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Nuclei segmentation is a fundamental but challenging task in histopathological image
analysis. One of the main problems is the existence of overlapping regions which
increases the difficulty of independent nuclei separation. In this study, to solve the
segmentation of nuclei and overlapping regions, we introduce a nuclei segmentation
method based on two-stage learning framework consisting of two connected Stacked
U-Nets (SUNets). The proposed SUNets consists of four parallel backbone nets, which
are merged by the attention generation model. In the first stage, a Stacked U-Net is
utilized to predict pixel-wise segmentation of nuclei. The output binary map together with
RGB values of the original images are concatenated as the input of the second stage
of SUNets. Due to the sizable imbalance of overlapping and background regions, the
first network is trained with cross-entropy loss, while the second network is trained with
focal loss. We applied the method on two publicly available datasets and achieved state-
of-the-art performance for nuclei segmentation–mean Aggregated Jaccard Index (AJI)
results were 0.5965 and 0.6210, and F1 scores were 0.8247 and 0.8060, respectively;
our method also segmented the overlapping regions between nuclei, with average
AJI = 0.3254. The proposed two-stage learning framework outperforms many current
segmentation methods, and the consistent good segmentation performance on images
from different organs indicates the generalized adaptability of our approach.

Keywords: nuclei segmentation, histopathological image, Stacked U-Nets, attention generation mechanism,
deep learning

INTRODUCTION

Morphological changes in the cell nucleus are considered an important signal in many diseases
(Gurcan et al., 2009) and can provide clinically meaningful information during diagnosis, especially
for cancers (Chow et al., 2015). The conventional method involves manual inspection and
analyses performed by pathologists to make diagnostic assessments based on certain morphology
features of the nucleus. However, this manual assessment is a tedious and time-consuming task
that can be beset by shortcomings such as poor sensitivity, specificity, and low reproducibility.
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This fact underscores the urgent need to develop and refine
rapid and automated histology image analysis methods; nuclear
segmentation is often the most important and fundamental one
(Fuchs and Buhmann, 2011).

Deep neural networks, especially deep convolutional neural
networks (CNNs), have been the dominant techniques for
visual analysis and have recently achieved great success for
biological object detection and segmentation in medical images
(Aoki et al., 2020; Wen et al., 2020; Xiang et al., 2020; Yao
et al., 2020; Zhang et al., 2020). U-Net (Ronneberger et al.,
2015) is a classical architecture based on fully convolutional
network (FCN) (Long et al., 2015), which has been widely
used and has obtained promising performance when applied
to the task of image segmentation (Litjens et al., 2017; Kong
et al., 2020). Furthermore, many studies have improved the
original U-Net, such as Res-Unet (Xiao et al., 2018) or dense-
Unet (Zhu et al., 2019). Among many improved networks,
multi-scale and stacked networks have attracted intensive
studies. For example, Wu et al. (2018) utilized the multi-
scale network followed networks (MS-NFN) model to segment
blood vessels in retinal images, while Sevastopolsky et al.
(2018) proposed a special cascade network which stacked
two kinds of blocks, U-Net or Res-UNet, for optical disc
and cup segmentation. On the other hand, Stacked U-Nets
(SUNets) (Shah et al., 2018) can be considered as further
improvement as they iteratively combine features from different
image scales while maintaining resolution. Leveraging the
feature computation power of U-Nets in a deeper network
architecture, SUNets are capable of handling images with
increased complexity.

Due to the complexity of nuclei shape, imperfect slide
preparation or staining, overlapping nuclei, and scanning
artifacts, automatic nuclei instance segmentation is still a
computationally challenging task. Compared to manual nuclei
segmentation, however, automated segmentation methods based
on cutting-edge deep learning technology have the potential to
foster improvement.

Inspired by the attention mechanism idea (Vaswani et al.,
2017) and the aforementioned segmentation approaches, we
developed a two-stage learning framework based on two
SUNets to solve the challenges in nuclei segmentation in
histopathological images. We converted the nuclei segmentation
task into a two-stage task; both stages were composed of a SUNets
with the same architecture. The outputs of our SUNets were
then post-processed through a watershed algorithm (Roerdink
and Meijster, 2000) to achieve the instance-level segmentation.
We also compared our method with current existing popular
algorithms. When applied to a publicly available multi-organ
dataset, our method achieved improved segmentation accuracy
results and solved the segmentation challenge of overlapped
nuclei regions with high fidelity. In addition, we applied our
method on another publicly available dataset and obtained
reliable segmentation results as well. Details of our method
are described in section “Methodology”, comparisons on two
independent image sets are elaborated in section “Results
and Discussions”, and finally, conclusion is presented in
section “Conclusion.”

METHODOLOGY

In this work, a two-stage framework is proposed to automate
segmentation of nuclei regions and regions of overlapping nuclei.
The flow of the two-stage framework is shown in Figure 1A.
Two SUNets (Sevastopolsky et al., 2018; Figure 1B) with the
same architecture are utilized in both stages. The first stage aims
to segment nuclei regions, and the second stage is designed
to segment regions of overlapping nuclei. Nucleus instance
segmentation results from the first stage are updated by adding
overlapped regions derived from the second stage. In this section,
we present our two-stage method in detail.

Segmentation of Nucleic Regions
Stage 1 in our nuclei segmentation framework predicts the
region of each nucleus using CNNs, specifically SUNets. The
SUNets consist of four parallel backbone nets. Four images
derived from the original histopathology image by scaling at
1.25×, 1.0×, 0.75×, and 0.50× serve as inputs to Stage 1. Four
semantic feature maps of differently sized backbone nets are
extracted and fed into an attention generation module, which
contains eight CNN layers belonging to the first two blocks
of ResNet34 (Gulshan et al., 2016) together with one ReLU
(rectified linear unit) layer. Finally, a weight matrix for each
scaled backbone net is returned and used to weight and sum
the predictions of the four scaled backbone nets and generate
the final result. The architecture of the backbone net of our
SUNets is illustrated in Figure 1C. The backbone nets which
extract semantic information from the input image is based
on a modified deep network–VGG16 (Wang et al., 2015). The
down-sampling part of the network (the first 21 layers from the
left side in Figure 1C) contains a series of convolutional layers
with ReLU activation function (Nair and Hinton, 2010). The
last down-sampling layer represents the semantic features of the
input image. At the end of Stage 1, the mask segmentation of
nuclei regions is generated. Image features are transformed into
same-sized mask segmentation result with pixel gray value of 0
(background region) and 1 (nuclei region). Then the watershed
algorithm is utilized to get the first round of nucleus instance
segmentation result.

Segmentation of Overlapped Nuclei
Regions
Stage 2 of our framework is segmenting the overlapped
nuclei region. To achieve this, we utilize the same SUNets
as the ones used in the first stage. The difference is that
we construct new generalized images as input images. These
input images contain not only the original RGB images
but also the binary masks predicted by Stage 1 as the
fourth set of values. Due to the imbalanced distribution of
overlapping nuclei regions and background regions, in the
training step we employ focal loss (Lin et al., 2017), which
is a method that was first proposed to address the sizable
imbalance between the positive and negative distributions.
Compared with the traditional cross entropy loss, focal loss
introduces a function to measure the contribution of the
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FIGURE 1 | Overview of the two-stage learning method. (A) Overall flow chart of the two-stage method. Input: First, images are split into small patches of
384 × 384-pixel size, resized into four different scales (1.25×, 1.0×, 0.75×, and 0.50×). Stage 1: In stage 1, the patches are fed into the first set of Stacked U-Nets
for the first round of nuclei segmentation. The Stacked U-Nets consist of four parallel backbone nets that have different sized images as input. At the end of stage 1,
the mask segmentation of nuclei regions is generated with pixel gray value of 0 (not nuclei regions) and 1 (nuclei region). In addition, the nuclei instance segmentation
is also predicted by the watershed algorithm. Stage 2: The stage 2 input contains not only the original RGB image patches but also the binary masks segmentation
of nuclei regions predicted by stage 1 as the fourth set of values. At the end of stage 2, the segmentation result of overlapped regions is generated with pixel gray
value of 0 (not overlapped regions) and 1 (overlapped region). Merge: In the merge step, the first round of nuclei instance segmentations results from stage 1 are
updated by merging the corresponding overlapped objects, which have at least 10 pixels overlapped with the contour objects derived from stage 2. Output: The final
output of the flow is nuclei instance segmentation result which includes separate nuclei of the overlapping regions if they have. (B) Architecture of the Stacked
U-Nets. Blue rectangles stand for the multiple layers in the backbone net with the same spatial dimensions. The Attention Generation Model (AGM) is used to weight
and sum the predictions of the four scaled backbone nets and generate the final segmentation. The output of the Attention Generation Model (AGM) is a weight
matrix which weights for each backbone net that have different scaled images as input. Each backbone net returns a segmentation result weight matrix generated
by the AGM which is used to multiply (X circle in panel C) the result of each segmentation result and sum them together (+ circle in panel C) to get the final result.
(C) Detailed architecture of the backbone net used in the Stacked U-Nets. Each dark blue box corresponds to a multi-channel feature map. The number of channels
is denoted on the top of the box. The spatial dimensions are provided under some of the boxes (boxes with the same height have the same spatial dimension).
White boxes represent copied feature maps from layers where the gray arrows originate. The arrows with different colors denote the different operations–red for
de-convolution, green for max-pooling, blue for regular convolution, and gray for copy and concatenation.

hard and easily classified sample to the total loss. At the
end of Stage 2, the segmentation result of overlapped regions
is generated with pixel gray value of 0 (not overlapped
regions) and 1 (overlapped region). Finally, nucleus instance
segmentation results from the first stage are updated by adding
the corresponding overlapped objects which have at least 10

overlapped pixels with the segmented objects derived from
the second stage.

Evaluation Metric
We evaluate our method by using two types of metrics: object-
level and pixel-level metrics.
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TABLE 1 | Comparison of AJI of different methods applied to the TCGA test set.

Organ Bladder Colorectal Stomach Breast Kidney Liver Prostate Overall

FCN-8 (Long et al., 2015) 0.5376 0.4018 0.5279 0.5598 0.5267 0.5045 0.5709 0.5171

Mask R-CNN (He et al., 2015) 0.5011 0.3814 0.6151 0.4913 0.5182 0.4622 0.5322 0.5002

U-Net (Ronneberger et al., 2015) 0.5403 0.4061 0.6529 0.4681 0.5426 0.4284 0.5888 0.5182

CNN3 (Kumar et al., 2017) 0.5217 0.5292 0.4458 0.5385 0.5732 0.5162 0.4338 0.5083

DIST (Naylor et al., 2019) 0.5971 0.4362 0.6479 0.5609 0.5534 0.4949 0.6284 0.5598

Stacked U-Net 0.6138 0.5188 0.5845 0.5605 0.5647 0.4594 0.5300 0.5474

U-Net (DLA) 0.6215 0.5322 0.5938 0.5747 0.5624 0.4642 0.5602 0.5584

A two-stage U-Net (Mahbod et al., 2019) 0.5706 0.4891 0.6545 0.5613 0.5755 0.4989 0.6316 0.5687

Two-stage learning U-Net (DLA) (Kang et al., 2019) 0.6285 0.5376 0.6620 0.6096 0.6024 0.5142 0.5720 0.5895

Ours 0.5926 0.5586 0.6541 0.5907 0.5926 0.5346 0.6521 0.5965

The best results are shown in bold.

TABLE 2 | Comparison of F1 scores of different methods applied to the TCGA test set.

Organ Bladder Colorectal Stomach Breast Kidney Liver Prostate Overall

FCN-8 (Long et al., 2015) 0.8084 0.6934 0.7982 0.8113 0.5797 0.7589 0.8367 0.7552

Mask R-CNN (He et al., 2015) 0.7610 0.6820 0.8268 0.7481 0.7554 0.7157 0.7401 0.7470

U-Net (Ronneberger et al., 2015) 0.7953 0.7360 0.8638 0.7818 0.7913 0.6981 0.7904 0.7795

CNN3 (Kumar et al., 2017) 0.7808 0.7399 0.8948 0.7181 0.7222 0.6881 0.7922 0.7623

DIST (Naylor et al., 2019) 0.8196 0.7286 0.8534 0.8071 0.7706 0.7281 0.7967 0.7863

Stacked U-Net 0.8249 0.7685 0.8498 0.7990 0.7986 0.7276 0.7829 0.7930

U-Net (DLA) 0.8296 0.7756 0.8530 0.8025 0.7994 0.7296 0.7895 0.7970

A two-stage U-Net (Mahbod et al., 2019) 0.7599 0.7668 0.8912 0.8024 0.8531 0.7938 0.8648 0.8189

Two-stage learning U-Net (DLA) (Kang et al., 2019) 0.8360 0.7808 0.8629 0.8183 0.8022 0.7513 0.8037 0.8079

Ours 0.8217 0.8135 0.8690 0.8123 0.8251 0.7865 0.8451 0.8247

The best results are shown in bold.

The commonly used Aggregated Jaccard Index (AJI) (Kumar
et al., 2017) is utilized as object-level evaluation metric. The AJI
is an extension of the Jaccard Index, and is defined as

AJI =

∑K
i=1

∣∣∣GTi
⋂

PRD∗j (i)
∣∣∣∑K

i=1

∣∣∣GTi
⋂

PRD∗j (i)
∣∣∣+∑l∈U |PRDl|

where GTi (i = 1, 2,. . . , K) is a pixel belonging to ground truth
(GT) nuclei object, PRDj (j= 1, 2,. . . , L) is a pixel belonging to the
predicted nuclei objects. PRDj

∗(i) is the connected component
object from the predicted objects that have the maximum Jaccard
Index with the GT nuclei, and U is the union of predicted objects
that does not have intersections with any GT objects.

We also employ precision, recall rate, and F1-score (Sasaki,
2007) as the pixel-level evaluation metrics, which are defined as
follows:

precision =
TP

TP+ FP

recall =
TP

TP+ FN

F1_score =
2TP

2TP+ FN+ FP

where FP, TP, and FN denote false positive, true positive, and false
negative, respectively.

TABLE 3 | Quantitative comparison of different methods applied to
the TNBC dataset.

Organ Recall Precision F1-Score AJI

DeconvNet (Noh et al., 2015) 0.773 0.864 0.805 –

FCN-8 (Long et al., 2015) 0.752 0.823 0.763 –

U-Net (Ronneberger et al.,
2015)

0.800 0.820 0.810 0.578

Ensemble (Naylor et al., 2017) 0.900 0.741 0.802 –

Stacked U-Net 0.802 0.830 0.816 0.580

U-Net (DLA) 0.812 0.826 0.818 0.586

DIST (Naylor et al., 2019) – – 0.824 0.585

Two-stage learning U-Net (DLA)
(Kang et al., 2019)

0.833 0.826 0.829 0.611

Ours 0.853 0.792 0.806 0.621

The best results are shown in bold.

Datasets
We evaluated our method by utilizing two publicly available
datasets sourced from the Cancer Genome Atlas (TCGA)1

(Kumar et al., 2017) and the Triple-Negative Breast Cancer
(TNBC) (Naylor et al., 2017). The two image datasets used
herein are subsets of the TCGA and TNBC; the GT nuclear

1http://cancergenome.nih.gov/
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FIGURE 2 | Cropped images from seven different organs (first row) with their corresponding ground truth (second row) and the segmentation result of our method
(third row).

FIGURE 3 | Randomly selected example of nuclei segmentation using our method. Each nucleus is randomly colored. First column: Segmentation of Ground Truth
and our method. Second column: partially enlarged review of the nuclei segmentation. Red arrows point to the overlapped regions.

segmentation for these sets is manually performed by experts,
and these datasets are widely used as the gold standard for nuclei
segmentation studies.

The first dataset (selected from the TCGA database)
(Tomczak et al., 2015) consisted of 30 hematoxylin and
eosin (H&E) stained images. In this dataset, images were
collected from seven different organs [bladder, breast, colon,
kidney, liver, prostate, and stomach; we manually extracted
1,000 × 1,000-pixel size small patches from whole slide images

(WSIs)] and used as the training (n = 16) and testing
(n = 14) image sets.

The second dataset (selected from the TNBC database)
contained 50 H&E stained images with 512 × 512 resolution.
All images in the second dataset were extracted from 11 TNBC
patients with multiple cell types including endothelial cells,
inflammatory cells, and myoepithelial breast cells. We used this
dataset to compare the performance of our nucleus instance
segmentation with other popular methods.
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Network Implementation Details
All the experiments were conducted using TensorFlow (Abadi
et al., 2016). Both SUNets used in the two-stage framework
were trained using the same strategy–the learning rate used for
training was 0.0001, stochastic gradient descent was used as an
optimizer to minimize the loss function with momentum 0.9, and
the batch size was set to 4. For the consideration of GPU memory
limitation and performance, the input image size of all networks
was set to 384 × 384 pixels. Additionally, we employed various
augmentation techniques during the training process such as
image rotation, vertical flipping, and horizontal flipping. Due to
the sizable imbalance of overlapping and background regions,
we trained the second Stacked U-Net with focal loss, whereas
the first one was trained with cross-entropy loss. The networks
were trained for 8 h on two NVIDIA Tesla P100 GPU cells for 20
epochs with CUDA 9.0 (NVIDIA, United States) library.

RESULTS AND DISCUSSION

Our method outperformed present state-of-the-art methods on
the two datasets (described in section “Datasets”) in the integrity
of the segmentation of a single nucleus and the segmentation
accuracy, and especially in the segmentation of overlapped nuclei
regions. We compared our method against several deep learning
based methods listed in Table 1, such as FCN-8 (Long et al.,
2015), Mask R-CNN (He et al., 2015), U-Net (Ronneberger
et al., 2015), CNN3 (Kumar et al., 2017), DIST (Naylor et al.,
2019), SUNets, U-Net (DLA), a two-stage U-net (Mahbod et al.,
2019), and two-stage learning U-Net (DLA) (Kang et al., 2019).
In order to make the comparison objectively, we followed the
same training and testing set split criteria suggested by Kumar
et al. (2017). The results of the comparison confirmed the
superiority of our method which achieved an average AJI of
59.65% and F1-score of 82.47% (Tables 1, 2 and Supplementary
File S1). The performance results of the algorithms utilized in
this comparison are sourced from the respective publication
(Tables 1–3). Regarding the comparison of segmentation results
(i.e., the extracted part of the whole image) of our method
and the corresponding GT segmentation on different tissue
types in the test image (displayed in Figure 2), our method
was able to segment the majority of overlapped nuclei regions
(the average AJI value of segmented overlapping regions was
0.3254) (Figure 3). The segmentation results of our algorithm
are further illustrated in Figure 3, where we selected two
examples of segmentation at random and compared them with
the GT. We also applied our method on the TNBC dataset
and compared the experimental results with other methods
(Table 3)–DeconvNet (Noh et al., 2015), FCN-8 (Long et al.,
2015), U-Net (Ronneberger et al., 2015), Ensemble method
(Naylor et al., 2017), DIST (Naylor et al., 2019), and two-stage
learning U-Net (DLA) method (Kang et al., 2019). Our method
has the top AJI value (AJI = 0.621) but the second highest F1 score
(F1 score = 0.806). This result demonstrates that our method
has a high generalization ability since these images vary from

tissue types to cell types. The values of AJI and F1 score of other
methods in Tables 1–3 are taken from published works (Kang
et al., 2019; Naylor et al., 2019).

CONCLUSION

Nuclei segmentation has a wide utility in multiple biologically
related tasks such as the quantitative analyses of the cellular
constitution of tissues. Nuclei segmentation, however, is a
notoriously challenging problem due to shape variation,
imperfect slide digitalization, and the existence of overlapped
or contact regions. In this study, we present a Stacked U-Net-
based two-stage learning framework for nuclei segmentation
of histopathological images. We divide the process of nuclei
segmentation into the following steps: in the first step we
segment the nuclei regions, and in the second step we divide the
overlapping regions. Finally, nuclei instance segmentation results
are updated by merging the two segmentation results. The results
on two diverse public datasets show that our method outperforms
most of the current standard segmentation methods and achieves
state-of-the-art segmentation of not only the nuclei instances but
also the overlapped regions.
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