
fbioe-08-570692 September 6, 2020 Time: 20:44 # 1

REVIEW
published: 08 September 2020

doi: 10.3389/fbioe.2020.570692

Edited by:
Maria Lurdes Pinto,

University of Trás-os-Montes and Alto
Douro, Portugal

Reviewed by:
Byron Caughey,

Rocky Mountain Laboratories (NIAID),
United States

Vincent Beringue,
Institut National de Recherche pour

l’Agriculture, l’Alimentation et
l’Environnement (INRAE), France

*Correspondence:
Jose A. del Rio

jadelrio@ibecbarcelona.eu;
jadelrio@ub.edu

Isidre Ferrer
8082ifa@gmail.com

Specialty section:
This article was submitted to

Biosafety and Biosecurity,
a section of the journal

Frontiers in Bioengineering and
Biotechnology

Received: 08 June 2020
Accepted: 18 August 2020

Published: 08 September 2020

Citation:
del Rio JA and Ferrer I (2020)

Potential of Microfluidics
and Lab-on-Chip Platforms
to Improve Understanding

of “prion-like” Protein Assembly
and Behavior.

Front. Bioeng. Biotechnol. 8:570692.
doi: 10.3389/fbioe.2020.570692

Potential of Microfluidics and
Lab-on-Chip Platforms to Improve
Understanding of “prion-like” Protein
Assembly and Behavior
Jose A. del Rio1,2,3,4* and Isidre Ferrer3,4,5,6,7*

1 Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona Institute of Science
and Technology, Barcelona, Spain, 2 Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University
of Barcelona, Barcelona, Spain, 3 Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned),
Barcelona, Spain, 4 Institute of Neuroscience, University of Barcelona, Barcelona, Spain, 5 Department of Pathology
and Experimental Therapeutics, University of Barcelona, Barcelona, Spain, 6 Bellvitge University Hospital, Hospitalet
de Llobregat, Barcelona, Spain, 7 Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona,
Spain

Human aging is accompanied by a relevant increase in age-associated chronic
pathologies, including neurodegenerative and metabolic diseases. The appearance and
evolution of numerous neurodegenerative diseases is paralleled by the appearance
of intracellular and extracellular accumulation of misfolded proteins in affected brains.
In addition, recent evidence suggests that most of these amyloid proteins can
behave and propagate among neural cells similarly to infective prions. In order to
improve understanding of the seeding and spreading processes of these “prion-
like” amyloids, microfluidics and 3D lab-on-chip approaches have been developed
as highly valuable tools. These techniques allow us to monitor changes in cellular
and molecular processes responsible for amyloid seeding and cell spreading and their
parallel effects in neural physiology. Their compatibility with new optical and biochemical
techniques and their relative availability have increased interest in them and in their
use in numerous laboratories. In addition, recent advances in stem cell research in
combination with microfluidic platforms have opened new humanized in vitro models
for myriad neurodegenerative diseases affecting different cellular targets of the vascular,
muscular, and nervous systems, and glial cells. These new platforms help reduce the
use of animal experimentation. They are more reproducible and represent a potential
alternative to classical approaches to understanding neurodegeneration. In this review,
we summarize recent progress in neurobiological research in “prion-like” protein using
microfluidic and 3D lab-on-chip approaches. These approaches are driven by various
fields, including chemistry, biochemistry, and cell biology, and they serve to facilitate
the development of more precise human brain models for basic mechanistic studies of
cell-to-cell interactions and drug discovery.
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INTRODUCTION

The formation of β-sheet enriched misfolded protein aggregates
(also termed amyloids) via self-assembly of proteins or
polypeptides, with intrinsic or induced amyloidogenic properties,
is the hallmark of numerous protein misfolding diseases (PMD)
affecting humans (Greenfield et al., 2008). These include
neural diseases such as Alzheimer’s disease (AD), Parkinson’s
disease (PD), multiple system atrophy (MSA), amyotrophic
lateral sclerosis (ALS), and prionopathies [i.e., Creutzfeldt–Jakob
disease (CJD)], as well as non-neural diseases such as pancreatic
amyloidosis, systemic amyloidosis, and type II diabetes, among
others (see Skinner et al., 2005; Ramirez-Alvarado et al., 2010;
Sigurdsson et al., 2012; Otzen, 2013 for references). For several
years, considerable effort has been made to uncover the molecular
basis of the aggregation process and the different strains of
specific amyloids with aggregative and infective properties. As
a recent example of this interest, a published study of R.
Nonno’s lab reveals that a small autocatalytic, but non-fibrillar,
7 kDa fragment of the pathogenic prion currently observed in
Gerstmann-Sträussler-Scheinker disease (GSS) patients is also
infective (Vanni et al., 2020). In fact, all these studies share as
their goal the development of appropriate and specific methods
to inhibit their aggregation in real biosafety and clinical scenarios
(Giles et al., 2017).

Focusing on neuronal PMDs, several assays for amyloid
detection, aggregation, and amplification have been developed
in recent years to address the demand for reliable and sensitive
in vitro detection of the various amyloid species (from oligomers
to fibrils) in human samples. These procedures are mainly based
on detecting the presence or monitoring the self-aggregation
process of pathogenic amyloids using in situ or ex situ
approaches. In situ assays are straightforward but they require
direct introduction of probe molecules into the aggregation assay
and in some cases interference in the process can be observed.
Interference of the aggregation process by probe molecules can be
avoided in ex situ assays, where small samples of an aggregating
protein solution are extracted and diluted at specified time points
into a buffered solution containing an appropriate dye molecule.
Another alternative is to promote the amplification of very small
quantities of the active pathological species up to significantly
detectable levels, as the polymerase chain reaction (PCR) does
for nucleotides. In the first group, available techniques range
from classic fluorometric assays [i.e., Thioflavin T (ThT) (Saeed
and Fine, 1967), Congo red (Yakupova et al., 2019)], and
benzofuranone (for α-synuclein (Lengyel-Zhand et al., 2020), to
new biosensor-based methods.

In addition, alternative classical optical detection methods
for ThT staining (the most used fluorometric method) include
the use of colorimetry techniques using, among others, gold
nanoparticles (i.e., Zhou et al., 2015) or FRET methods on CdTe
quantum dots (Xia et al., 2016).

Of these, numerous electrochemical biosensing methods
based on antibodies {i.e., (Prabhulkar et al., 2012; Li et al.,
2016), aptamers (Ylera et al., 2002; Zhao et al., 2020), coupling
peptides (Li et al., 2013), and peptides with affinity regions
[e.g., for β-amyloid the PrP(95-110)] (Rushworth et al., 2014)}

were developed as reliable alternatives for conventional amyloid
detection (see also Kaushik et al., 2016; Zhang et al., 2020
for review). These offer advantages compared to conventional
methods due to their portability, relatively easy handling,
and greater sensitivity. Among the huge number of emerging
strategies, of particular interest is the application of new materials
such as graphene oxide as a reliable alternative to fluorometric
assays (e.g., ThT) to detect β-amyloid in label-free systems
(e.g., Huang H. et al., 2017). Their use allows researcher
to achieve simultaneous detection of oligomeric and fibrillar
structures in the same sample (a challenging problem in classical
fluorometric assays) and in other higher sensitivity studies,
or the recently developed electrochemical determination of β-
amyloid oligomers using a graphene and reduced graphene oxide
dual-layer biosensor (Sethi et al., 2020). These are just some
examples of the tremendous progress that has been made in
the development of sensors for detection of amyloids (mainly
β-amyloid). Readers interested in the emerging biosensors and
electrochemical detection of amyloids may obtain more details in
recent reviews (e.g., Serafin et al., 2020; Zhang et al., 2020).

A second strategy is amplification of the pathogenic amyloid
in the presence of its monomeric counterparts using biochemical
reactions, such as the protein misfolding cyclic amplification
(PMCA) method (Saborio et al., 2001; Soto et al., 2002), real-time
quaking-induced conversion (RT-QuIC) assay (Wilham et al.,
2010; Sano et al., 2018), and ASA assay (Colby et al., 2007).
These methods have evolved and have been adapted for the
reliable detection of the presence and aggregative stage of various
amyloids (i.e., Orru et al., 2017; Saijo et al., 2019) in different
biological samples (i.e., Fairfoul et al., 2016; Haley et al., 2016;
Bongianni et al., 2017). In parallel to these biochemical methods,
other engineering laboratories have developed ultrasensitive
methods based on graphene oxide and entropy-driven strand
displacement reaction (ESDR) with LOD of 20 pM (Zhou et al.,
2018), or graphene field-effect transistor (G-FET) for β-amyloid
formation (Kuo et al., 2018). Unfortunately, these methods are
not currently used in patient-derived studies.

Neurodegenerative progression in PMDs runs in parallel
with disease-specific characteristic intra- or extra-cellular
accumulation of misfolded amyloids. In fact, cellular, molecular,
biophysical, and biochemical studies have revealed that most
PMDs are progressive disorders, and that amyloid-associated
pathologies spread from diseased to healthy cells affecting
different brain areas in a sequential basis (see Costanzo and
Zurzolo, 2013; Goedert et al., 2017; Holmes and Diamond, 2017;
Del Rio et al., 2018; Vilette et al., 2018; Meisl et al., 2020; Peng
et al., 2020 for reviews). The spatiotemporal progression of
these diseases seems to correlate, with some controversy (see
below), with the brain propagation of the amyloid-associated
neuropathology between anatomical pathways specific to each
disorder, suggesting a cell-to-cell spreading of the disease (Saper
et al., 1987; Bertrand et al., 2004; Braak and Del Tredici, 2009;
Costanzo and Zurzolo, 2013; Goedert et al., 2017; Peng et al.,
2020; Figure 1). However, this “connectome” view of the seeding
and progression of the amyloid accumulation between connected
areas is under debate for some PMDs [i.e., PD, please see
Surmeier et al. (2017) for review]. In PD, when comparing the
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FIGURE 1 | Scheme illustrating the different spreading pathways of a “hypothetical” pathogenic seed between different cells. Five different means of transmission are
illustrated: (i) from exosomes or multivesicular bodies, (ii) direct internalization by interacting with plasma membranes, (iii) endocytosis or micropinocytosis processes,
(iv) transsynaptic transmission and tunneling nanotubules, and (v) receptor-mediated uptake of the amyloid.

appearance and progression of the Lewy pathology in affected
individuals with experimental mouse models of the disease,
it seems to correlate better with cell- or region-autonomous
mechanisms rather than connectivity (Surmeier et al., 2017).
Nevertheless, several routes of inter-cellular amyloid spreading
have been proposed such us membrane binding, receptor-
mediated, and non-mediated endocytosis (i.e., Holmes et al.,
2013; Mao et al., 2016; Aulic et al., 2017; Urrea et al., 2018; Rauch
et al., 2020), multivesicular bodies (i.e., exosomes) (Sardar Sinha
et al., 2018; Perez et al., 2019; Winston et al., 2019), or tunneling
nanotubes (TNTs) (Costanzo and Zurzolo, 2013; Abounit
et al., 2016; Zeinabad et al., 2016; Peng et al., 2020; Figure 1).
Understanding the intercellular formation and transmission of
these amyloids, also termed “pathogenic seeds” in some studies,
has become a challenging issue in recent years (i.e., Vilette et al.,
2018; Erana, 2019; Peng et al., 2020). Relevantly, the participation
of neurons, astroglia, and oligodendrocytes also displaying
insoluble amyloid inclusions in particular neurodegenerative

diseases during seeding and spreading is still unknown and
warrants further study (i.e., Kovacs et al., 2017; Ferrer, 2018).

In addition, considering the evidence demonstrating the
ability of these amyloids to disseminate protein misfolding as
“pathologic seeds” from sick to healthy cells, a “prion-like” or
“prionoid” hypothesis has been proposed (Ashe and Aguzzi,
2013; Aguzzi and Lakkaraju, 2016; Collinge, 2016; Woerman
et al., 2018). Indeed, cell-spread of amyloid seeds can act as a
self-propagating template disrupting cell viability and leading
to both the death of recipient cells and the progression of the
neurodegenerative disorder (Ashe and Aguzzi, 2013; Aguzzi and
Lakkaraju, 2016; Collinge, 2016; Holmes and Diamond, 2017).
However, some criticisms appeared with this terminology [i.e.,
for tau (Polanco and Gotz, 2015), β-amyloid (Watts and Prusiner,
2018), and MSA-derived α-synuclein (Woerman et al., 2020)].
We suggest to the reader interested in this topic examining the
reports of Castilla’s and Requena’s laboratories (i.e., Castilla and
Requena, 2015; Erana et al., 2017) and the recent review of

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 September 2020 | Volume 8 | Article 570692

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-570692 September 6, 2020 Time: 20:44 # 4

del Rio and Ferrer Lab-on-Chip Devices for Amyloid Research

Wells et al. (2019). In fact, prion diseases (e.g., CJD) are the only
neurodegenerative disorders showing an infectious transmissible
protein species, the pathogenic prion, capable of recapitulating
a clinical disease (e.g., Prusiner, 1998a,b; Moore et al., 2009).
Moreover, the prion strain also plays a crucial role in dictating
the type (i.e., punctate vs. plaques) and anatomical distribution
of the lesions of pathogenic PrP deposition in affected brains (see
for example Fraser and Dickinson, 1973; Lasmezas et al., 1996;
Scialo et al., 2019 for a recent review).

In this challenging scenario, microfluidics and lab-on-chip
(LOC) technologies have emerged in the last 15–20 years
as a plausible strategy to monitor some aspects of amyloid
aggregation and amyloid-biological interactions, as well as
a being a valuable, reproducible tool to analyze cell-to-cell
seeding and spreading of pathogenic seeds from “prion-like”
or “prionoid” proteins (Aguzzi and Rajendran, 2009; Scheckel
and Aguzzi, 2018). In fact, the use of microfluidics and LOC
technology has extended from technical fields (i.e., engineering,
physics, and electronics) into a wide variety of biomedical
scientific fields including pharmacology, oncology, immunology,
and neurobiology.

An Overview of Microfluidics and
Lab-on-Chip (LOC) Platforms
Microfluidics platforms are devices containing microchannels
with a height/width scale between 100 nm and 100 µm (Tabeling,
2005; Folch i Folch, 2013). Although for neuroscience, pioneer
microfluidic studies were developed by Campenot (1977, 1982),
(see also Taylor and Jeon, 2010; Neto et al., 2016 for reviews),
from the electronics point of view, its origins begin in parallel
to microelectronics by micro-fabrication techniques from the
semiconductor industry in the 1970s and 1980s (please see
Tabeling, 2005). After this, in the 1990s the concept of µTAS
(miniaturized total chemical analysis systems) was developed
to describe a microfluidic platform that could carry out all the
functions required for analysis of an analyte: sample preparation
including transport, and chemical reactions as well as selective
analyte detection. From this, in terms of manufacture, terms
like MEMs (microelectromechanical systems) and LOC devices
emerged in the microelectronics and biomedical fields (Folch
i Folch, 2013). As indicated in the introduction, LOC might
include biosensors/electrochemical/optochemical sensors that
have been developed in recent years. In fact, there is a parallel
development of the complexity of the LOC devices (i.e., in terms
of manufacture) directed to amyloid screening and monitoring
with the development of new detection methods.

Today, although with some exceptions (Kamande et al.,
2019), the vast majority of microfluidic LOC devices utilized
in neurobiology are generated using the silicone elastomer
polydimethyl-siloxane (PDMS) (McDonald et al., 2000;
McDonald and Whitesides, 2002; Ng et al., 2002; Kuncova-
Kallio and Kallio, 2006). PDMS is an economically cheap,
biocompatible, soft, flexible, and easy-to-handle elastomer, with
an index of refraction of 1.43 (similar to a glass coverslip ≈1.52),
and good gas diffusion. Relevant electrical and thermal isolation
are highly suitable for biological research (i.e., cell culture) and

fluorescent microscopy (McDonald et al., 2000; McDonald and
Whitesides, 2002; Ng et al., 2002; Kuncova-Kallio and Kallio,
2006). This new PDMS-based microfluidic application using
the elastomer directing microfluidic, micropatterning, and
microfabrication technologies to neurobiological experiments
was developed 2003–2006 by Jeon’s lab (Taylor et al., 2003, 2005;
Rhee et al., 2005; Park et al., 2006) with great development in
recent years (see Neto et al., 2016 for review). These pioneer
studies follow the experiments of Campenot (1977, 1982) in
generating a simple, reproducible, and tunable culture platform
for compartmentalized neural growth and differentiation.
Most of the experiments designed to explore the cell dynamics
of different amyloids are currently based on their pioneer
microfluidic designs.

PDMS-based manufacture of LOC devices is mainly based on
“soft-lithography” protocols (McDonald et al., 2000; Whitesides
et al., 2001). Today, PDMS manufacture has evolved to multilayer
LOCs as well as more complex platforms. In fact, due to their
physical characteristics, different PDMS microfluidic chips can
be bounded using plasma reactions (Tran H. T. et al., 2014)
to generate multilayered LOCs (i.e., Saar et al., 2016). In fact,
some of these multilayered LOCs are used today to analyze
amyloid formation ex situ (i.e., Saar et al., 2016). Additional
methods ranging from hot-embossing lithography (Jeon et al.,
2011) to 3D printing methods (Au et al., 2016) have been
developed to generate new LOC devices. Readers may obtain
more information about LOC platform manufacturing strategies
in reference microfabrication books (Minteer, 2006; Herold and
Rasooly, 2009; Lee and Sundararajan, 2010; Folch i Folch, 2013).
In this review we will focus on the PDMS-derived LOC devices
with the greatest impact on the study of amyloids associated with
neurodegeneration.

Why Use LOC Devices and Microfluidics
in Amyloid-Related Studies?
Microfluidics and LOC devices hold a number of advantages for
amyloid-related research at different levels: (1) most LOC devices
reduce the use of reagents due to small reaction volumes; (2) some
LOC devices can produce a large number of independent but
repetitive compartments to allow protein-protein interactions
(i.e., micro/nanodroplets, see below); (3) in most LOC platforms
we have complete control over spatial and temporal parameters
in the reaction conditions; (4) most LOC devices are compatible
with several detection methods (i.e., optical or electrical sensors);
and (5) some LOC devices allow for the differential culture
of different cell types (i.e., neurons, astroglia, oligodendroglia,
microglia, etc.) in the same platform in an interactive way –
for example in: (i) microfluidically isolated chambers, (ii) cells
growing on molecular or chemical gradients, (iii) cells growing
under flows, and (iv) cells growing inside 3D structures [cellular
aggregation (i.e., neurospheres, neurospheroids, and organoids)
or biomaterial-derived scaffolds].

In the large bibliography focused on microfluidics with more
than 3000 published reviews reported in PubmedTM, we will
focus in this review on first describing the use of LOC platforms
to monitor amyloid seeding and aggregation, and second whether
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LOCs help researchers understand cell-to-cell amyloid spreading
and how LOC devices can help us analyze amyloid effects in
neural network physiology. However, in order to understand
their potential, first we will broadly summarize the most basic
physical concepts of microfluidics that play crucial roles in
the design of some of the approaches and devices that will
then be further described. In addition, some specific references
are included for those readers interested in particular aspects
of microfluidics.

Some Basic Physical Concepts in
Microfluidics
In biotechnology and bioengineering, microfluidics and LOC
are present in various forms depending on the application
and end use. The most usual form is single-phase microflows
inside channels or capillary tubes. This is the typical case of
a physiological buffer or a culture medium that contains a
molecule or analyte that should be detected or analyzed using
an LOC device. However, for different studies we need to use
multiphase flows. This implies the use of two different non-
miscible fluids (for example in micro/nanodroplet formation
or cell encapsulation). However, in both single and multiphase
flows, fluids are often moved by applying hydraulic pressure to
the fluid inside the channel/s depending on the LOC design.
In some cases, the applied force is a gravitational force but
in other cases syringe pumps are used to move the fluid. In
order to understand fluid dynamics in single-phase microflows
inside small microchannels, first we need to focus our attention
briefly on their behavior. In microfluidics one of the most
frequently used key values is the Reynolds number (Re). This is
a dimensionless number expressed as a function of the density of
the fluid (ρ), the velocity of the fluid inside the channel (u), the
length of the channel (L), and the dynamic viscosity of the fluid
(η)

Re =
ρuL
η

At the microscale (as happens in most LOC devices) the Re
number is very low and the fluids behave like a laminar non-
turbulent fluid. In fact, very few microfluidic devices used
turbulent flows (with Re values > 2,000), but a differential range
of fluid flows can be used in a laminar regime. Those microflows
that show an Re value <0.5 follow the multiparametric Navier-
Stokes formulation (see Tabeling, 2005; Bruus, 2008 for details).
In these cases, aqueous fluids are considered Newtonian fluids
which belong to the category of incompressible, uniform,
and viscous fluids. However, for micro/nanodroplet or digital
microdroplet approaches (see below) the use of two fluids (water
and oil) with different behaviors is typical. In these cases, the
LOC device can use non-Newtonian fluids that do not follow
the formulation below. We refer the reader to classical reference
books for specific formulation for non-Newtonian fluids (i.e.,
Böhme, 1987; Bruus, 2008; Berthier and Silberzan, 2010).

In addition to the Reynolds number, the interfacial tension
also plays a role. It states the elastic tendency of a fluid in a surface
to contract the surface-air interface in order to reduce its free
energy (Sackmann et al., 2014). Interfacial tension is relevant in

two immiscible fluids. In this situation and at this scale, interfacial
tension dominates the gravitational force (Sackmann et al., 2014).
Another dimensionless number is the capillary number. This
number compares surface tension forces with viscous forces.
Where σ is the interfacial tension, u is the velocity and η is the
viscosity.

Ca =
η u
σ

In addition to these values, the Bond number or the Weber
number are also described. We refer the reader to Tabeling
(2005), Bruus (2008), and Grimmer and Wille (2020) for more
details. The factors are relevant for droplet formation. In this
review we will consider the droplet formation in a T-junction
system in detail (Figure 2; Teh et al., 2008). The reader can obtain
current information on droplet LOC designs in Grimmer and
Wille (2020). In the scheme, the fluid flows are determined as
Qc and Qd and the dimension of the channels Wd and Wc. In
this LOC, the Ca is one of the most important parameters in
droplet generation. For example, when the Ca number is low, the
incoming dispersed phase fluid tends to occupy the full section of
the channel and droplet formation occurs at the downstream side
of the T-junction corner. However, if Ca is higher the dispersed
phase fluid occupies only a part of the channel and smaller
droplets are formed. Practically, when a droplet is generated it
continues to grow for a time tn for necking due to the continuous
injection of the dispersed phase fluid. At the end, the final droplet
volume V can be predicted (in an easiest vision) with this scaling
law.

V = Vc+ tnQd

Where Vc depends on Ca and the duration of necking tn and
decreases as Ca increases. Another relevant factor in droplet
formation is the flow rate radio Q (Q = Qd/Qc) (from dispersed
and C for continuous phases). For example, for small Q the
droplet is pinched off at the T-junction corner regardless of the
Ca number. However, for large Q, increasing Ca will force the
detachment point to move from the corner downstream. Due
to the large surface-to-volume ratio, fluid/surface interactions
largely affect droplet dynamics in the microchannels. In parallel,
the presence of the droplet changes the hydrofluidic resistance
of the microchannel. If fact, we can assume that the overall flow
resistance of a channel can be estimated by:

R∗ = R+ n Rd

Where R is the resistance of the channel, n is the number
of droplets inside the channel, and Rd is the single droplet
resistance. The value of Rd has been studied in several reports
and is dependent of several factors such as the viscosity of the
dispersed phase and the continuous phase, and the length of
the droplet, as well as the geometry of the microchannel (see
below). Considering these parameters today we can generate
microdroplets for amyloid aggregation in micro/nanodroplets in
a controlled space.

For non-bioengineering researchers, and considering
Newtonian fluids, the third relevant aspect is that following
microfluidic rules, we can correlate the behavior of a pressure-
driven microfluidic laminar flow inside a channel with Ohm’s law
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FIGURE 2 | Scheme illustrating micro/nanodroplet formation in a classical T-junction LOC. Please see the main text for details concerning the Q and W values. In
this configuration, the dispersed phase is pumped into the continuous phase orthogonally. As the dispersed phase enters the continuous, shear forces elongate the
head of the dispersed phase until a segment eventually separates and relaxes into a sphere or plug shape as a result of interfacial tension.

of electricity (R = V/I). Thus, the ratio of the fluid pressure (P)≈
V (voltage) and the volumetric fluid flow rate Q is the electrical
current I (Figure 2). This occurs since under laminar flow, the
pressure drop inside the microchannel is proportional to the flow
rate: 1P = RQ*Q. The hydraulic resistance RQ (also termed RH
in some references) is dependent on microchannel geometry: the
cross-section area (s) but also the length (L) of the microchannel.
Thus, for an arbitrary section of the microchannel (with equal x
and y dimensions) the value of RQ may be expressed as follows:

RQ = 2 µ L
p2

s2

Where µ is the dynamic viscosity of the fluid and p is the
perimeter of the microchannel. Thus, in this situation the Hagen-
Poiseuille equation can be used in a channel with circular section
to determine the 1P as follows (reviewed in Shah and London,
1978):

1P = RQ Q =
8µL
πr4 Q

In the case of a channel with square section [height (h) = width
(w)] or rectangular section (when w/h > 1), the hydraulic
resistance of the channel (RQ) can be calculated respectively as
follows (see Grimmer and Wille, 2020 for details):

RQ =
28.3 µ L

h2 and RQ ≈
a µ L
w h3

where a denotes (in rectangular section) a dimensionless
parameter defined as

a = 12
[

1−
192 h
π5 w

tanh
(π w

2 h

)]− 1

However, in a presence of a droplet (see above) the resistance of
the microchannel dynamically changes. In fact, the values for the
Rd of the droplet are described by this formulation

Rd = (µd − µcont)
Ld a
w h3

Where Ld is the length of the droplet, µd the viscosity of the
dispersed phase, and µcont the viscosity of the continuous phase
and the other parameters described above. Consider that the
Hagen-Poiseuille law is similar to Ohm’s law (see above). Thus,
these calculations are very useful to modulate and determine
flow, pressures, and channel geometry as well as to simulate the
behavior of our microfluidic flows (i.e., culture media, droplet
formation) inside a particular LOC. As examples, we will describe
two different microfluidic devices with wide use in neurobiology
using correlative microfluidics as well as electric circuit modeling
(please see Oh et al., 2012 and Robertson et al., 2014 for
additional details).

The Hydrodynamic Focusing/Mixing LOC Device
Hydrodynamic focusing is a method to control continuous
flow for solution mixing of fluids or droplets. The basis is
the formation by confining fluid streams or flows to small
geometries or microchannels. The main advantage of this strategy
is the achievement of very short complete mixing times while
maintaining a highly controllable system which can be precisely
modeled. In the basic system (Figure 3A), there are three inlet
streams: one central stream to be focused and two streams that
converge perpendicularly on the central stream (Figures 3A–C).
In the example, we consider, in Figure 3B, the electric model
in which the section of all channels is identical (α) and the
value β is the distance between the reference point P0 and the
end of the mixing channel. Following Kirchhoff’s two laws, we
can approximately define the Wf size in the mixing channel by
applying the following equation based in fluid dynamics:

Wf
W
=

1
g (λ)

Q1
Q1+ Q2+ Q3

where g (λ) is a factor depending on the aspect ratio of the
channel h/W, h being the height and W the weight of the
microchannel, if h <<< W; λ −> 0, but more commonly
h <1 and the formula is more complex (please see Berthier
and Silberzan, 2006; Rodriguez-Villarreal et al., 2010 for details).
Alternatively, and as first described by Knight et al. (1998),
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FIGURE 3 | Examples of LOC devices and microfluidic platforms. Microfluidic hydrofluidic mixing device (A–C) and compartmentalized LOC device (D–F). For each
device, the correlative fluidic and electric model is included. In (C,F), we provide two examples of the generation of hydrodynamic focusing (C) and the growth of
axons labeled with CalceinTM. The two different compartments are labeled with * and # in (D–F). Please see manuscript section “Some Basic Physical Concepts in
Microfluidics” for details of the correlation between fluidics laws and electric laws in LOC devices.

considering Ohm’s law and the electric model (Figure 3B), the
summary of the calculation is the following:

r =
Ps
P
=

βQ1+ (2β+ 1) Q2
(β+ α) Q1+ 2βQ2

and Wf =
1+ 2β− 2βr

1+ 2αr

Thus, using these parameters we can control the interaction
between two different fluids by modulating Q1 and Q2. In fact,
this was used in a large number of experiments (see Kirby,
2010; Badilescu and Packirisamy, 2011 for reference books). In
a laminar flow regime mixing only occurs by diffusion. Thus, the
mixing of the analytes depends only on their intrinsic diffusion
coefficient (see Arter et al., 2020 for a recent review). After this,
the diffusion parameters of the different elements (i.e., oligomers)
can be controlled and analyzed during amyloid aggregation. In
fact, these systems can also include several detection systems
such as electrodes (stimulating or recording) as well as optical
measurement. In this respect, the Peclét number (Pe) describes
the relative rates of molecular convection relative to diffusion.
Classically, the LOCs retain large values of Pe to prevent complete
diffusional mixing over the timescale. Thus, LOCs are well
suited to the study of protein-protein interactions. Typically,
this is achieved through quantification of changes in the size
or charge of proteins and complexes as they participate in

the interaction. Due to the above-mentioned basis, the mixing
rate of analytes under microfluidic flow can be measured by
analyzing their diffusion coefficient and the hydrodynamic ratios
of the biomolecules. With these approaches, the diffusion of
α-synuclein (Zhang Y. et al., 2016) and β-amyloid (Scheidt
et al., 2019) were analyzed. However, and as an alternative,
these experiments have also been developed in droplets from
fento to nanoliter volumes. These droplets can be generated
at different frequencies (from 0.1 to 1 MHz). In contrast to
bulk-phase studies in which aggregation reactions are dominated
by secondary effects that rapidly amplify the rate of protein
misfolding, masking primary nucleation events (i.e., Knowles
et al., 2009), in LOCs droplets single nucleation events can be
observed on a drop-by-drop basis, an approach that also enables
observation of the spatial and temporal propagation of some
fibrillar proteins (e.g., insulin; Knowles et al., 2011; Pfammatter
et al., 2017).

Compartmentalized Cell Culture With Microchannels
Growing Under Microfluidic Isolation in Two or More
Chambers
This microfluidic device was developed to culture two or more
different cell types (Figure 3D). In fact, their original goal was to
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compartmentalize cultured neurons in order to microfluidically
isolate the somato-dendritic domain from the axonal domain for
axonal RNA isolation for axotomy purposes (Figure 3D). This
was achieved by using four open chambers with two channels
that were interconnected by a variable number of microchannels
(up to ∼100). These microchannels showed (in the original
model) a small rectangular section with a high fluidic resistance
due to its length. This largely reduced the fluidic flow between
the two chambers. A more detailed description of the original
microfluidic device can be found in Taylor et al. (2005). In order
to isolate axons, although depending on the cultured neuron,
the length of the microchannels should be more than 400–450
µm since dendrites or immature neurites are able to enter inside
microchannels, but for cortical neurons, they only extend for a
distance ≈150–250 µm in contrast to growing axons that might
extend for distances longer than 1 mm inside the microchannels
(Taylor et al., 2005; Figure 3F). Taking into account Ohm’s law,
Robertson et al. (2014) developed an electric model of the device
(Figures 3D,E). With this, we can model the volumetric transport
of the media between the different chambers. In the modeled
LOC device, the platform contains a network of resistances
RA−C, linking four chambers C1-C4 (currently of 7–8 mm ∅).
Considering the volume of each chamber (acting as an electronic
capacitator), the hydrodynamic pressures (electrical voltage) and
the volumetric flow rates (electric current) can be predicted over
time as follows:

V (t) = 1V
2

(
1− e−

2t
RC

)
and P(t) = R dV

dt

where the flow rate V(t) is the differential volume between
wells over time and P(t) is the differential hydrostatic pressure
between wells over time. Depending on the values of C and
R and the initial conditions of volume of each chamber, the
time constant t = RC/2 provides us data to estimate the rate of
change of the hydraulic pressure, and consequently allows us to
estimate the time needed to reach a volume equilibrium in the
chambers of the LOC device. In addition, this procedure is a
very useful tool during device design, empowering optimization
of the relationship between the assay to be performed and
design of the microchannel geometry (i.e., length, cross-sectional
dimensions, etc.) (Robertson et al., 2014). On a practical basis,
we can modulate the volume of each chamber to generate
small but controlled media flows that will impair, in parallel
with the fluidic resistance inside the small microchannels, the
unwanted diffusion of a putative analyte or amyloid through
the medium based on a differential concentration. This will be
very useful to determine cell-to-cell prion/amyloid transmission;
furthermore, we can determine whether an amyloid is taken up
by specific domains of the healthy or unhealthy neuron or glial
cell (see below). From the numerical data evaluation, the authors
analyzed two putative configurations (flow paths): a pressure
gradient between wells connecting a culture chamber (i.e., C2
and C3) and a pressure gradient across the microchannels. Using
these numerical simulation, the estimated time constants for the
pressure to equilibrate were 189 s across each chamber (tB) and
39,956 s across the microchannels (tC), respectively (Robertson
et al., 2014). As tC is two orders of magnitude greater than tB,

the two chambers can be considered fluidically isolated over short
periods of time. However, the authors do not provide additional
data concerning longer times. This is usually solved by increasing
the volume of the culture medium in one part of the device with
respect to the other. Another relevant aspect in these LOCs is the
maintenance and survival of cultured cells. In our experience, we
were unable to maintain cultured neurons for more than 20 days.
This impairs a putative long-term experiment on infectivity
and only specific processes can be analyzed. Furthermore, this
limits the use of induced pluripotent stem cells (IPSc), with
large differentiation protocols, in these devices. In order to
avoid this, pre-differentiated neurospheroids are currently used
in similar LOCs and some of these are commercially available
(Osaki et al., 2020).

AMYLOID AGGREGATION STUDIES IN
LOC DEVICES

Although most amyloid species were initially identified within
the context of neurodegenerative diseases and their transmission
(see Peng et al., 2020 for a recent review), several proteins have
also been found to form amyloid-like fibrils [e.g., islet amyloid
polypeptide (amylin) (Zheng et al., 2020) or insulin (Zheng
et al., 2020)] outside the nervous system. Furthermore, increasing
evidence has pointed toward amyloid formation being a generic
self-aggregation property of proteins and polypeptide chains,
with many polymeric species having been identified during the
process (see Morris et al., 2009 for review). In fact, a key aspect
in evaluating the aggregation kinetics of biomolecular species is
the ability to monitor fibrillar growth as a function of time (see
above). The monitoring of this process can be developed in LOC
[e.g., in hydrodynamic focusing systems (i.e., Fitzpatrick et al.,
2013; Arosio et al., 2016)], or using electrophoretic approaches in
these systems (i.e., Saar et al., 2018).

However, it is well-known that the amyloid aggregation
process is largely dependent on the interaction of the protein
with several ions (i.e., Kim et al., 2018; Metrick et al., 2019),
membranes (i.e., Terakawa et al., 2018; Alghrably et al., 2019),
and other surfaces (e.g., water; Schladitz et al., 1999). Thus,
researchers used different methods to avoid or control these
in some cases unwanted interactions. One of the most widely
used methods is the aggregation study inside micelles or
micro/nanodroplets (water-oil) of different proteins (i.e., Shim
et al., 2007; Teh et al., 2008; Casadevall i Solvas et al.,
2012; Shembekar et al., 2016; Figure 4). Using microdroplets,
many independent reactions can be monitored simultaneously
in identical volumes which are several orders of magnitude
smaller than what has been common in biochemical assays.
On a practical level, the formation of the droplets, mainly by
microfluidic focusing devices, is followed by their harvesting
and maintenance, trapped or retained in reaction chambers
to be further analyzed (i.e., Shim et al., 2007; Teh et al.,
2008; Casadevall i Solvas et al., 2012; Shembekar et al., 2016;
Figure 4B). In these cases (especially for sessile droplets exposed
to air) (Casadevall i Solvas et al., 2012), the decrease in droplet
volume over time due to the evaporation of water molecules
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FIGURE 4 | Scheme of three different approaches to analyzing amyloid formation under fluidic flow. In (A), the micro/nanodroplet formation (water-oil) is illustrated. In
(B) a mixing LOC device is illustrated, and in (C) the use of FRET derived protein sensors to monitor protein-protein interaction is illustrated. In each example, the
presence of the dye (usually ThT) is displayed.

increases the analyte/protein concentration inside the generated
droplet, thereby increasing protein-protein interaction and, more
relevantly, amplifying signal(s) associated with the aggregation
that can be monitored with several methods, including Förster
resonance energy transfer (FRET) (Figure 4). Other alternatives
to enhance the process of reduction of the microdroplet volume
using PDMS-derived microflows to enhance the reactions were
also recently reported (i.e., DroMiCo; Kopp et al., 2020). This
recently published method generates and traps the microdroplets,
the aqueous flow rate is stopped in the LOC, and the oil flow rate
is kept minimal at 2 µL/min to accelerate droplet shrinking and
prevent entry of air into the device, in order to further analysis.

In fact, amyloid fibril formation typically displays sigmoidal
growth kinetics (i.e., Ferrone et al., 1985; Knowles et al.,
2009; Morris et al., 2009; Prusiner, 2017). Indeed, changes
in the aggregation of fibrils make up a three-phase curve
that can be monitored easily using ThT-fluorescence or,
depending on the protein sequence, intrinsic amino-acidic
residues (i.e., tryptophan) with particular fluorescence properties
after aggregation (i.e., Knowles et al., 2009; Meisl et al., 2016;
Toprakcioglu et al., 2019). In current aggregation kinetics,
the first stage is a “lag-phase” also termed “nucleation-phase”
displaying a very small increase in the amount of fluorescence
over time (i.e., Arosio et al., 2015), followed by a fast-growing
phase and the last phase or “steady state” equilibrium with

higher fluorescence values. However, we should consider that
this is a dynamic process that includes fibrillar fragmentation,
nucleation, and other processes during all the phases. In fact, the
duration of the “lag-phase” is highly dependent not only on the
monomer concentration and seed formation, but also on physical
parameters as well as the presence of molecular chaperones. For
example, when sarkosyl-insoluble fractions from AD patients or
other tauopathies are analyzed in bulk experiments, the lag-phase
cannot be clearly distinguished due to the high concentration
of preformed fibrils and “amyloid seeds” (i.e., Ferrer et al.,
2020b) in the sample and the curve is almost logarithmic. In
fact, the time evolution of the “lag-phase” is also of interest
for the characterization of some amyloids (i.e., MSA-derived
synuclein vs. PD-derived synuclein) with different seeding as
well as propagative properties (i.e., Shahnawaz et al., 2020).
Additionally, in most studies the molecular events that occur in
this “lag-phase” of amyloid formation are not fully ascertained
using classical analytical methods. However, LOC devices and
microdroplet formation were very useful in describing, in greater
detail, the sequential events during this fibril formation for
different amyloids (i.e., Aβ; Arosio et al., 2014), silk fibroin, β-
lactoglobulin, lysozyme (Toprakcioglu et al., 2019), human islet
amyloid polypeptide (Marek et al., 2010), and sickle hemoglobin
(Ferrone et al., 1985). In fact, the events that occur during
this lag-phase are of special interest in the effort to understand

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 9 September 2020 | Volume 8 | Article 570692

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-570692 September 6, 2020 Time: 20:44 # 10

del Rio and Ferrer Lab-on-Chip Devices for Amyloid Research

amyloid dynamics during neurodegeneration (Orru et al., 2015;
Masujin et al., 2016).

In neurodegeneration, although with some discrepancy, it
is well-established that lower aggregative amyloid species are
more relevant species (i.e., toxic) compared to large amyloid
species in different diseases [i.e., for Aβ (Deshpande et al.,
2006; Hepler et al., 2006) and α-synuclein (Conway et al.,
2000; Winner et al., 2011; Chen and Cremades, 2018; Prots
et al., 2018)]. More relevantly, researchers aim to determine
the properties of the “propagative seeds” or “propagons” for
particular amyloids. This is a challenging question, especially
for “prion-like” proteins (Aguzzi and Lakkaraju, 2016). Over
time, classical bulk methods have been modified to match those
that include an amplification step. For example, using a new
method, Arosio et al. (2014) detected Aβ propagons in a “lag-
phase” of aggregation by sample filtration during the phase,
followed by an amplification method with fresh Aβ monomer.
This was followed by the quantification of the original propagon
concentration using a calibration curve based on controlled
seed concentration (Arosio et al., 2014). Using this method,
the authors improved by two orders of magnitude the bulk
technical approaches to allow the concentration of fibrillar
Aβ (Arosio et al., 2014). However, the recent development of
“digital microfluidics” which combines the use of microfluidics
and high-throughput biological assays (Guo et al., 2012) has
helped researchers to develop a digital amyloid quantitative
assay (d-AQuA) aimed at allowing absolute quantification
of single replicative units, the “propagons,” in the proof-of-
concept manuscript of insulin (Pfammatter et al., 2017). In
fact, the authors used a dilution method of nanodroplets with
picolitres of volume containing (or not) “propagon” molecules
that were further evaluated using ThT staining, following a
Poisson distribution probabilistic model (Pfammatter et al.,
2017). This method, although not developed for other amyloids,
is faster than currently available methods (e.g., microplate
assays) and will be of relevance for fast diagnosis of the
presence of “pathological-seeds” for different PMDs. Parallel to
these approaches, other groups have developed more automatic
methods such as the microchannel-connected multiwell plate
(µCHAMP) device (Park et al., 2016) that uses microdroplet
formation and microfluidic transport to 96-well plates. The
amount of Aβ (at a range of ≈ 10 pg/mL) is detected using a
droplet-based magnetic bead immunoassay (Park et al., 2016).
Thus, LOC devices are of relevance not only for the reduced
sample volume required, but also for automatization and high-
throughput assays of amyloid detection. In addition, recent
reports illustrate the relevance of the use of aggregation-induced
emission (AIE) dyes as a preferential strategy to identify protein
fibrillogenesis, particularly the light up characteristic associated
with binding events during the aggregation process. These dyes
feature high emission efficiency in the aggregate state, strong
photo-stability, and excellent biocompatibility (Wurthner, 2020).
Examples of their use can be found in the analysis of insulin
(Hong et al., 2012; Huang Q. et al., 2017) and of β-amyloid
aggregation (Zhang J. D. et al., 2016; Fu et al., 2019; Yang et al.,
2019). Readers may find a general survey of these techniques in
Wurthner (2020).

LOC AS TOOL TO ANALYZE
CELL-TO-CELL TRANSPORT AND
BEHAVIOR OF AMYLOIDS

As indicated above, studies of seeding and spreading of
different amyloids in vitro must be complemented by complex
cellular systems mimicking in vivo situation as well as animal
experimentation. Indeed, several groups have developed in vitro
cellular models to monitor seeding properties and their
associated effects in cell survival. However, for some amyloids
(e.g., tau) their overexpression in cells resists aggregation instead
of hyperphosphorylation, and additional methods are needed to
increase their intracellular content, avoiding phosphorylation.
One of the alternatives is a commercially available BioPORTER
QuikEase Protein Delivery Kit which can deliver active proteins
intracellularly. This method was used by Guo and Lee (2011)
to demonstrate that the seeding of normal tau induced by
pathological tau led to the formation of NFL-like structures
in treated cells (Guo and Lee, 2011). In other approaches, cell
lines overexpressing mutated protein with aggregative properties
fused with a flag (fluorescence) sequence (i.e., P301L-V5; Xu
et al., 2016) have been used for high-throughput assays of tau
aggregation. In the presence of an aggregating amyloid species
(e.g., tau) the aggregation process can be followed by analyzing
the emitted fluorescence. Some of these approaches have also
included FRET methods (Shin et al., 2019). These cellular
“biosensors,” mainly developed in HEK293 or H4 cells, have been
adapted for fluorescence detection of other amyloids such as α-
synuclein (Prusiner et al., 2015; Holmes and Diamond, 2017).
In fact, these methods are already being supported by the use
of ultra-resolution confocal microscopy (Kaminski and Kaminski
Schierle, 2016) to monitor the amyloid seeding and aggregation
processes in cell cultures at the nanoscale level. Today the use of
these biosensors is mainly focused on drug screening. However,
in a putative scenario the use of these cells in LOCs could be
of relevance in determining key factors involved in the seeding
process of amyloids (e.g., the relevance of a specific receptor
in the process).

However, as indicated, researchers aimed to determine
cell-to-cell mechanisms implicated in amyloid seeding and
spreading (see introduction). In this respect, several studies
reported using LOC devices, with two or more consecutive
chambers: Aβ (i.e., Deleglise et al., 2014; Song et al., 2014),
α-synuclein (i.e., Volpicelli-Daley et al., 2011; Freundt et al.,
2012; Brahic et al., 2016; Urrea et al., 2018; Wang et al., 2018),
tau (i.e., Wu et al., 2013; Dujardin et al., 2014; Calafate et al.,
2015; Takeda et al., 2015; Usenovic et al., 2015; Congdon
et al., 2016; Polanco et al., 2018), TDP-43 (i.e., Feiler et al.,
2015), and dipeptide repeat proteins (DPRs) of the C9orf72
gene product associated with ALS and frontotemporal dementia
(FTD). Westergard et al. (2016) were able to perform cell-to-cell
transmission by navigating intracellularly along axons allowing
seeding and propagation of the amyloid (reviewed in Urrea et al.,
2018; Peng et al., 2020; Uemura et al., 2020). These studies
reported the sequential transport of the “pathogenic seeds” as
free seeds or in exosomes between different cell populations
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FIGURE 5 | Examples of experiments designed to explore amyloid transport in axons as well as cell-to-cell transmission. The different colors of the illustrated cells
represent the cells cultured in different reservoirs of compartmentalized LOC devices and their orientation. In addition, some references are included as examples of
their exponential use in neurodegenerative neuroscience.

cultured in different chambers (Figure 5). In these experiments
a differential volume between reservoirs is established to avoid
diffusion transfer by the media between reservoirs. In fact,
different LOCs have been designed for specific studies (e.g., co-
culture of microglia, astroglia, and neurons (3D hNeuroGliAD)
(Park et al., 2018). More relevantly, in several studies neurons
derived from IPSc or neuronal progenitors are included to mimic
specific neurodegenerative diseases (i.e., Choi et al., 2014; Ruiz
et al., 2014; Park et al., 2018). These LOC approaches help
researchers to ascertain the role of non-neuronal cells in the
seeding and propagation process for particular amyloids (e.g.,
Aβ roles of microglia reactivity and migration (Cho et al., 2013;
Park et al., 2018) and the role of astrocytes in α-synuclein
seeding (Cavaliere et al., 2017). However, the emerging role of
oligodendrocytes as non-neighboring cells during some amyloid
transmission [i.e., α-synuclein (Tu et al., 1998; Uemura et al.,
2019), tau (Ferrer et al., 2019, 2020a) see also (Ferrer, 2018)
for recent review] has yet to be described in LOC devices. This
is in contrast to the different LOC devices aimed at exploring

myelination (Park et al., 2009; Yang et al., 2012; Lee et al.,
2016). Further studies will help neuroscientists to determine their
putative role in PMD.

LOC AS A TOOL TO ANALYZE THE
NEURAL CONSEQUENCES OF AMYLOID
TRANSMISSION

From the early development of the PDMS compartmentalized
LOC, several groups combined electrical and optical
measurements of neuronal activity with its compartmentalization
(among others, Morales et al., 2008; Gladkov et al., 2017; Lassus
et al., 2018; Lopes et al., 2018; Moutaux et al., 2018). And in
some studies these LOCs devices were used as platforms to
determine drug screening and cytotoxicity (i.e., Meissner et al.,
2011; Du et al., 2016). As noted, the seeding and spreading of
different amyloids is associated with an increase in progressive
cell death. This was determined in classical cell cultures in single
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chambers but particularly in LOC with different chambers:
(i.e., Aβ Deleglise et al., 2014; Ruiz et al., 2014; Li et al.,
2017), α-synuclein (i.e., Tran H. T. et al., 2014; Prots et al.,
2018; Gribaudo et al., 2019) and Tau (Wu et al., 2016) by
direct exposure of cultured neurons to the pathogenic form
of the amyloid. Cytotoxicity was measured with biochemical
methods, multielectrode arrays (MEA), or changes in calcium
transients [i.e., with Fluo4-AM or genetically encoded calcium
indicators (GECIs)]. In this respect, several authors included
microflows in 3D-derived cultures in LOC devices to determine
the effects of exposure to amyloids. For example, Choi et al.
(2013) developed a microfluidic platform capable of generating
a gradient of Aβ oligomeric assemblies within microchannels
to investigate their neurotoxicity. Two years later, Park et al.
(2015) developed a pioneering microfluidic chip containing
3D-neurospheroids by providing an interstitial constant fluid
flow. Using this 3D platform, the effect of the fluid flow on
the neural proliferation, differentiation, and survival was
investigated. The authors compared their results with similar
Aβ treatments under static conditions, and the main conclusion
was that treatment with Aβ under interstitial flow is more
deleterious and largely reduces the viability of neural aggregates
(Teller et al., 2015).

However, although effects of the pathogenic seeds have been
evaluated in numerous manuscripts, little attention has been paid
to elucidating the putative changes in neural networks during
seeding and cell-to-cell progression between different areas. Due
to the relevance of this issue, LOCs could be a relevant tool to
ascertain this progressive neurodegeneration between different

cell populations. This is of particular relevance for drug discovery,
if our final goal is to block amyloid seeding, aggregation and
progression. For most cases, a putative drug treatment (i.e.,
an inhibiting peptide) could be useful in silico, and probably
non-cytotoxic in yeast, worm, fruit flies, or mammalian cells,
but it could carry collateral effects in modifying the function
of neuronal networks. To solve this, in our opinion, we need
first to understand the changes induced by pathogenic amyloid
during the seeding and aggregation process from both the
cellular viewpoint and a system-wide perspective. One example
can be seen in a pioneer study developed by Teller et al.,
in which primary cortical neurons were confined into groups
using a homemade PDMS mask (Figure 6). In the study, the
authors determined the synaptic activity and the development of
neuronal networks by using calcium fluorescence probes (Fluo4-
AM) and the analysis of the intracellular calcium changes to
determine firing rate, coordination between different neurons,
and the appearance and maturation of different connectivity
“hubs” in the culture. After several days in culture to allow the
maturation of connections between these neuronal groups, the
authors incubated the culture with different aggregated forms
of Aβ (with magnetite). Changes in neural network activity and
the correlated neuronal interactions after the treatments were
evaluated, and the effects of Aβ treatment in the destabilization
of the generated network was determined in detail. In order to
analyze this the authors used homemade calcium fluorescence
analysis software NetCalTM (Orlandi et al., 2014; Teller et al.,
2015; Figure 6). The data were also corroborated in our
laboratory using mic2net software (Smedler et al., 2014).

FIGURE 6 | Example of the analysis of neuronal network changes mediated by amyloids (Aβ). We describe the experiment developed by Teller et al. (2015). In the
experiment, the authors generated clusters of cells further interconnected in a network like the Atomium attraction in Brussels. After treatment with Aβ alone or
Aβ-magnetite, the changes in the neural network were analyzed using NetCalTM software.
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Thus, the group developed an in vivo-like platform for drug
screening in the presence of progressive amyloid generation.
Today the use of GECIs (i.e., GCaMP6) instead of classical
fluorescence reporters (Fluo4-AM or Fluo8-AM) of neuronal
activity and different analysis methods allow us to analyze the
network activity of the same culture or neuronal network for
longer time periods (Chen et al., 2013). These experiments
will help researchers working in drug discovery to avoid the
seeding and progression of the amyloids without perturbing
neuronal activity.

CONCLUDING REMARKS

In this review we have tried to summarize only a part of the
state of the art concerning the use of some microfluidics and
LOC devices in amyloid or “prion-like” seeding, aggregation,
and cell-to-cell transmission research. Unfortunately, for prion
infection other strategies would be more appropriate due
to the time needed to develop a reliable prion infection.
In fact, our lab studied the putative prion formation in
IPSc cultured in 2D cultures for more than 150 days with
negative results (Matamoros-Angles et al., 2018). Considering
this, most probably a 3D culture is needed to develop prion
infection, while LOCs will help us in other experimental
situations. In this review, we have focused, on a practical
basis, on those aspects that we consider relevant for biomedical
researchers. In fact, most of the new techniques and proof-
of-concept experiments involving aggregation, protein-protein
interaction, and analyte detection are not fully described in
this review, since, in some cases, they are not yet widely
accepted by researchers. We refer the reader to some of
the references of this review for additional information. In
fact, here we have focused on two types of LOC that
could be of interest and which are commonly used in
laboratories. For example, micro/nanodroplets LOCs, compared
to conventional microtiter plate assays, are an attractive platform
for high-throughput studies. LOC devices derived from the
compartmentalized culture of neurons or glial cells can help
answer key questions in determining cell-specific differences
in various disorders, revealing the participation of different
cell types, uncovering the differing behaviors of the different
“strains” of amyloid, etc. In addition, emerging technologies
such as the use of graphene and other materials such
as electrochemical and optochemical “biosensors” offer new

opportunities to determine amyloid seeding and aggregation
in more detail. As indicated, the bioengineering approaches
have evolved in recent years, and today, some of them
are tools for neurobiological laboratories, as an alternative
to unnecessary animal experimentation following the 3Rs of
biological research. Although we cannot assume that the use of
LOC and microfluidics in neuroscience will follow Moore’s law
of semiconductors, which suggests doubling of semiconductor
numbers in a microprocessor every year, we believe that their
use helps and will continue to help neuroscientists. Combined
efforts from different disciplines—bioengineering, neurobiology,
and clinical practice – in the face of new challenges will be
mandatory for future biomedical research.
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