
fbioe-08-578988 December 7, 2020 Time: 22:15 # 1

ORIGINAL RESEARCH
published: 11 December 2020

doi: 10.3389/fbioe.2020.578988

Edited by:
Antonella Motta,

University of Trento, Italy

Reviewed by:
Rajendra Kumar Singh,

Institute of Tissue Regeneration
Engineering (ITREN), South Korea

PaYaM ZarrinTaj,
Oklahoma State University,

United States

*Correspondence:
Zhi-Hai Fan

fanzh2006@163.com
Yong-Can Huang

hycpku@hotmail.com

Specialty section:
This article was submitted to

Biomaterials,
a section of the journal

Frontiers in Bioengineering and
Biotechnology

Received: 01 July 2020
Accepted: 16 November 2020
Published: 11 December 2020

Citation:
Yu L-M, Liu T, Ma Y-L, Zhang F,
Huang Y-C and Fan Z-H (2020)

Fabrication of Silk-Hyaluronan
Composite as a Potential Scaffold

for Tissue Repair.
Front. Bioeng. Biotechnol. 8:578988.

doi: 10.3389/fbioe.2020.578988

Fabrication of Silk-Hyaluronan
Composite as a Potential Scaffold for
Tissue Repair
Li-Min Yu1, Tao Liu2, Yu-Long Ma1, Feng Zhang2, Yong-Can Huang1,3* and Zhi-Hai Fan4*

1 Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen,
China, 2 Department of Textile Engineering, College of Textile and Clothing Engineering, Soochow University, Suzhou, China,
3 Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, National and Local Joint Engineering
Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China, 4 Department
of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China

Interest is rapidly growing in the design and preparation of bioactive scaffolds, mimicking
the biochemical composition and physical microstructure for tissue repair. In this study,
a biomimetic biomaterial with nanofibrous architecture composed of silk fibroin and
hyaluronic acid (HA) was prepared. Silk fibroin nanofiber was firstly assembled in water
and then used as the nanostructural cue; after blending with hyaluronan (silk:HA = 10:1)
and the process of freeze-drying, the resulting composite scaffolds exhibited a desirable
3D porous structure and specific nanofiber features. These scaffolds were very porous
with the porosity up to 99%. The mean compressive modulus of silk-HA scaffolds with
HA MW of 0.6, 1.6, and 2.6 × 106 Da was about 28.3, 30.2, and 29.8 kPa, respectively,
all these values were much higher than that of pure silk scaffold (27.5 kPa). This scaffold
showed good biocompatibility with bone marrow mesenchymal stem cells, and it
enhanced the cellular proliferation significantly when compared with the plain silk fibroin.
Collectively, the silk-hyaluronan composite scaffold with a nanofibrous structure and
good biocompatibility was successfully prepared, which deserved further exploration as
a biomimetic platform for mesenchymal stem cell-based therapy for tissue repair.
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INTRODUCTION

The combination of biomaterials and grafted cells with or without signalizing molecules has been
regarded as a promising strategy for tissue repair, with the goal to provide structural and functional
substitutes (Li et al., 2005; Ma et al., 2018; Qi et al., 2018). For successful repair, the scaffold
should be elegantly designed to meet the requirements of damaged tissue (Raghunath et al., 2007).
The characterization of the native extracellular matrix (ECM) in tissue, such as cartilage, is a
network with multi-fibrillar collagens embedded in glycosaminoglycan (Zhang et al., 2011); the
fibrous protein structure in ECM (50–500 nm) is about 1–2 orders of magnitude smaller than
the cells, which is critical for cellular function (Woo et al., 2003). Thus, the scaffolds play a key
role in the creation of the microenvironment for cell growth and tissue repair in vitro and in vivo
(Dashnyam et al., 2014; Mahapatra et al., 2016). Thus, to mimic the ECM structure, the scaffolds
with protein and glycosaminoglycan bi-components and nanofibrous structures are desired, aiming
to control the adhesion, proliferation, migration, and differentiation of endogenous and exogenous
progenitors/stem cells and then to moderate the tissue repair and reorganization in vivo (Chen and
Ma, 2004; Ma, 2004; Toloue et al., 2019).
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Because of the remarkable mechanical property, good
biocompatibility, and biodegradability, silk is a very promising
and encouraging material for the fabrication of tissue engineering
scaffolds (Melke et al., 2016; Bhattacharjee et al., 2017). Over the
past decades, silk has been processed into various formulations
(such as film, nanofiber, hydrogel, fiber, yarn, and sponge) which
have the potential to support the adhesion, proliferation, and
differentiation of cells in vitro and to promote tissue regeneration
in vivo (Wang et al., 2006; Rockwood et al., 2011). During
the design of biomaterial from silk fibroin for tissue repair,
3D porous scaffold is the more promising material form as it
provides the necessary 3-dimensional space for cell proliferation
and new matrix formation (Wang et al., 2005); importantly,
the particular requirements of composite scaffolds with respect
to microporosity and nanostructure, as well as physical and
biochemical properties, should be well considered. Silk has been
processed into nanofibers to mimic the structure of collagen in
the cartilage (Liu et al., 2016). Recently, we reported a method
to prepare silk nanofiber by controlling the assembly process of
silk fibroin and finally obtained the scaffold with an improved
3D porous structure and nanoscale topography (Zhang et al.,
2018). Nevertheless, the pure silk lacks bioactive components to
interact with the cell receptors for the activation of the tissue
repair process (Garcia-Fuentes et al., 2009).

Hyaluronic acid (HA) is a natural biomaterial, and it has been
developed for the application in the repair of ligament, adipose,
bone, and cartilage (Abbruzzese et al., 2017). HA scaffold with
bone marrow aspirate concentrate has been used to treat articular
cartilage injury, displaying positive long-term clinical outcomes
(Gobbi and Whyte, 2019). In spite of the promising results, pure
HA scaffold has disadvantages such as the repaid degradation and
the inadequate mechanical property (Yu et al., 2020).

During the process of fabricating functional silk scaffold,
blending with high-molecular weight biocompatible polymers
can be used to change the pore structure, porosity,
microstructure, and mechanical properties; these important
characteristics play a significant role in regulating the biology
of grafted and resident cells (Jin et al., 2005; Lu et al., 2011).
Silk has been blended with HA to mimic the ECM composition
of cartilage (Jaipaew et al., 2016; Raia et al., 2017; Yan et al.,
2018). The biological properties of HA are closely related to the
molecular weight, and the high molecular weight HA displays
superior biological and physical benefits. The superior biological
properties are likely due to the high molecular weight of HA in
animals; for example, in human synovial fluid, the molecular
weight is 2,000–10,000 kDa (Ghosh and Guidolin, 2002). It has
been found that chondrocyte number and matrix synthesis on
gelatin sponge increased in the presence of high molecular weight
HA (Goodstone et al., 2004). Our previous study demonstrated
that HA interacted with silk in aqueous solution, resulting in
the excellent porous structure of the composite scaffold, and
the porous structure was dependent on the molecular weight
of HA (Fan et al., 2014). The prepared composite has the ECM
composition, but the nanofibrous structure is absent which is
extremely essential in the mammal tissues (Ding et al., 2017).

Hence, in this study, a green and facile process to prepare silk-
HA composite scaffold with biomimetic nanoscaled structure was

presented. To achieve the goal, the following steps are involved:
(1) self-assembly control of silk into nanofiber; (2) blending
of silk nanofiber solution with HA with different molecular
weights; and (3) lyophilization to form the composite scaffold.
Additionally, the biocompatibility was evaluated using bone
marrow mesenchymal stem cells in vitro.

MATERIALS AND METHODS

Materials
Raw silk from B. mori was purchased from Jiangsu Silk Industrial
Co., Ltd. (Nanjing, China). Na2CO3 and LiBr were from
Sinopharm Chemical Reagent (Shanghai, China). HA (MW, 0.6,
1.6, and 2.6 × 106 Da) was purchased from Shandong Freda
(Jinan, China). All reagents for the cell culture were purchased
from Invitrogen (Basel, Switzerland).

Preparation of the Silk Solution
A silk solution was prepared as described in our previous study
(Zhang et al., 2018); in brief, the procedures included degumming
with Na2CO3, dissolving in LiBr solution, and dialysis using a
dialysis tube. The resulting silk solution was optically clear and
was centrifuged to remove aggregates. Determined by weighing,
the concentration of the silk solution was approximately 6 wt.%.
The fresh silk solution was then concentrated to 30 wt.% in an
oven at 60◦C and then diluted to 5 wt.% solution. The diluted silk
solution was lyophilized to form porous scaffold for further use.

Preparation of the Silk-HA Scaffold
As described in our previous study, HA was dissolved in
deionized water to form 0.5 wt.% HA solution with the MW of
0.6, 1.6, and 2.6 × 106 Da, respectively (Fan et al., 2014). The
HA solutions were blended with the obtained 5 wt.% silk solution
with the ratio of 1:1 at room temperature for 2 h. Finally, the
mixed solution containing 2.5 wt.% silk and 0.25 wt.% HA was
frozen at −20◦C for about 24 h and then lyophilized for about
72 h. The lyophilized silk and silk-HA scaffolds were placed on
a removable platform under which 75% ethanol was filled in
a desiccator with a 25 in. Hg vacuum for 12 h to induce silk
crystallization.

Swelling
Silk and silk-HA scaffolds were immersed in distilled water at
37◦C for 50 h. After removing the excess water, the weight of
the wet scaffold (Ww) was determined; after drying, the weight
of dry scaffolds (Wd) was determined again. The swelling ratio
and water uptake of scaffolds were calculated as follows:

Swelling ratio = (Ww − Wd)/Wd
Water uptake (%) = (Ww − Wd)/Ww × 100

Biodegradation
Silk and silk-HA scaffolds (dry weight approximately 50 mg)
(n = 3 per group and time points) were incubated at 37◦C in
50 ml PBS (pH = 7.4) for 30 days. Samples were rinsed in distilled
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water and lyophilized for SEM and degradation evaluation at
designated time points.

Scanning Electron Microscopy (SEM)
Analysis
Silk and silk-HA scaffolds were cut with a razor blade in
liquid nitrogen. The cross-section was gold-sputtered and then
observed with SEM (Hitachi S-4800, Tokyo, Japan).

Fourier Transform Infrared Spectroscopy
(FTIR)
FTIR spectra of the silk-HA scaffolds were conducted using a
NicoLET 5700 spectrometer (Thermo Fisher Scientific, Waltham,
MA, United States) with the spectral region of 400–4,000 cm−1,
and 64 scans coded with a resolution of 4 cm−1.

X-Ray Diffraction (XRD)
The crystal structure of silk scaffolds was analyzed using XRD
(X’PERT-Pro MPD, PANalytical Company, Netherlands), which
was operated at 30 mA tube current and 40 kV tube voltage with
diffraction angles 2◦–45◦, and the scanning speed was 2◦/min.

Mechanical Property
The compressive property of the four scaffolds in wet (10 mm
in diameter and 10 mm in height) (N = 5 for each group)
were measured using the Instron 3365 testing frame (Instron,
Norwood, MA) with a 500 N loading cell according to the
published method (Hu et al., 2019).

Isolation of Bone Marrow Mesenchymal
Stem Cells
Bone marrow mesenchymal stem cells (BMSCs) were isolated
from SD rats according to our previous report (Zhang et al.,
2015). All procedures of the animal experiments in this
study were performed in accordance with Soochow University
Guidelines for the Welfare of Animals. Rat BMSCs at passage five
were seeded in the silk scaffolds with the density of 1.0 × 105

cells per sample.

Cell Morphology
The cellular morphology on the scaffolds was observed by SEM.
The sample was prepared according to our previous introduction
(Zhang et al., 2018). Briefly, the cell-loaded scaffolds were
rinsed with PBS, fixed in 4% paraformaldehyde, dehydrated with
a gradient of alcohol (50, 70, 80, 90, 100, 100%), and then
lyophilized. After being coated with gold, the samples were
examined with SEM at the voltage of 10 kV. Several different areas
of the specimens were randomly examined using a Hitachi model
S-4800 scanning electron microscopy (Hitachi, Tokyo, Japan).

Cell Proliferation
To determine the cell proliferation in the scaffolds, the samples
harvested at the indicated time points (from 1 to 16 days) were
digested with proteinase K buffer solution for 16 h at 56◦C
(Zhang et al., 2018); the CCK-8 assay was then used to detect the

viability and proliferation of BMSCs. Twenty microliter of CCK-
8 plus 500 µl DMEM was replaced to each well for 4 h at 37◦C;
subsequently, the 300 µl supernatant per well was transferred to
a new 96-well plate and the absorbance value was measured using
a microplate reader at 450 nm.

Statistical Analysis
All experiments were carried out in triplicate, and the data
were expressed as means and standard deviation (SD); the data
were analyzed using the one way or two-way ANOVA followed
by LSD multiple-comparison tests with the SPSS 19.0 software
(IBM Corp., Armonk, NY, United States). The significance was
accepted when p < 0.05.

RESULTS AND DISCUSSION

Morphology of Silk-HA Scaffolds
Silk and silk-HA porous scaffolds were prepared using 24-
well plates with the freeze-drying method and then annealed
with 75% ethanol. The appearance of silk-HA scaffolds is
shown in Figure 1A. Overall, the silk-HA scaffolds displayed
intact appearance, which was negligibly affected by 75% ethanol
annealing. In our previous report (Fan et al., 2014), pure silk
scaffold underwent serious morphologic changes, which was
improved by adding HA with high molecular weight. In this
work, the pure silk scaffold showed good ability to resist to
shape deformation, likely due to the excellent porous structure
within the scaffolds. As previously reported, the self-assembled
nanofilament had an important role in forming good pore
structure for lyophilized silk scaffold (Lu et al., 2011).

The porous structure of silk and silk-HA scaffolds before and
after 75% ethanol annealing was observed by SEM, as shown
in Figure 1B. The scaffolds were fabricated from silk-HA blend
solutions containing about 10% HA with the MW of 0.6 × 106,
1.6 × 106, and 2.6 × 106 Da, respectively. As expected, the
nice pore structure instead of the lamellar structure was formed
from pure silk solution, indicating that the silk nanofiber was
able to induce the formation of a porous structure and restrain
the lamellar structure. It was demonstrated that the silk scaffold
derived from fresh solution usually showed separate lamellas
rather than a porous structure which was not suitable for the
application for tissue repair (Lv and Feng, 2006). The porous
architecture was critical for the biomedical scaffold so as to
allow both the cellular ingrowth and vascularization, which
was essential for new tissue formation (Bonfield, 2006). The
effect of HA MW on the porous structure of silk-HA scaffold
could be negligible. As noted in previous reports (Lu et al.,
2010, 2011), the blending of biocompatible polymer collagen and
gelatin favored the formation of porous structures due to the
molecular interaction between silk and polymers. Additionally,
after closer examination by SEM, the nanoscaled topographies
were clearly found in the pore wall (Figure 1C). The ECM-
mimetic nanofibrous structure was able to improve the cell
adhesion and proliferation (Liu et al., 2014). The porosity of
the silk-HA scaffolds was measured by liquid displacement (Hu
et al., 2019). The structure of the silk-HA scaffolds was very
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FIGURE 1 | Gross view and microstructure of the silk-HA scaffolds. (A) Gross view of the pure silk and silk-HA scaffolds before and after 75% ethanol annealing.
(B) SEM images of silk-HA scaffolds before and after 75% ethanol annealing. (C) The cross-section images of macropore walls of silk-HA scaffolds. Scale
bar = 200 µm.

porous, with the porosity of 99 ± 5, 98 ± 4, and 98 ± 3%
when the HA MW was 0.6 × 106, 1.6 × 106, and 2.6 × 106 Da,
respectively; these values were similar to that of pure silk scaffolds
(99 ± 4%). Thus, pure silk and silk-HA scaffolds with excellent
porous structures and specific nanostructure could be achieved
directly by lyophilizing the silk and silk-HA blending solutions.

Swelling
Compared with pure silk scaffolds, the water uptake and the
swelling ratio were increased significantly with the increase of
molecular weight of HA in these scaffolds (Figure 2). It is believed
that as the MW increases, the resulting material after swelling will
have a larger mesh size, resulting in a higher swelling ratio (Park
et al., 2009). A previous study has reported that the HA 1,368 kDa
film possessed a significantly higher swelling ratio than HA 1,058

and 697 kDa films (Lee et al., 2015). The swelling ratio of scaffolds
reached their maximum about 60 min, and then the values were
gradually decreased. The data indicated that the swelling ratio of
the silk-HA scaffold could be adjusted by changing the initial HA
molecular ratio.

In vitro Degradation
In vitro degradation of silk-HA scaffolds was evaluated by
incubation with PBS solution (Lu et al., 2011). The weight of silk-
HA (1.6 × 106 and 2.6 × 106 Da) scaffolds decreased slowly with
time in PBS solution; they lost 12% mass after 15 days and then
20% mass after 30 days (Figure 3A). The morphology change
after degradation was observed by SEM, indicating that the silk-
HA scaffolds degraded in the mean of pore damage and surface
erosion (Figure 3B); meanwhile, the nanofibers were found on

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 4 December 2020 | Volume 8 | Article 578988

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-578988 December 7, 2020 Time: 22:15 # 5

Yu et al. Biomimetic Silk-Hyaluronan Composite

FIGURE 2 | Change in the water uptake (A) and swelling ratio (B) of silk-HA scaffolds with time.

FIGURE 3 | Degradation of silk-HA scaffolds in PBS (A) and the SEM images (B) of silk-HA scaffolds degraded in PBS solution at 37◦C for 30 days. Scale
bar = 2.5 µm.

the surface of the macro-pore walls, which was in agreement
with the previous reports (Lu et al., 2011; Pei et al., 2015; Zhang
et al., 2018). These data indicated that the self-assembly silk
nanofilament could endow the resulting silk-HA scaffolds with
nanofibrous structure exposure after degradation. Hence, the
silk-HA scaffolds with nanofibrous structure and biomimetic
content of silk and HA were successfully fabricated.

Structural Analysis
The XRD patterns of silk fibroin had been determined in the
previous study as follows: 9.0◦, 18.5◦, and 20.6◦ for the silk II
structure, and 12.0◦, 15.8◦, 20.2◦, 21.6◦, 24.7◦, 27.8◦, and 31.9◦

for the silk I structure (Zhang et al., 2018). Figure 4A pointed
out the crystal structure in the silk-HA scaffolds. The untreated
scaffolds were mainly amorphous in structure, characterized by
a broad amorphous halo centered around 22◦ (Phillips et al.,
2004). The weak diffraction peak at 28.3◦ in the HA-contained

scaffold suggested the existence of silk I which was probably
induced by HA. After annealing, the structural transition to
the insoluble crystal structure was achieved, characterized by
the specific silk II peak at 20.2◦ and silk I peak at 24.5◦. The
FTIR characterization was conducted to further confirm the XRD
results, as shown in Figures 4B,C. The pure silk scaffold before
75% ethanol annealing showed absorption peaks at 1,652, 1,537,
and 1,238 cm−1, which was in accordance with the amorphous
structure (Jin et al., 2005). The absorption peak at 1518 cm−1

existed in the silk-HA scaffolds, indicating the role of HA
in inducing the conformation transition of silk (Chen et al.,
1997). After annealing (Figure 4C), the silk-HA scaffolds had
absorption peaks at 1,670, 1,626, 1,520, 1,510, and 1,264 cm−1,
suggesting that their major structure was silk II (Hu et al.,
2006). Thus, the FTIR and XRD results jointly confirmed that
the silk-HA scaffold after annealing mainly had the water-stable
crystal structure.
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FIGURE 4 | XRD spectra of silk-HA scaffolds (A). (a–d) Pure silk scaffold, silk-HA scaffolds with HA MW 0.6 × 106, 1.6 × 106, and 2.6 × 106 Da before 75%
ethanol annealing. (e–h) Pure silk scaffold, silk-HA scaffolds with HA MW 0.6 × 106, 1.6 × 106, and 26 × 106 Da after 75% ethanol annealing. FTIR spectra of
silk-HA scaffolds before (B) and after (C) 75% ethanol annealing. (a) Pure silk scaffold. (b–d) Silk-HA scaffolds with HA MW 0.6 × 106, 1.6 × 106, and 2.6 × 106 Da
before 75% ethanol annealing.

FIGURE 5 | Compressive modulus of the silk-hyaluronan scaffolds in wet conditions. The compressive modulus was calculated as the slope of the linear-elastic
region of the stress–strain curve between 3 and 8%.
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FIGURE 6 | Proliferation (A) and morphology (B) of BMSCs in the pure silk and silk-HA scaffolds after culture for 16 days (*P < 0.05).

Mechanical Property
The mechanical properties of silk-HA scaffolds are illustrated
in Figure 5. The compressive modulus of the silk-HA scaffolds
with HA MW 0.6 × 106, 1.6 × 106, and 2.6 × 106 Da
was about 28.3, 30.2, and 29.8 kPa, respectively; all these
results were higher than that of pure silk scaffolds (27.5 kPa).
It has been reported that the scaffold with stiffness of
25 kPa was able to promote proliferation and chondrogenic
differentiation of MSCs (Zhan, 2020), suggesting that the
stiffness control of the scaffold is important for cartilage tissue
engineering. Thus, the prepared silk-HA scaffold with elastic
modulus of 27.5–30.2 kPa probably has promising application in
cartilage repair.

Biocompatibility of Silk-HA Scaffolds
To assess the biocompatibility, BMSCs were cultured in the silk-
HA scaffolds. Figure 6 shows the proliferation and morphology
of BMSCs in the silk-HA scaffolds. The proliferation behavior
of BMSCs in the scaffolds was evaluated by CCK8 (Figure 6A).
The results indicated that the cells grew well in the four scaffolds
and the cell number in the silk-HA scaffolds was much higher
than that in the pure silk after culture for 8 and 16 days
(P < 0.05); additionally, the silk-HA (2.6 × 106 Da) scaffold
possessed the highest absorbance value when compared with
those of the other three groups (P < 0.05). As noted in Figure 6B,
the BMSCs adhered and proliferated well in the scaffolds; on
day 16, the increased cells formed a cell sheet and covered on
the pore or pore wall of the scaffolds. The HA component has
been known to promote cell migration and proliferation through
receptors, such as CD44 (Garcia-Fuentes et al., 2009; Murakami
et al., 2019). The silk-HA scaffold could provide a more suitable
microenvironment of biomimetic composition and structure for
cell proliferation (Lu et al., 2011; Ding et al., 2017). The biological
effects of HA depended heavily on molecular weight (Snetkov
et al., 2020). The molecular weight of HA in human synovial
fluid is very high, with the range of 2,000–10,000 kDa (Ghosh
and Guidolin, 2002). Previous studies have proved the biological

and physical benefits of high molecular weight HA (Abe et al.,
2005; Ohtsuki et al., 2018). Therefore, our data combined
with previous literatures which demonstrated that the silk-HA
composite scaffolds favored cell-biomaterial interactions and
enhanced cell growth. Further studies are extremely necessary
to address and optimize the effect of silk-HA scaffolds on the
differentiation of BMSCs for repairing tissue defect in vitro and
in animal studies.

CONCLUSION

In this study, a friendly process for the preparation of silk-
HA composite scaffolds with a nanofibrous structure for tissue
repair was provided. A silk molecule was first assembled into
silk nanofibers which endowed the resulting scaffolds with
an ECM-mimetic structure. The mean porosity of these silk-
HA scaffolds was up to 99%, and compressive modulus was
about 29 kPa. These silk-HA scaffolds were biodegradable
(up to 20% degradation rate in PBS); possessed good pore
structure, suitable compositions, and biomimetic nanofibrous
structure; and enhanced BMSC growth and proliferation. The
biocompatibility, biodegradability, and specific nano-to-micro
structure made these silk-HA composite materials as promising
scaffolds for tissue repair (such as cartilage) which need
further investigation.
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