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Molecular models have enabled understanding of biological structures and functions
and allowed design of novel macro-molecules. Graphical user interfaces (GUIs) in
molecular modeling are generally focused on atomic representations, but, especially
for proteins, do not usually address designs of complex and large architectures, from
nanometers to microns. Therefore, we have developed Elfin UI as a Blender add-on for
the interactive design of large protein architectures with custom shapes. Elfin UI relies
on compatible building blocks to design single- and multiple-chain protein structures.
The software can be used: (1) as an interactive environment to explore building blocks
combinations; and (2) as a computer aided design (CAD) tool to define target shapes
that guide automated design. Elfin UI allows users to rapidly build new protein shapes,
without the need to focus on amino acid sequence, and aims to make design of proteins
and protein-based materials intuitive and accessible to researchers and members of the
general public with limited expertise in protein engineering.

Keywords: protein design, blender, GUI, repeat proteins, computational modeling

INTRODUCTION

Visualization and simulation of macromolecules have enabled our understanding of biological
structures and have led to the development of a variety of tools for research, teaching and outreach,
working at multiple scales (Johnson and Hertig, 2014).

Visualizing structures made also possible to design them, by taking into account the spatial
relationship between different parts of the molecules. Dedicated software packages have emerged
over the years for protein design, reviewed by Gainza et al. (2016), and popular viewers such
as Chimera (Pettersen et al., 2004), PyMOL (The PyMOL Molecular Graphics System, Version
2.0 Schrödinger, LLC) (DeLano, 2002), and VMD (Humphrey et al., 1996) have now integrated
design capabilities.

Protein design tools focus largely on atomic models and sequence design from a given backbone
structure. Additionally, several approaches allow to build completely new structures by relying
on secondary structure description and fragments assembly, like Rosetta remodel and blueprint
builder (Huang et al., 2011; Koga et al., 2012), parametric design, as in Isambard (Wood et al., 2017),
idealized secondary structures, e.g., CoCoPOD (Ljubetič et al., 2017) and TopoBuilder (Sesterhenn
et al., 2020), or building blocks with super-secondary structures, as in SEWING (Jacobs et al.,
2016) and Elfin (Yeh et al., 2018). Protein complexes have been successfully designed for symmetric
systems, e.g., point group symmetry (Lai et al., 2012; King et al., 2014; Hsia et al., 2016) and lattices
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(Lanci et al., 2012; Gonen et al., 2015), but large, precise
and asymmetric assemblies are still a challenge. However, such
scaffolds could prove particularly interesting in modulating
cell surface receptor clustering and signaling via precise ligand
organization and placement (Grochmal et al., 2013; Jost et al.,
2013; Shaw et al., 2014; Mohan et al., 2019).

To address the challenge of building large structures, both
symmetric and non-symmetric, DNA nanotechnology groups
have led the way in developing Computer Aided Design (CAD)
software, e.g., Tiamat (Williams et al., 2009), cadnano (Douglas
et al., 2009), CanDo (Veneziano et al., 2016), vHelix (Benson
et al., 2015), taking advantage of base pairing and regularity of
DNA double helix structure.

Graphical User interfaces (GUI) have indeed a key role
in making software accessible to a broad group of users,
who are not necessarily expert, by enabling work on design
principles, rather than biochemical details. While CAD tools for
DNA nanostructures allow users to work purely on intuitive
geometric concepts, e.g., shapes to achieve, protein design tools
often require a more in-depth programming and biochemical
knowledge. GUIs have been developed for the Rosetta modeling
suite to improve usability (Adolf-Bryfogle and Dunbrack, 2013;
Schenkelberg and Bystroff, 2015) and the protein folding game
Foldit (Cooper et al., 2010) has successfully attracted a broad base
of users from the general public. Its standalone interface (Kleffner
et al., 2017) has become an instrument to interactively design new
proteins, although designs are effectively limited to a few hundred
amino acids, if systems are not symmetric.

Size is one of the major limitations in interactive protein
design using atomic models, as the number of atoms quickly
becomes the computational bottleneck. However, it is possible to
take a more coarse-grained approach to design large and complex
protein architectures, akin to DNA nanostructure designs.

In this work we have developed a user interface to allow
design of protein structures using modular structural building
blocks. Elfin user interface (Elfin UI) was developed as a
graphical interface and an interactive editor to the Elfin software
package (Yeh et al., 2018) for design of custom protein
architectures (Figure 1). Elfin uses structural compatible building
blocks (referred to as modules) derived from experimentally
validated structures of repeat proteins to build large and
complex architectures. The goals were to provide (1) a CAD-like
environment for design of user-defined shapes, to which Elfin
could find solutions in terms of protein sequence and structures,
and (2) a sandbox framework to interactively explore potential
protein architectures. We envision Elfin UI to be used in the
design of protein origami, custom shaped nanoparticles and
scaffolds for organization of enzymes and signaling molecules.

We have implemented Elfin UI as a Blender add-on. Blender
is a popular free, open source and cross-platform 3D modeling
application, which has been successfully extended with add-ons
to integrate molecular viewers, like BlendMol (Durrant, 2019),
BioBlender (Andrei et al., 2012), ePMV (Johnson et al., 2011),
Pyrite (Rajendiran and Durrant, 2018).

By using modular compatible building blocks and a coarse-
grained representation, we aim to provide a tool accessible to
scientists, both expert and novice in protein design, and a new

way to engage the public with the concepts of modular design
and manufacturing using biological macromolecules.

METHODS

The Elfin software package is built around the Elfin solver,
a genetic algorithm for the assembly of modular structures
matching a user defined shape (Yeh et al., 2018), and contains
an updated database with information about modular building
blocks, a graphical user interface (Elfin UI) built as Blender
add-on, and ancillary utility scripts (e.g., for installation,
database preparation, file conversion). Code, documentation,
installation scripts and tutorials are available on https://github.
com/Parmeggiani-Lab/elfin.

Elfin UI’s approach to protein design is similar to the
idea of Model-Based UI Design (Calvary et al., 2003). In this
framework, Elfin UI uses a database of individual proteins
and termini compatibility matrix as the domain model. The
task of protein design is undertaken by arranging and joining
two or more protein modules to form the shape desired by
the user. Each protein module is abstractly represented by
attributes such as its center-of-mass, collision radius, and module
pairwise transformation matrices. A design assembled by the
user is converted into an atomic model by projecting atomic
coordinates of each protein module onto their respective position
and adding capping modules to each “free” termini to protect
the otherwise exposed hydrophobic core and improve solubility
(Supplementary Figure S1). Finally, if the designed protein’s
atomic structure passes third party verification (e.g., Rosetta,
see Supplementary Materials), it is considered suitable to be
produced and characterized experimentally.

Database
Elfin builds protein architectures using combinations of
structural building blocks. Building blocks are stored as
collection of atomic coordinates in The Protein Data Bank (PDB)
format and used to precompute: (1) a JSON database, which
includes, for each module, the center of mass and radius, a list
of compatible modules and relative orientation of the pairs,
expressed as rigid body transforms; (2) a Blender database that
stores meshes of each module with cartoon representations of
secondary structure elements.

Modules are classified as: core, when they are extracted from
designed repeat proteins (Parmeggiani and Huang, 2017) and
contain repeated super-secondary structure (e.g., helix-loop-
helix-loop); junction, if they contain two contiguous and merged
super-secondary structures typical of core modules (so that the
module acts as a junction between core modules); or hub, if they
are formed by multiple interacting chains. Core and junction
modules are single chains that can be extended by adding a
further module to the chain either at the N- or C- terminus. Some
hubs’ chains can be extended only at one terminus, if the other is
involved in binding another chain.

Core modules have a specific name, like D4, proA, darp.
Junctions include the name of the core modules that they bridge
with a j (for junction) followed by a number, since there can be
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multiple junctions between two core modules: e.g., D14_j1_D79,
D14_j2_D79. The name indicates that they are compatible at the
N-term with modules that possess a C-term interface of the same
kind (anything ending in D14 in this case). Same for the C-term.
Core modules are compatible, by definition, with themselves and
with junctions with compatible ends. Hub names indicate the
type of core module that they contain and eventually information
about the number of subunits and type of symmetry, e.g., D4_C4
is a cyclic homo-tetramer of D4-derived units.

Modules form a continuous hydrophobic core that runs
through each chain. As for repeat proteins (Parmeggiani and

Huang, 2017), the core needs to be sealed off at the termini
by modified repeating units, called capping repeats or caps,
with the same structural unit of the last module: e.g., a D14
and a D49_j1_D14 module, placed at the C-term, require
capping by Ccap_D14. Caps are added only at the final stage
when a JSON file from Elfin UI or Elfin solver is converted
into an atomic model in mmCIF format by the stitch.py
script. mmCIF is the standard format for the Worldwide
Protein Data Bank (wwPDB) and removes limitations on the
number of atoms and chains present in the previous PDB
format. Modules in the database are still stored as PDB

FIGURE 1 | Elfin UI is a Blender (blender.org) add-on that enables interactive coarse-grained design of proteins using combinations of pre-existing and validated
building blocks. The shaded orange area indicates the functionalities of Elfin UI within the design process. Designs can be built by defining the desired shape and
searching for matching building blocks combinations, by manually placing the building blocks, or by a combination of the two methods. Coarse grained
representations are then converted to atomic model outputs in mmCIF format.

FIGURE 2 | The Elfin UI Blender add-on interface. The Elfin panel on the left shows the accessible operators. On the Blender scene, on the left is a path guide
composed of three joints (blue icospheres) and two bridges (red), and on the right a protein formed by three modules, in different colors.
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FIGURE 3 | Path guide building. Elfin UI allows to define a network of joints and bridges that can be used as input for Elfin solver. The designed output can be
superimposed on the initial path guide. The colors indicate the different building blocks highlighted in the sequence at the bottom.

files, as the number of atoms is limited and within the
capacity of the format.

Current modules are derived from published and
experimentally verified structures. Core modules are extracted
from designed helical repeats (DHRs) (Brunette et al., 2015),
designed ankyrin repeats proteins (darpins) (Kramer et al., 2010)
and protein A (Youn et al., 2017). Junctions were designed using
either an helix fusion method (Wu et al., 2017; Youn et al., 2017)
or de novo connecting helices (Brunette et al., 2020). Hubs were
derived from oligomeric repeat proteins (Fallas et al., 2017).
Supplementary Table S1 contains a detailed list of modules
and sources. Custom databases can be created using the scripts
provided with the Elfin source code. The workflow is described
in the Supplementary Figure S2.

FIGURE 4 | Manual module placement. The single chain protein is built as a
sequence of compatible modules, depicted in different colors.

Blender Add-On Implementation
Elfin UI was developed in python 2.7 as an add-on to blender
2.79. Currently it is not yet compatible with Blender 2.8. As
Blender add-on, Elfin UI creates a context menu and adds
sections in the side panel, but primarily interacts with objects
in the scene by defining “operators” that apply some routine on
selected objects. These operators can be invoked using shortcuts,
by clicking context menu buttons, or looked up and called
from the search menu. Elfin UI plugin defines many such
operators to facilitate two main design processes: (1) path guide
building, and (2) manual module placement (see results for
description). Whenever objects (either protein modules or path
guide components) are created through Elfin UI’s operators, the
object is spawned with a property group dedicated to storing
Elfin’s information. It stores the object type (module or path
guide), link occupancy (who are the neighbors), and helper
attributes such as a flag to indicate whether the object needs to be
cleaned up by Elfin’s object lifetime watcher. Other than object-
specific information, data such as module compatibility and 3D
models are loaded only once and stored in a singleton object until
either Blender is closed, the add-on is reloaded, or when the user
explicitly calls the reload operator.

Module compatibility is explicitly embedded in the prototype
naming convention for module operators. Place Module and
Extrude Module operators prompt the user with a filtered list
of actionable module names (filtered prototypes). There could be
many modules in a scene, but modules with the same name (e.g.,
D4.001, D4.002) are of the same prototype (D4). For extrusion,
prototypes are filtered by compatibility and also terminus
occupancy (i.e., is the N and/or C terminus already occupied?).

For Place Module, the name of each module is bounded by
two period marks. These marks make it easy to search the exact
module the user is looking for: e.g., a search for .D4 will return all
modules with a name starting in D4.
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For Extrude Module, names are in the form:
: < chain1 > (< term1 > ) -

> (< term2 > ) < chain2 > : < name2 > .
The chain1 and term1 are chain ID and terminus type of the

module being extruded from. The term2, chain2, and name2
are corresponding attributes of the new module to be extruded
into. For instance: when D49 is selected and extrusion on the N
terminus is chosen, one of the items in the list could be:A(N)
- > (C)A:D49_aC2_24. This means the terminus N of chain
A of D49 can be extruded and connected to a yet-to-be-added

D49_aC2_24 hub. In the latter, terminus C of chain A would
be used for this connection. The first letter, if there is one,
denotes the C-Terminus chain ID of the extrusion. This is needed
because hub modules have more than one chain to extrude to and
from. The last letter is therefore the N-Terminus chain ID in the
to-be-extruded module.

Groups of modules or path guide primitives are organized
in networks that keep track of which modules or path guides
are “connected.” Networks are displayed in Blender outliner
view. While individual path guide “joints” can be freely rotated

FIGURE 5 | Symmetric structures. (A,B) Show respectively two and four chain architectures. The oligomeric module (hub) is indicated by the repeated vertical and
horizontal dashes.
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and translated, Elfin UI locks individual modules. However,
whole networks can be rotated and translated because they
preserve the interface relationship of each connected group of
modules. Creation and splitting of networks are automatic, and
ease processing when exporting. Joining of two networks is also
possible, subject to termini compatibility.

When designing using Elfin UI, live collision detection
between protein modules can be turned on or off from the left
side pane (default shortcut is T). When it is turned on, newly
placed protein objects that result in collision will raise a clear
warning on screen.

Since Elfin UI supports “partial design”—a design
specification consisting of a network of path guide components
overlapping manually placed modules, sanity checks such
as overlap intention and link availability are conducted
behind the scenes.

RESULTS

Elfin UI is part of the Elfin tool set that allows the user to design
proteins with complex 3D shapes protein designs. In Elfin, a
three-dimensional structure, defined as a network of nodes and
edges, is translated into a protein structure using a combination
of compatible structural building blocks, referred to as modules.
Different module databases can be used and users can build their
own, as described in the Supplementary Materials.

As an add-on, Elfin UI borrows Blender’s graphical interface
to enable the generation of 3D structures to facilitate two
main design processes: (1) path guide building, and (2) manual
module placement.

Path guides are 3D objects, formed by nodes and edges, that
describe the geometry of a three-dimensional shape. Path guides
can be exported to Elfin Solver (the core algorithm in Elfin),
which generates a protein structure to fit, as close as possible, the
defined 3D shape.

Alternatively, protein modules, which correspond to super-
secondary structural elements (e.g., sets of alpha helices and beta
sheets), can be manually placed. The protein chain can be then
extended by adding compatible modules, allowing for a stepwise
and interactive building of protein structures.

Elfin UI introduces a new panel of options in Blender and
new import and export features that enable path guide building,
manual module placement and hybrid designs.

Blender Interface
Elfin UI specific controls are located in an “elfin” panel
in the Blender interface (Figure 2). The commands, called
operators, allow paths guide building and module placement.
Depending on current selected objects, only allowed operators
can be used. Operators are also available in the search menu,
accessible using the spacebar, in Blender 2.79. Every operator
has a hashtag-three-letters-shortcut that, when entered in the
search menu, immediately brings up that operator, speeding
up the design process. E.g., the module extrusion operator is
“#exm.” Operators’ detailed descriptions are available in the Elfin
UI tutorial: https://github.com/Parmeggiani-Lab/elfin-ui/blob/

master/resources/tutorial/README.md. Blender operators, like
delete, work on these objects.

Modules are represented by meshes, derived from PyMol
(DeLano, 2002) that depict protein secondary structures (helices,
beta sheets and loops) and have been scaled appropriately: each
square in the reference plane of the default Blender working
space is 1 nm long. Interactions and relative positions are
precomputed and stored in a database file, therefore, to preserve
the relationships, module scaling is not allowed.

Elfin UI allows export of path guides and designed proteins as
JSON files, which contain information about connectivity, type
of modules (if present) and three-dimensional coordinates. Elfin
solutions, produced as JSON files, contain a network of modules
and can be imported in Elfin UI for visualization. JSON was
chosen for its human-readability (which facilitates debugging
and easy extension), ease to parse, and because there is not
a large amount of data to justify size-efficient formats, such
as binary formats.

Elfin UI is a module-centric interface and does not
support atom or residue level views. Atomic models,
in mmCIF format, are generated from json files by a
script (stitch.py) in the Elfin tool set (see Supplementary
Figure S1 for details). Output files can be then visualized
using molecular viewers (e.g., PyMol, Chimera, VMD)
or loaded in any program that supports mmCIF files for
energy minimization, molecular dynamics simulations or
further design. After conversion from the modular coarse-
grained representation to atomic coordinates, we perform
energy minimization and relaxation in Rosetta (Leman et al.,
2020) to ensure that the design shape is maintained (see
Supplementary Materials).

Path Guide Building
Path guides are the objects that guide Elfin Solver to
build a protein that most resembles the user’s design
intent. Path guides are not protein modules; they are
simple geometry specifications expressed as “joints”
and “bridges.” These are synonymous to “nodes” and
“edges” in mathematical terms, and in Blender, they are
represented with premade icosphere and elongated cubes
respectively (Figure 2).

The main path guide operators are:

• Add joint: place a new joint in space
• Extrude joint: create a new joint in the desired position

connected to the current joint with a bridge
• Bridge two joints: create a new bridge between joints

When connecting between joints, bridges will stretch and
contract visually according to the actual distance between the
joints. Joints and bridges can be used to define complex networks.
Since the distance between joints can be arbitrarily defined,
there may not always be a solution in which protein modules
can satisfy the path guide design, but Elfin Solver always
tries to optimize.

After a design has been drawn out by the user, it can
be exported into a JSON format that Elfin Solver reads and
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processes. The optimized solution is saved into a JSON file
that Elfin UI can read back into Blender and display as a 3D
model (Figure 3).

Path guides are used to define arbitrary shapes that the user is
interested in. If the goal is a precise geometry in 2D or 3D, the
coordinates for each node can be inputted directly in Blender.

FIGURE 6 | Hybrid design. Elfin UI allows users to build shapes that include selected modules in specific positions. The path guide parts are solved by Elfin solver
and merged in Elfin UI. (A,B) Show single-chain and two-chains hybrid designs, respectively.
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Manual Module Placement
Elfin UI can be used as a sandbox environment to
interactively explore the construction of complex protein
architectures. Users can select modules and place them
directly into the scene, growing chains progressively by
addition of new compatible modules (Figure 4). When a
new module is placed the color can be changed. If a new
module causes clashes with the existing chains, an error
box is raised, preventing the addition. This check can
be disabled by toggling the auto_collision_check box in
the elfin panel.

The main module operators are:

• Place modules: place a new module in the scene
• Extrude module: place a new module next to the current

one extending the protein chain; the new module is selected
among the compatible ones

• Link by mirror: associate two or more identical modules;
when one of these modules is extruded, all the linked ones
are extruded accordingly, if the extrusion is possible. Added
modules are considered linked to each other

• Unlink mirror: remove the mirror linkage, so that extrusion
can be performed independently.

Modules are derived from existing experimental structures
(Kramer et al., 2010; Brunette et al., 2015, 2020; Wu et al., 2017;
Youn et al., 2017) and connected through peptide bonds. The
interfaces between modules and their relative orientation are
also derived from crystal structures and SAXS-confirmed models,
ensuring a correct module placement. This information is stored
in the elfin and Blender databases (see section “Methods”).

Mirror linking is used to build symmetric structures or
structures containing only some symmetric parts (Figure 5).
Mirror-linked modules need to be of the same type. Modules
derived from experimentally validated oligomers (Fallas et al.,
2017) contain multiple chains that can potentially grow
in a symmetric fashion, when the same module is added
to each chain. Symmetric hubs are automatically mirror-
linked. Modules extruded from mirror-linked modules are
automatically mirror-linked.

Hybrid Design
Manual module placement can be used in conjunction with path
guides to partially define a design, if the user already knows what
protein module needs to be positioned (e.g., predefined binding
sites) and in which orientation (Figure 6). The user places
modules directly into the scene and translates and rotates them.

When a protein module is placed directly on a path guide
joint, Elfin UI infers that the bridges connecting to that joint are
intended to be “extrusions” from the protein module. The “move
joint to module” operator allows to place an existing joint on a
module, after selecting both.

Hybrid design can be used when the position and orientation
of specific modules of the desired protein are known. By building
a guide path from them, elfin will search for a compatible
solution to connect the modules. The initial input and the design
output should be then combined in a single network, using the

FIGURE 7 | Design of multivalent ligands. (A) Tetramer binder for epoR, top
and side view. The receptor is in green, the elfin UI design in cyan and the
repacked and energy minimized model in magenta, showing only small
deviation from the coarse-grained design. (B) Bispecific binder, top and side
view. In orange is the dimeric design, in green epoR and in cyan and magenta
the Fab fragment. Each design chain binds one copy of the receptor and one
Fab fragment, orienting the antibody binding site toward the plasma
membrane (bottom, gray) where it could engage with a target receptor of
interest.

“join network” operator to obtain the combined structure. This
approach can be used, for example, to build multivalent ligands
to engage multiple cell receptors at the same time, by placing
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binding interfaces in the desired positions and orientation and
searching for structures that can accommodate them.

Designing With Elfin UI: Multivalent
Erythropoietin Receptor Ligands
Elfin UI can be used to rapidly design rigid protein scaffolds to
control the display of ligands for cell surface receptors. Dimeric
ankyrin-based ligands for the erythropoietin receptor (EpoR)
have been shown to induce receptor dimerization and modulate
the signaling output as a function of the distance and orientation
of binding sites (Mohan et al., 2019). We have used this system as
a test case to assess the ability of Elfin UI to rapidly design models
for alternative geometries and increased valency through manual
module placement.

The first design has been generated by choosing a central
tetrameric hub, extending it progressively, and ending with an
ankyrin module that hosts the EpoR ligand, while avoiding
clashes with the receptors (Figure 7A). The second model has
been designed to provide multiple specificities. The scaffold
contains two EpoR binding sites and two protein A domains able
to bind a conserved region of a Fab antibody fragment, which
can provide additional specificity for a desired cell surface target
(Figure 7B). The designed structures are preserved after cycles of
minimization and side chain repacking.

Each design with Elfin UI required about 1 h of work,
including energy minimization and side chain repacking with
Rosetta. In the second case, the Elfin UI design was used as
a starting point for further engineering, shortening the proA
module and moving the binding site to allow the placement of
FAB in a position more compatible with multivalent binding. The
output files are provided in the Supplementary Materials.

DISCUSSION

Elfin UI is a dedicated tool for coarse-grained design of custom
protein architectures through building blocks combinations.
Modular units are connected to form a single or multiple
chains structure, depending on the modules used. The process
is much faster than other backbone building methods, but it
requires a highly curated database containing already all the
possible pairs of modules in the correct orientation. Because
of the nature of the database, interfaces between modules are
already defined and further sequence design is not needed,
contributing to improve the design speed, both in terms of
automated solutions and feedback to users that build structures
interactively. However, repacking and energy minimization are
recommended to eliminate small discrepancies at the connection
points between modules. External software tools (e.g. Rosetta) are
required for modifications at atomic level, including repacking,
energy minimization and point mutations.

Elfin UI represents a new type of interactive design software
for protein design. While other tools traditionally operate directly
on atomic models, Elfin UI allows the user to act at a higher
level, enabling a rapid design for a desired shape which is
not arbitrary, but it is connected to the information in the
module database. Quality, size and fit to the design task of the

database are key factors for successful designs. The precomputed
database is one of the factors influencing design speed, together
with the visualization of our modules, which are represented
by rigid meshes, appearing in blender as full-fledged secondary
structures. Moreover, all calculations (e.g., collision detection,
partial overlap, distance) are performed with each module
considered as a sphere with defined radius, therefore drastically
reducing the computational costs.

This setup allows for rapid prototyping of potential
structures of interest, exploring sequences with different
lengths and shape. The option to generate custom databases
allows for greater flexibility in cases where only specific
types of modules could be used, e.g., peptide or protein
binding domains.

Elfin UI’s intuitive approach makes protein design of novel
protein structures, and in particular large custom scaffolds,
accessible to non-experts and to the general public, and
represents a new educational and outreach tool.

Precise and reliable design of biological systems is one of the
goals of synthetic biology. With Elfin, custom structures with
functional domains in specific positions and orientations can be
easily and rapidly designed, bringing proteins into the realm of
DNA nanotechnology.
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