
A DNN is an artificial neural network (ANN) consisting
of multiple layers between the input and output layers
(Schmidhuber, 2015). The DNN aims to find the correct
mathematical manipulation to transform the input into the
output through a linear or a non-linear relationship. The
network moves through the layers by calculating the probability
of each output. In this study, we developed a DNN model
with seven hidden layers between the input and output layers
(Supplementary Figure S2). The nodes in the input layer were
loaded with the feature information of transcriptomic profiles.
Then, the input layer information was forwarded through the
network of seven hidden layers and then finally to the output
layer (i.e., probability of DILI classification). For each node in the
hidden layers, and the output layer, the weighted sum (Slj) was
calculated using the formula below:

Slj =
∑
kWjk

l∗xkl−1
+blj (1)

Where xl−1
k is the kth node in the layer of l− 1, W l

jk is the weight

between xl−1
k and xlj, b

l
j is on the bias for neuron xlj. Then the

weighted sum was activated through a non-linear function as

1https://pubchem.ncbi.nlm.nih.gov/idexchange/idexchange.cgi

shown in the following formula:

xlk = f (Slj) (2)

Here, xlk denotes the output of an activation function. The
activation for the hidden layers was optimized during the model
construction. In this study, we investigated four activation
functions, including Hyperbolic tangent activation (Tanh),
Rectified Linear Unit (ReLU), Scaled Exponential Linear Unit
(SELU), and Exponential Linear Unit (ELU). For the output layer,
we used the sigmoid activation function for DILI classification
prediction (binary where DILI negative prediction = 0 and DILI
positive predictions = 1) (if the sigmoid output value ≤ 0.5,
classify to DILI negative, else classify to DILI positive). The binary
cross-entropy loss function was applied to calculate the loss of the
predicted value Ŷl and the actual value Yi . The loss function was
presented by the following formula:

L
(
Yi, Ŷl

)
= −

n∑
1

(Yi(log(Ŷl))+(1− Yi) log(1− Ŷl)) (3)

Four optimizers (i.e., Adam, Adadelta, RMSProp, and SGD) were
employed and applied to minimize the loss function by backward
updating the weights and bias on the DNN training process.

KNN
K-nearest neighbors is a non-parametric algorithm that
determines each test object class label as the most frequent
one among the k-nearest training objects (Altman, 1992).
In this study, we used Euclidean distance to measure the
distance between the test object and the training object. The
hyperparameter (the number of neighbors K) was optimized.

SVM
Support vector machine is a supervised ML algorithm developed
by Cortes and Vapnik (1995). It separates objects by constructing
a hyperplane based on support vectors. In addition to performing
linear classification, SVM can also be used to perform non-
linear classification using kernel functions. The kernel function
can project the original feature space into a higher dimensional
feature space, which may help to separate objects into different
classes. In this study, we tested polynomial, and radial basis
function (RBF) kernel functions with hyperparameters, i.e.,
Gamma for the non-linear kernel, and penalty parameter C.

RF
Random forest is an ensemble learning model used for
classification by building multiple decision trees, and the output
of the decision is the ensemble result of all the individual trees.
The hyperparameters, including the number of trees, the max
depth of the tree, minimum sample split, and minimum sample
leaf, were optimized.

Model Development
Figure 1 provides a schematic overview of the model
development procedure performed in this study:

Step 1: we split the 6000 transcriptomic profiles into training
(80%), and IV (20%) sets using a stratified splitting strategy,
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FIGURE 1 | Overall workflow for the model development: (1) 6000 treatments were stratified split into the training (80%) and independent validation (20%) datasets.
(2) A 100-iteration Monte Carlo cross-validation (MCCV) was carried out for hyperparameter optimization of the four algorithms, including Deep Neural Network:
DNN; K-nearest neighbors: KNN); Support Vector Machine: SVM and Random Forest: (RF). (3) The optimized models were used to predict the independent
validation sets. (4) the DNN model was further evaluated by using a “Y-Scrambling”-based permutation test.

where the same DILI positive/negative (P/N) ratio was kept
in both sets. Consequently, we obtained a total of 4800
transcriptomic profiles (P/N ratio = 2854/1946) for the training
set and 1200 ones (P/N ratio = 714/486) for the IV set.

Step 2: The MCCV was employed to optimize the model
hyperparameters. First, the training set data was stratified split
into two subsets with a fixed ratio (i.e., 80% than 20%). Then,
the model was developed using 80% of the training set with
investigated hyperparameters to predict the remaining 20%. This
procedure was repeated 100 iterations. Finally, we used the
average predictive results of 100 iterations to select optimized
hyperparameters (Result 1).

Based on our previously developed models for DILI
prediction, the models tended to provide unbalanced sensitivity
and specificity (Chen et al., 2013; Hong et al., 2017). Considering
the prevalence of DILI positives and negatives in our dataset, we
designed a score function V to balance model performance for
hyperparameter optimization, as list below:

V =
(

TP∗TN − FP∗FN
√

(TP+FP)∗(TP+FN)∗(TN+FP)∗(TN+FN)
+00.5

)
∗

(
TN

TN+FP

)
(4)

Step 3: The model with optimized parameters yielding the highest
predictive performance in MCCV was considered as the final
model to evaluate the IV set (Result 2).

Step 4: We further evaluate the model by performing a
permutation test (i.e., Y-scrambling) to investigate whether the
predictive performance is better than chance. Specifically, we
scrambled the DILI labels of training set 100 times to generate
100 of the pseudo training set. For each pseudo training set,
we developed a model based on 80% of data with optimized
parameters obtained in Step 2 to predict the remaining 20%.
Next, we compared the 100 predictive performances from the
pseudo training set with Result 1 from the original training
set. Subsequently, we calculated the adjusted p value by using
Student’s t-test. If the adjusted p value less than 0.05, we
considered the developed model is statistically significant than
the random correlation. Moreover, we also used the Cohen’s
measure to confirm the findings further.

Performance Metrics
We evaluated the predictive performance of developed models by
using the area under the receiver operating characteristic (ROC)
curve analysis. A ROC curve exhibits the performance of the
classification model with a plot by the true predictive rate (TPR)
against the false positive rate (FDR). We calculated the area under
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the ROC curve (AUC) for each developed model. Moreover,
three other metrics, including MCC, F1, Cohen’s kappa, accuracy,
balanced accuracy, sensitivity, and specificity, were employed to
further evaluation of model performance as listed below:

MCC = TP∗TN−FP∗FN
√

(TP+FP)∗(TP+FN)∗(TN+FP)∗(TN+FN)

(5)

F1 =
2TP

2TP+FP+FN
(6)

accuracy =
TP+TN

TP+TN+FN+FP
(7)

Cohen′s kappa =
P(o)− P(e)

1− P(e)
(8)

balanced accuracy =
sensitivity+specificity

2
(9)

sensitivity =
TP

TP+FN
(10)

specificity =
TN

TN+FP
(11)

Where TP, TN, FP, FN denotes true positive, true negative,
false positive, and false negative, respectively. P(o) is the
probability of oberserved agreement. P(e) is the probability of
random agreement.

Model Interpretation
Applicability Domain
Since drugs in the DILIst dataset covers a wide spectrum of
different therapeutic categories, a defined applicability domain is
helpful further to apply the developed DNN model in the real-
world application. Therefore, we investigated the performance of
developed DNN model on each therapeutic category using the
WHO Anatomical Therapeutic Chemical (ATC) Classification
System (Skrbo et al., 2004). The WHO ATC Classification System
is a hierarchical ontology with five different levels. In the study,
the first level of ATC was employed, which represents 14 different
main therapeutic categories the drug acts on. We first mapped
the drugs in the IV set (1200 transcriptomic profiles) onto the
first level of ATC. Finally, we calculated performance metrics,
including AUC, sensitivity, specificity, and balanced accuracy for
each therapeutic category.

Functional Analysis
To determine the association between the predictive performance
of the developed DNN model and its biological relevance,
we performed the Ingenuity Pathway Analysis (IPA), network
analysis, and Gene Ontology analysis. We collected the signatures
(i.e., top 100 up/down-regulated genes) from each correctly
predicted transcriptomic profiles in the IV set. Then, we extracted
the top 200 high-frequent genes amongst these signatures. For
IPA, we uploaded the 200 high-frequent genes into the IPA

web server2 to enrich canonical pathways and hepatotoxicity-
related functions. For the Gene Ontology analysis, we uploaded
the 200 high-frequent genes into the DAVID web server3 to
enrich GO terms with Benjamini-Hochberg adjusted p values
less than 0.05. For network analysis, we used the following steps:
(1) We queried the STRING version 11 (i.e., a Protein–Protein
Interaction (PPI) Networks Functional Enrichment Analysis
database) to determine PPIs amongst the 200 high-frequent genes
(Szklarczyk et al., 2018); (2) We kept PPIs with confidence
scores > 0.7 were considered; (3) We employed the MCODE
plug-in for Cytoscape version 3.7.1 to extract and visualize the
PPI sub-networks that are densely connected to represent the
biological complexes (Bader and Hogue, 2003; Shannon et al.,
2003). We set the default parameters in MCODE with Node Score
Threshold = ?0.2, K-core Threshold = ?2, and MaxDepth = ?100;
(4) the genes involved in the enriched subnetworks were input
to the IPA software to enrich the pathways and hepatotoxicity-
related functions.

Model Robustness
To further investigate the robustness of the proposed
DNN model, we rebuilt the DNN models based on two
different strategies, including balanced sampling and
drug-based data splitting.

Balanced Sampling
Considering the unbalanced DILI positive and DILI negative
transcriptomic profiles, we employed a downsampling
strategy to rebuilt the DNN models. Specifically, there
are 6000 transcriptomic profiles (DILI positive/DILI
negative = 3568/2432) used in this study. First, We randomly
selected 2432 of 3568 DILI positive transcriptomic profiles
with the same number of negative ones. Then, the 4864 (DILI
positive/DILI negative = 2432/2432) transcriptomic profiles
dataset was stratified split into 80% (3891) for training and 20%
(973) for the IV set. Finally, the model was developed by using
the training set and test on the IV set. The whole process was
repeated 50 times. The average and standard deviation of model
performance metrics were calculated.

Drug-Based Splitting
Considering the developed DNN model was based on the
transcriptomic profiles, the same drug’s transcriptomic profiles
may have a chance to present in the training and IV sets. To avoid
the potential information leaking occurs, we split the training and
the IV sets by drugs to guarantee no common drugs between
the two datasets. The total 640 drugs were stratified split into
80% (342 DILI positive/170 DILI negative) for the training set
and 20% (85 DILI positive/43 DILI negative) for the IV set.
Consequently, the corresponding drug transcriptomic profiles
in the training set was used to develop a DNN model. The
developed DNN model was evaluated on the corresponding drug
transcriptomic profiles in the IV set. The whole process of data
splitting and model development was repeated 50 times. The

2https://apps.ingenuity.com/ingsso/login
3https://david.ncifcrf.gov/
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average and standard deviation of model performance metrics
were calculated.

Code Availability
All the models were built using the open-source Python (version
3.6.5). The DNN model was developed with the Keras library
version 2.0 on top of TensorFlow version 1.14 as the backend.
The models based on conventional ML algorithms (KNN, SVM,
and RF) were developed using scikit-learn package version 0.22
(Pedregosa et al., 2011). The model scripts and processed data
in this study are available at https://github.com/TingLi2016/
L1000_DILI.

RESULTS

Model Development
To obtain the optimized model, we comprehensively
evaluated model performance under different hyperparameter
combinations by using the proposed V score function (see
“Materials and Methods” section). For DNN, a total 16 of
hyperparameter combinations of four activation functions (i.e.,
Tanh, ReLU, SELU, ELU) and four optimizers (Adam, Adadelta,
RMSProp, and SGD) and were investigated. For KNN, we tested
the number of neighbors k from 3 to 11 with an increased step
2. For SVM, We used a grid search on a polynomial function,
and RBF kernel functions with regularization parameter C and
kernel coefficient gamma γ. The C values of 0.01, 0.1, 1, 10, 100
and the γ values of 0.1, 0.01, 0.001, 0.0001 were tested. For RF,
We investigated hyperparameter combination with n_estimators,
max_depth, min_samples_split, and min_samples_leaf. The
n_estimators was tested from 100 to 500 increased by 100. The
max_depth of 8, 10, 12, and None were employed None means
no depth was specified. The min_samples_split (i.e., 2, 5, and 10)
and the min_samples_leaf (1, 2, and 4) were used.

Figure 2 depicted the distribution of V scores of DNN
models from the 100-iteration MCCV. The average and standard
deviation of V scores under 16 hyperparameter combinations
were ranked. We observed the V score distributions of the
top five hyperparameter combinations were no statistically
significant difference. We chose the hyperparameter combination
with activation ELU and optimizer Adam since they yield
the highest average V score of 0.295. The detailed V score
distributions of three conventional classifiers, including KNN,
SVM, and RF, were listed in the Supplementary Table S2.
For KNN, the optimized number of neighbors K was 3. For
SVM, the optimized hyperparameter combination of kernel, C,
and γ was the RBF kernel, 0.0001, and 10, respectively. For
RF, the best hyperparameter combination of estimators, max
depth, min_samples_split, and min_samples_leaf was 500, None,
2, and 1, respectively. The average and standard deviation of
V scores for the four classifiers were ranked in the following
order: DNN (0.295 ± 0.023) > SVM (0.256 ± 0.023) > RF
(0.237± 0.022) > KNN (0.224± 0.025).

Figure 3 illustrated the distribution of AUC values from 100-
iteration MCCV of the four classifiers. Dots in the violin plot
denoted the 100 individual models generated in MCCV. The

average and standard deviation of AUC values were decreased in
the order DNN (0.772 ± 0.015) > SVM (0.751 ± 0.015) > RF
(0.743 ± 0.018) > KNN (0.723 ± 0.016), highlighting the better
generalization ability of DNN. Furthermore, more DNN models
were distributed around 1.5× interquartile range of violin plot
(dots with black color), indicating the higher probability of
DNN generating models with better performance. As a result, we
selected the model with the highest AUC value for each classifier
as the final model.

DNN Model Provided More Balanced
Model Performance
Table 1 listed the performance metrics (i.e., AUC, MCC, F1,
Cohen’s kappa, accuracy, balanced accuracy, sensitivity, and
specificity) in the training set and IV set across the four
classifiers. DNN yielded the highest AUC values (i.e., 0.802
for the training set, and 0.798 for the IV set), Cohen’s kappa
(i.e., 0.493 for the training set, and 0.453 for the IV set),
and balanced accuracies (i.e., 0.741 for the training set, and
0.721 for IV set) among the four classifiers. Moreover, DNN
provided more balanced sensitivity (i.e., 0.851 and 0.839 for
the training and IV sets, respectively) and specificity (i.e., 0.630
and 0.603 for the training and IV sets, respectively) than the
other three classifiers. RF classifier yielded the highest sensitivity
and the lowest specificity in both training and IV sets among
the four classifiers, indicating the model suffered a high false-
positive rate and tended to predict transcriptomic profiles
as DILI positives.

We further compared the absolute difference of performance
metrics between MCCV and IV, denoted as | MCCV-IV|
(Figure 4). A large | MCCV-IV| value indicates either potentially
overfitting (MCCV > IV) or an unreliable extrapolation
(IV > MCCV) of a model. We found that low | MCCV-IV| values
(<0.03) of AUC, F1, balanced accuracy, accuracy, and sensitivity
for all the four classifiers. RF and SVM had a relatively higher |
MCCV-IV| values of specificity (i.e., 0.052 and 0.073) than that of
DNN and KNN. RF had a relatively higher | MCCV-IV| values of
MCC (0.047) and Cohen’s kappa (0.055) than that of DNN, KNN,
and SVM. In general, we did not observe obvious overfitting or
underfitting phenomena among the four classifiers. Thus, in the
following analysis, we only focused on the DNN classifier because
of its superior performance to other classifiers.

DNN Model Is Significantly Better Than
Random Chance
We further investigated whether the predictivity of the developed
DNN models yielded by chance. Figure 5 depicted the results
of permutation tests for the four performance metrics, including
AUC, sensitivity, specificity, and balanced accuracy. In the
permutation test, we compared the 1000-iteration MCCV results
between the real data and permutated data. The average
performance metrics of AUC, MCC, F1, Cohen’s kappa, accuracy,
balanced accuracy sensitivity, and specificity (0.772, 0.422, 0.772,
0.419, 0.723, 0.707, 0.790, and 0.625, respectively) derived from
real data were much larger than that of permutated data
(i.e., 0.512, 0.038, 0.604, 0.038, 0.535, 0.519, 0.603, and 0.434,
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FIGURE 2 | Hyperparameters optimization of DNN models: we investigated a total of 16 hyperparameter combinations of four activation functions (i.e., Tanh, ReLU,
SELU, and ELU) and four optimizers (i.e., Adam, Adadelta, RMSProp, and SGD). Each hyperparameter combination was evaluated with a 100-iteration MCCV. The
mean and standard deviation of V scores is illustrated for each hyperparameter combination. The hyperparameter combination of Elu and Adam was chosen as the
best hyperparameters for developing an optimized DNN model.

FIGURE 3 | Performance comparison based on MCCV results: the distributions of AUC scores were plotted based on 100-iteration MCCV results of DNN, SVM, RF
and KNN in a violin box style. DNN models distributed around 1.5× interquartile range of violin plot were highlighted in black dots.
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TABLE 1 | Performance for four different classifiers with optimized hyperparameters.

Dataset Classifiers AUC MCC F1 Cohen’s kappa Balanced Accuracy Accuracy Sensitivity Specificity

Training DNN 0.802 0.497 0.809 0.493 0.741 0.761 0.851 0.630

KNN 0.762 0.441 0.789 0.436 0.713 0.735 0.834 0.591

SVM 0.778 0.478 0.805 0.472 0.729 0.753 0.856 0.602

RF 0.771 0.549 0.837 0.491 0.727 0.774 0.977 0.476

IV DNN 0.798 0.458 0.795 0.453 0.721 0.743 0.839 0.603

KNN 0.764 0.409 0.778 0.405 0.698 0.721 0.821 0.574

SVM 0.777 0.455 0.804 0.438 0.709 0.743 0.888 0.529

RF 0.747 0.502 0.824 0.436 0.700 0.752 0.975 0.424

The best performance values among the classifiers.

FIGURE 4 | Absolute differences, | MCCV-IV|, of the four performance metrics: absolute differences of the eight performance metrics between the 100-iteration
MCCV and the independent validation (IV) set were calculated for the four classifiers.

respectively). The p values of eight performance metrics were
all less than 2.2E-16, indicting the results yielded from real
data are significantly better than random chance. Moreover, we
employed the Cohen’s d measures to verify further the mean
values generated based on real data is statistically different from
permutated data. Generally, Cohen’s d values more than 0.8
were considered as “large effect” between two distributions. The
Cohen’s d values were 15.88, 13.59, 5.01, 13.82, 10.47, 14.20,
3.09, and 3.22 for AUC, MCC, F1, Cohen’s kappa, accuracy,
balanced accuracy, sensitivity, and specificity, respectively. The

large Cohen’s values further demonstrated the predictivity of the
developed DNN model is much better than random chance.

DNN Model Yielded a Better
Performance for Oncology Drugs
To define the applicability domain of our developed DNN
model, we calculated the performance metrics separately for each
therapeutic class in the IV set. Figure 6 showed the distribution
of the four performance metrics, including AUC, MCC, F1,
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FIGURE 5 | Permutation tests for the developed DNN model: the distributions of the eight performance metrics from 100-iteration MCCV were illustrated. The
distributions of DNN models using the real training datasets and Y-scrambled training datasets were denoted with orange and gray colors, respectively.

Cohen’s kappa, accuracy, balanced accuracy, sensitivity, and
specificity for each of 14 ATC therapeutic classes. The predictive
power in each therapeutic class varied. L- antineoplastic
and immunomodulating agents outperformed other therapeutic
classes. The higher AUC, MCC, F1, Cohen’s kappa, accuracy,
balanced accuracy, sensitivity, and specificity of 0.943, 0.749,
0.864, 0.744, 0.872, 0.836, 0.877, and 0.919 were obtained. We
also observed the developed DNN model yielded lower predictive
performances (AUC < 0.5) in some therapeutic categories such
as V- various, B - blood and blood forming organs, and D-
Dermatologicals.

DNN Model Captured Critical
DILI-Related Pathways
Table 2 listed enriched canonical pathways and hepatoxicity-
related functions by using IPA. We used the 200 high-frequent

genes of correctly precited transcriptomic profiles in the IV set
(see Supplementary Table S3). A total six canonical pathways
consisting of GADD45 Signaling, Cell Cycle: G2/M DNA Damage
Checkpoint Regulation, Estrogen-mediated S-phase Entry, Cyclins
and Cell Cycle Regulation, and ATM Signaling were enriched with
an adjusted p value less than 0.05 (see Supplementary Figure S3).
Moreover, two hepatoxicity-related functions, including liver
cancer and Hepatoblastoma, were also enriched. Similar findings
also were revealed from network analysis (Figure 7), where
two high densely interacted subnetworks were extracted by
using the MCODE Cytoscape plug-in. We found 6 (CCNB1,
KIF14, CCNB2, TOP2A, BIRC5, and CDC45) of a total of
17 genes (35.2%) in the subnetwork one, and two (TP53,
MYC) of seven genes (28.6%) in subnetwork two overlapping
with hepatotoxicity-related functions obtained from the IPA
(highlighted in green color in Figure 7). A total of eight GO terms
were enriched with an adjusted p value less than 0.05. Seven of the
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FIGURE 6 | The model performance for the individual therapeutic class according to the first level of the WHO ATC codes.

eight GO terms belonged to the Cellular Component (CC) level,
such as the nucleus, cytoplasm, nucleoplasm. The other enriched
GO term, positive regulation of apoptotic process, was from the
Biological Process (BP) level.

DNN Provided Robust Models
To further investigate the proposed DNN model’s robustness,
we redeveloped the models based on two sampling strategies,
including balanced sampling and drug-based splitting.

Figure 8A illustrated the distribution of the eight performance
metrics of 50 IV sets based on the balanced sampling strategy.
The average and standard deviation of AUC, MCC, F1, Cohen’s
kappa, accuracy, and balanced accuracy were 0.789 ± 0.009,
0.423 ± 0.025, 0.711 ± 0.019, 0.422 ± 0.023, 0.711 ± 0.011, and
0.711 ± 0.011, respectively. As expected, the balanced sampling
method provided a more balanced sensitivity (0.714 ± 0.045)
and specificity (0.707 ± 0.029) compared to the original dataset
(see Supplementary Table S4). Furthermore, we observed that
the average AUC (0.789) yielded based on balanced sampling was
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TABLE 2 | IPA based on 200 high-frequent genes of correctly predicted transcriptomic profiles.

IPA modules # Genes Gene Name p-value

Canonical Pathways

GADD45 Signaling 10 CCNB1, CCND1, CCND3, CDK1, CDK4, CDKN1A, GADD45A, GADD45B, PCNA, TP53 2.13E-14

Cell Cycle: G2/M DNA Damage Checkpoint
Regulation

9 CCNB1, CCNB2, CDK1, CDKN1A, GADD45A, PLK1, RPS6KA1, TOP2A, TP53 8.66E-09

Estrogen-mediated S-phase Entry 7 CCND1, CDC25A, CDK1, CDK4, CDKN1A, CDKN1B, MYC 1.16E-08

Cyclins and Cell Cycle Regulation 10 CCNB1, CCNB2, CCND1, CCND3, CDC25A, CDK1, CDK4, CDKN1A, CDKN1B, TP53 2.12E-08

ATM Signaling 10 ATF1, CCNB1, CCNB2, CDC25A, CDK1, CDKN1A, GADD45A, GADD45B, NFKBIA, TP53 2.94E-08

Hepatoxicity-related Functions

Liver Cancer 46 ATF5, BIRC5, C2CD5, CANT1, CCDC92, CCNB1, CCNB2, CCND3, CDC45, CGRRF1, CNDP2,
CYTH1, DDIT4, DUSP4, GRB10, HMGCS1, HMOX1, HSPA8, HSPD1, IFRD2, IGFBP3, INPP1,
INSIG1, JADE2, KEAP1, KIF14, LBR, LGMN, LOXL1, LSM5, MYC, NPC1, NR2F6, NRIP1, POLR2I,
RELB, SPR, STXBP1, TIAM1, TIPARP, TLE1, TOP2A, TP53, USP1, WASHC4, WDTC1

2.26E-01

Hepatoblastoma 1 TP53 3.06E-02

Gene Ontology Analysis

Nucleus 55 TOP2A, KDM5B, CDKN1B, FHL2, GABPB1, PRSS23, HOXA10, RGS2, ZFP36, CCND3, TUBB6,
CCND1, MYC, RPS6KA1, IER3, TSC22D3, IGFBP3, NOSIP, CDC25A, UGDH, NPEPL1, MELK,
BIRC5, ATF5, TP53, RBKS, NOTCH1, PCNA, CDCA4, GLRX, ADRB2, FOXO4, RELB, DNAJB1,
CCNB2, CCNB1, NFIL3, USP1, HMOX1, SCAND1, WDTC1, SPDEF, HSPA8, XBP1, SPAG7,
GADD45B, UBE2C, TIPARP, SORBS3, PSMB8, NR2F6, FOSL1, NFKBIA, NET1, POLE2

1.96E-03

Nucleolus 20 TOP2A, TCERG1, TLE1, MYO10, PARP2, PLK1, PWP1, ACAT2, JMJD6, CDK4, MYC, NRIP1,
RRS1, NUSAP1, TIMELESS, CCDC86, RBM34, POLR2I, RAE1, TP53

6.81E-03

Nucleoplasm 33 TOP2A, ATF1, RNH1, PCNA, STXBP1, KEAP1, FOXO4, TSEN2, SMC4, CNDP2, GNAI2, RELB,
CDC20, CCND1, PUF60, SPR, MYC, EPB41L2, HMG20B, CBR3, PARP2, GADD45A, CGRRF1,
CDC25B, JMJD6, CCNA2, UGDH, PLCB3, TNIP1, STUB1, ATF5, DLD, RAD9A

1.01E-02

Midbody 7 PLK1, CDK1, KIF14, KEAP1, BIRC5, KIF20A, GNAI2 2.27E-02

Cytoplasm 52 KDM5B, RNH1, CASC3, TSEN2, SMC4, CNDP2, HOXA10, CDC20, PCMT1, RGS2, CCND3,
TUBB6, PNP, CCND1, SPR, KIF5C, RPS6KA1, NUSAP1, PARP2, TSC22D3, NOSIP, KCTD5,
CDC25A, CDC25B, NPEPL1, MELK, BIRC5, ATF5, TP53, RBKS, PCNA, INPP1, PRUNE1, HSPD1,
GNAI2, EPB41L2, CYTH1, UBQLN2, MYO10, GADD45B, UBE2C, GADD45A, PLK1, SORBS3,
PSMB8, MLLT11, EIF5, GNPDA1, TNIP1, BAMBI, CDK1, RAD9A

2.27E-02

Spindle Microtubule 5 PLK1, NUSAP1, CDK1, BIRC5, AURKA 2.27E-02

Cyclin-Dependent Protein Kinase Holoenzyme
Complex

4 CCND3, CDKN1A, CCND1, CDK4 3.36E-02

Positive Regulation Of Apoptotic Process 10 MLLT11, TOP2A, NET1, NOTCH1, MELK, GADD45B, GADD45A, IGFBP3, HMOX1, SPDEF 2.75E-02

slightly lower than the AUC (0.798) generated with the original
dataset, indicating the unbalanced positive and negative sample
did not influence the performance of the developed DNN model.

Figure 8B showed the performance metrics of 50 IV
sets using the drug-based splitting strategy. The average and
standard deviation of AUC, MCC, F1, Cohen’s kappa, accuracy,
balanced accuracy, sensitivity, and specificity were 0.769± 0.038,
0.420 ± 0.057, 0.651 ± 0.041, 0.391 ± 0.059, 0.689 ± 0.038,
0.718± 0.030, 0.818± 0.061, and 0.619± 0.066, respectively (see
Supplementary Table S5). We found that 11 of 50 IV datasets
with drug-based splitting methods had a better AUC value (i.e.,
AUC ≥ 0.798), suggesting no obvious information leaking exists
in the DNN model developed with the original datasets.

DISCUSSION

Drug-induced liver injury remains one of the largest safety
concerns in the drug development characterized by the

complicated intrinsic and idiosyncratic mechanisms (Andrade
et al., 2019). Although significant efforts have been made to
improve DILI prediction ability, the performances of reported
models are still suboptimal. Thus, in this study, we developed
an 8-layer DNN model to investigate how to take advantage of
accumulated transcriptomic profiles to enhance DILI prediction.
It is the first attempt to use the largest binary DILI classification
data -DILIst and transcriptomic profiles from the LINCS L1000
dataset to develop the DNN model. The developed DNN model
yielded the best predictive results among the four different
ML classifiers with AUCs of 0.802 and 0.798 and balanced
accuracies of 0.741 and 0.721 for the training and an IV set,
respectively. Furthermore, Our DNN model provided more
balanced sensitivity and specificity (Table 1).

A defined applicability domain of the developed model is of
help to its real-world application. The therapeutic class analysis
demonstrated that the developed DNN model was specifically
effective (e.g., 0.943 AUC) in predicting DILI potential of
L- antineoplastic and immunomodulating agents. It would be
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FIGURE 7 | Cytoscape network analysis of protein–protein interactions (PPIs): 482 high confidence PPIs were extracted from the STRING database version 11.0
based on 200 high-frequent genes derived from the DNN model. Panels (A,B) are the top 2 subnetworks of the PPI network obtained by using MCODE plug-in for
Cytoscape. The hepatoxicity-related genes were highlighted in green color. The size of code is projected based on frequency of genes.

FIGURE 8 | The performance of the proposed DNN model based on the two different sampling strategies: (A) balanced data sampling; (B) drug-based data splitting.

valuable to improve patient quality of life during drug treatment
by reducing the potential for hepatotoxicity in this class of drugs.
However, the diversity in chemical class within the antineoplastic

and immunomodulating agents, together with the underlying
complex biology, is a challenge for the identification of the
potential for clinical hepatotoxicity. The model described here
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has great potential to overcome this during the early stages of
drug development as soon as efficacy data generated in cancer
cell lines become available. Once in clinical development, the
potential for hepatotoxicity is routinely monitored alongside
other parameters to ensure patient safety.

An explainable in silico models is a pre-requisite for a
better understanding of the underlying mechanism and causal
relationship between data and biological endpoints. Through the
functional analysis, we found five canonical pathways and two
hepatotoxicity-related functions by using IPA based on 200 high-
frequent genes derived from the DNN model. The results were
also confirmed by using the network analysis. Several canonical
pathways have been reported to play essential roles in DILI
pathogenesis and etiology. For example, it was reported ATM
signaling pathway plays an important protective function of
causing liver failure in mice (Bandi et al., 2011). Furthermore,
it was reported that Estrogen receptor alpha (ESR1)-mediated
signaling inhibits liver regeneration by downregulation of Wnt
signaling resulting in lower cyclin D1 activation in ESR1
knockout rats (McGreal et al., 2017).

It is worthwhile to consider some additional studies to
confirm our findings in this study and further verify our
developed DNN in the real-world application. First, we did not
investigate the model performances based on transcriptomic
profiles generated from different genomics platform. Based on
our previous study, the extrapolation ability between assay
platforms are multiple-factorial, and a careful selection of cell
lines is strongly recommended (Liu et al., 2017, 2018, 2020).
However, considering the ongoing declining cost of the emerging
genomics technology such as L1000 technologies, it is affordable
for most of the researches to screen the investigated drug
candidates. Second, DL is growing at a very rapid rate. In
the current study, we just employed the DNN algorithm for
a proof-of-concept purpose. Other DL algorithms, such as
transfer learning (Pan and Yang, 2009) and multi-task learning
(Ruder, 2017), were worth investigating for further improving
DILI perdition. Finally, in our current study, we only fine-
tune the essential parameters, including activation functions and
optimizers in the DNN model. Other parameters, such as the
number of hidden layers and node numbers, were arbitrarily
selected. With that said, the prediction performance of the
developed model may be further improved by extra fine-tuning.

Drug-induced liver injury is a multifactorial endpoint that
cannot easily be predicted by current pre-clinical animal models.
The results presented illustrate the utility of a DL algorithm
combined with transcriptomics information for predicting DILI.
The developed DNN model could be a promising tool for DILI
potential detection in the early stages of drug development.
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