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Coronavirus is a family of viruses including alpha-, beta-, gamma-, delta-coronaviruses.

Only alpha- and betacoronaviruses have been observed to infect humans. Past

outbreaks of SARS-CoV and MERS-CoV, both betacoronavirus, are the result of

a spillover from animals. Recently, a new strain termed SARS-CoV-2 emerged in

December 2019 in Wuhan, China. Severe cases of COVID-19, the disease caused by

SARS-CoV-2, lead to acute respiratory distress syndrome (ARDS). One contributor to

the development of ARDS is cytokine storm, an overwhelming inflammatory immune

response. Long non-coding RNAs (lncRNAs) are genetic regulatory elements that,

among many functions, alter gene expression and cellular processes. lncRNAs identified

to be pertinent in COVID-19 cytokine storm have the potential to serve as disease

markers or drug targets. This project aims to computationally identify conserved lncRNAs

potentially regulating gene expression in cytokine storm during COVID-19. We found

22 lncRNAs that can target 10 cytokines overexpressed in COVID-19 cytokine storm,

8 of which targeted two or more cytokine storm cytokines. In particular, the lncRNA

non-coding RNA activated by DNA damage (NORAD), targeted five out of the ten

identified cytokine storm cytokines, and is evolutionarily conserved across multiple

species. These lncRNAs are ideal candidates for further in vitro and in vivo analysis.

Keywords: lncRNA, cytokine storm, genes, markers, regulation, COVID-19

INTRODUCTION

Coronavirus is a family of respiratory viruses including alpha-, beta-, gamma-, and delta-
coronaviruses, of which only alpha- and beta-coronaviruses have been observed to infect
humans (Cui et al., 2019). Past outbreaks of SARS-CoV and MERS-CoV, both betacoronaviruses,
are the result of zoonotic spillover (de Wit et al., 2016). In December 2019, a new
strain of coronavirus termed SARS-CoV-2 emerged in a seafood market in Wuhan, China,
thought to be a zoonotic spillover from pangolins (Sun et al., 2020; Zhang et al., 2020).
While SARS-CoV-2 shares a 96% sequence similarity to a horseshoe bat coronavirus, there
is ongoing research to identify a more recent intermediate host species (Mallapaty, 2020;
Zhou P. et al., 2020). As of October 14, 2020, over 38.4 million cases of COVID-19,
the disease caused by SARS-CoV-2, have been confirmed worldwide (Dong et al., 2020).
Common symptoms of COVID-19 include fever, cough, pounding headaches, anosmia and
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ageusia, yet one unique attribute is the role of asymptomatic
individuals in the spread of disease (Guan et al., 2020; Vaira
et al., 2020). Asymptomatic spread is estimated to be responsible
for 40–45% SARS-CoV-2 transmission, as compared to 9.8% in
MERS-CoV (Al-Tawfiq, 2020; Oran and Topol, 2020). Severe
cases of COVID-19 has been shown to lead to acute respiratory
distress syndrome (ARDS), the leading cause of death from
COVID-19 (Ruan et al., 2020). ARDS has a mortality rate
of around 75%; thus it is critical to develop a thorough
understanding of this pathology, examine contributory factors,
dissect possible role for host genetics in variable disease outcome
and search for potential treatments (Yang et al., 2020).

One contributor to the development of ARDS is cytokine
storm, a dysregulated, overwhelming pro-inflammatory immune
response (Ye et al., 2020). Cytokines are the main mode of
communication between innate immune cells, and are a part
of a normal innate immune response that serves as the first
line of defense against pathogens (Altan-Bonnet and Ratnadeep,
2019; Ye et al., 2020). However, an aggressive pro-inflammatory
response can also circulate throughout the body and cause
damage to tissue resulting in septic shock andmulti-organ failure
(Diao et al., 2020; Tay et al., 2020; Xiong et al., 2020). Multiple
studies have identified cytokines upregulated in cytokine storm,
including IL-2R, IL-6, IL-8, IL-10, and TNFα (Chu et al.,
2020; Liu et al., 2020; Mehta et al., 2020; Qin et al., 2020).
Thus, a potential treatment modality is the regulation of pro-
inflammatory host immune response to COVID-19.

Currently, there are no approved antiviral treatments or
vaccines specific for COVID-19 (Wu C. et al., 2020; Wu
Y. et al., 2020). Current treatment consists of symptomatic
and supportive care, with treatment of secondary conditions.
Treatments currently in use include antivirals such as remdesivir
and convalescent plasma (Chen G. et al., 2020; Chen L. et al.,
2020; Chen N. et al., 2020; Chen X. et al., 2020). The current
protocol for diagnosing COVID-19 is a viral RNA RT-PCR
test with a nasopharyngeal or oropharyngeal sample (Beeching
et al., 2020). Antibody tests using blood samples have also been
developed to detect IgG and IgM antibodies indicative of a prior
exposure. These tests are performed using ELISA and lateral flow
immunoassays, and have the caveat of detecting cases after the
first week of infection and lower sensitivity for asymptomatic
individuals (Li et al., 2020; Okba et al., 2020). A diversity of
vaccine candidates are currently being tested, with 115 vaccine
candidates and five vaccines in phase 1 clinical trials (Thanh
Le et al., 2020). Concomitant with the need for treatments
tailored to COVID-19 is the need for a diverse set of diagnostic
and prognostic markers related to disease severity. Markers
forecasting increased disease severity can serve as indicators for
specific treatments before a severe disease phenotype is observed,
leading to earlier interventions and better patient outcomes. So
far, raised procalcitonin (PCT) levels and low platelet counts
have been found to be associated with an increased risk of severe
cases of COVID-19 infection and death (Li et al., 2020; Lippi and
Plebani, 2020; Lippi et al., 2020). One avenue that is yet to be
explored is COVID-19 diagnostic markers designed on the basis
of gene regulation. While viral RNA load has been examined as a
proxy for virus titer and a predictor of disease severity, no study

to date has looked at endogenous genetic regulatory elements as
markers of COVID-19 disease severity. Thus, this area warrants
further inspection and characterization to inform treatment and
diagnostic development.

Long non-coding RNAs, or lncRNAs, are non-coding RNA
strands over 200 nucleotides in length that have structural,
catalytic, or regulatory roles (Yang et al., 2014). So far, numerous
lncRNAs including MALAT1, SNHG14, and XIST have been
identified to play roles during inflammatory immune response
(Chen C. C. et al., 2018; Chen H. et al., 2018; Zhong et al., 2018;
Ma et al., 2019). LncRNAs NORAD, PAAN andNRON have been
demonstrated to be important in modulating viral pathogenesis
in hepatitis C, influenza A and HIV-1, respectively (Imam
et al., 2015; Sur et al., 2018; Wang et al., 2018). Additionally, a
database of differential lncRNA expressed in mice during SARS-
CoV pathogenesis through RNA-seq has been created (Josset
et al., 2014), including a recent characterization of transcriptional
lncRNA in normal bronchial epithelial cells, underscoring their
importance in immune response regulation (Vishnubalaji et al.,
2020). There has been significant progress made in the creation
of tools to computationally identify and functionally annotate
lncRNAs. Human ncRNA expression profiles have been created
for normal tissues, cancer cell lines, and subcellular components
(Djebali et al., 2012; Klijn et al., 2015; Uhlén et al., 2015).
Functionally, softwares are available to predict lncRNA-RNA
and lncRNA-protein interactions (Kato et al., 2010; Bellucci
et al., 2011; Kiryu et al., 2011; Lu et al., 2013). Tools are also
available to predict lncRNA secondary structures, consensus
secondary structures, tertiary structures and joint secondary
structures, and a database has also been created to compile
lncRNA-target relationships from literature (Iwakiri et al., 2016;
Cheng et al., 2019). However, the lncRNA transcriptome has
yet to be comprehensively annotated; challenges in the area
of lncRNA research include the relative low expression levels
of lncRNAs, lack of understanding of the lncRNA sequence–
function relationship, and weak conservation during evolution
(Uszczynska-Ratajczak et al., 2018). Using publicly available
lncRNA databases and computational tools, we sought to identify
lncRNAs involved in COVID-19 cytokine storm and understand
their role in disease pathology.

MATERIALS AND METHODS

Identification of Significant Cytokines in
COVID-19 Cytokine Storm
Cytokines associated with increased COVID-19 cytokine storm
were identified using the search engines Google Scholar, PubMed,
and Web of Science, and a literature review by Costela-Ruiz
et al. (2020) amongst others. The literatures were retrieved and
manually curated for cytokine reports in several COVID-19
patient cases. Our literature search included only publications
between 2019 and 2020 capturing the period of COVID-19
outbreak. Based on the reports from published literatures,
cytokines selected for further analysis were corroborated by at
least 3 sources to be associated with increased COVID-19 severity
and subsequent cytokine storm.
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Prediction of Cytokine-lncRNA
Relationships
Cytokines identified in the previous step were queried in
the LncRNA2Target, a database compiling lncRNA-target
relationship, as described by Cheng et al. (2019). Briefly, cytokine
official gene names were used to query against human lncRNAs
database, using default settings. Sequences for identified lncRNAs
were retrieved from NONCODE (noncode.org) (Zhao et al.,
2016), NCBI Gene (ncbi.nlm.nih.gov/gene), and NCBI Gene
Expression Omnibus (GEO) (ncbi.nlm.nih.gov/geo). In order to
ascertain the binding ability of lncRNA-target interactions, we
assessed a minimum free energy for each cytokine-lncRNA gene
pair previously identified by LncRNA2Target. LncTar was used to
calculate the normalized binding free energy (ndG) for lncRNAs
and their associated cytokine genes as described (Li et al., 2015).
LncRNA sequences are usually long, therefore, where too long
sequences were found, to be accepted by LncTar were divided into
sections around 17,500 nt in length to be run individually.

Protein-Protein Network Analysis of
Significant Cytokines in COVID-19
Cytokine Storm
To gain insight into molecular interactions between cytokines
and pathogenic mechanisms, we performed a protein-protein
interaction network analysis of the 10 most significant cytokines
using Search Tool for the Retrieval of Interacting Genes
database (STRING-DB;string-db.org, Szklarczyk et al., 2017).
The gene sequences associated with the official gene names
were retrieved from ensembl database (ensembl.org) and used
in performing the network analysis as described (Jiang et al.,
2019; Morenikeji and Thomas, 2019). In order to visualize
the functional relationships between lncRNAs, cytokines targets,
and metabolic pathways, a network analysis was created using
Cytoscape (v3.7.2) (cytoscape.org). To identify significant nodes
in the network, Molecular Complex Detection (MCODE); a
Cytoscape plug-in was used to generate network clustering based
on regions with dense connections (Jiang et al., 2019). We
hypothesize that lncRNA that target multiple genes with the same
molecular function will perturb or regulate the same pathways
during the disease. The lncRNA-target-pathways network was
constructed with Cytoscape (v3.7.2) program (Smoot et al.,
2011).

Pathway Enrichment, Functional
Annotation, and Gene Ontology Analysis of
Significant Cytokines and Identified
lncRNAs Associated With COVID-19
Cytokine Storm
In order to elucidate pathways that are significantly
perturbed in COVID-19 cytokine storm, GeneAnalytics
(geneanalytics.genecards.org) was used to identify metabolic
pathways and gene ontology terms associated with such
cytokines. Likewise, to understand the role that the identified
lncRNAs play in disease pathology, we used GeneAnalytics
to identify associated diseases, as described (Fuchs et al.,

2016). Metabolic pathways, gene ontology terms, and diseases
selected for further analysis had a corrected p-value equal to
or below 0.0001 and were associated with 4 or more cytokines.
GeneAnalytics was used to identify diseases associated with
the lncRNAs identified previously. Diseases selected for further
analysis had a corrected p-value equal to or below 0.0001 and
were associated with 4 or more lncRNAs.

Evolutionary Trace of Non-coding RNA
Activated by DNA Damage (NORAD),
Structural Prediction and Characterization
The lncRNA NORAD (Non-Coding RNA Activated by DNA
Damage) found from the previous steps was significantly
predicted/reported to target more cytokine genes than any
other lncRNA, so it was selected for further evolutionary trace
analysis into to depict its evolutionary conservation among
other species. Although, lncRNAs are known to be poorly
conserved, therefore we proposed that a lncRNA targeting
multiple genes with high evolutionary conservation would be
a significant maker during COVID-19 cytokine storm. NCBI
BLASTn was used to search for related lncRNAs in other
species against the NORAD nucleotide sequence. Out of the
top 100 results returned, one sequence was selected for each
genus returned. Amultiple sequence alignment and phylogenetic
tree was created using MEGA (v7), with the neighbor-joining
clustering method and bootstrapping with 500 iterations (Kumar
et al., 2016). The phylogenetic tree was imported to ITOL
(itol.embl.de) for proper visualization (Letunic and Bork,
2019). In addition, based on the annotated human Reference
Sequence (RefSeq) of NORAD (LINC00657), we obtained its
mammalian conservation across hundreds of genomic sequences
and expressed sequence tags (ESTs) using UCSC Genome
Browser (https://genome.ucsc.edu/cgi-bin/hgGateway). In order
to gain insight into the thermodynamic stability and evolutionary
conservation of lncRNANORAD secondary structure, we carried
out a multiple sequence alignment of six mammals (human,
chimpanzee, monkey, rat, mouse and dog) and transferred
to RNAzWebServer (http://rna.tbi.univie.ac.at/cgi-bin/RNAz/
RNAz.cgi), using default parameter as described (Mathews et al.,
2004; Lorenz et al., 2011). This server uses dynamic programming
algorithm to determine encoding base-pair probabilities and
RNA folding. A predicted RNA structure from the MSA with
probability higher than 0.5 (p > 0.5) is considered a strong
evidence for structural RNA and evolutionary conservation.

RESULTS

Identification of Significant Cytokines in
COVID-19 Cytokine Storm
As of June 3, 2020, 210 papers appear in Web of Science, 518
papers in PubMed, and 6,420 results in Google Scholar for
COVID-19 cytokine storm. Our literature search revealed a total
of 17 papers that identified 28 cytokines to be significantly
involved or associated with COVID-19 cytokine storm
(Figure 1A, Supplementary Table 1). To pin-point significantly
reported cytokines, ten cytokines met the threshold for
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FIGURE 1 | Cytokines by number of research articles identifying the cytokine to be associated with COVID-19 disease severity and/or cytokine storm (A). Cytokines

used in further analysis (10) were associated with 3 or more papers that cited them as correlated with COVID-19 disease severity and/or cytokine storm (B).

consideration of having 3 or more research articles citing it
as being associated with COVID-19 disease severity and/or
cytokine storm, and were selected for further analysis (Table 1,
Figure 1B). IL-6, IL-10, and IP-10 were mentioned most often
in literature as being significant, being mentioned in 13, 6, and 6
papers, respectively.

Prediction of Cytokine-lncRNA
Relationships
We identified a total of 24 cytokine-lncRNA relationships using
LncRNA2Target (Table 2). Two lncRNAs were removed from
further analysis due to identical primer sequences. Thus, 22
lncRNAs were selected for further analysis. All lncRNA-target
pairs identified by LncRNA2Target had a normalized binding

free energy (ndG) above −0.02 (Supplementary Table 2). The
lncRNAs LNC-LBCS, STXBP5-AS1, and CDK6-AS1 were too
long to run in LncTar and had to be divided intomultiple sections
for analysis. The lncRNANORADwas found to pair with five out
of ten of the cytokines in our study including IL-6, IL-10, CSF3,
TNFα and CXCL10, more than any other lncRNAs (Table 3).
Therefore, this lncRNA was selected for further evolutionary
trace analysis to identify its conservation across other species.

Protein-Protein Network Analysis of
Significant Cytokines in COVID-19
Cytokine Storm
A protein-protein network of the 10 most significant cytokines
in COVID-19 cytokine storm was created to elucidate molecular
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TABLE 1 | COVID-19 cytokine storm significant cytokines used for further lncRNA

analysis.

Cytokine target Official gene name mRNA sequence accession number

IL-2 IL-2 BC070338.1

IL-6 IL-6 BC015511.1

IL-7 IL-7 BC047698.1

IL-10 IL-10 BC104253.1

G-CSF CSF3 BC033245.1

TNFα TNFα BC028148.1

IFNγ IFNγ BC070256.1

IP-10/CXCL10 CXCL10 BC010954.1

MCP1/CCL2 CCL2 BC009716.1

MIP1a/CCL3 CCL3 BC071834.1

Official gene names and mRNA sequence accession number are shown.

TABLE 2 | The most significant lncRNAs associated with COVID-19 cytokine

storm cytokines, accompanied by lncRNA target prediction analysis using average

ndG values.

Cytokine target Number of

lncRNAs

lncRNA gene names Average ndG

IL-2 3 BANCR, lnrCXCR4,

DRAIC

−0.0392

IL-6 7 lnc-IL7R*, LNCSRLR,

SBF2-AS1,

RAD51-AS1,

LNC-LBCS, NORAD,

SENCR

−0.038409091

IL-7 2 TUG1, SBF2-AS1 −0.06735

IL-10 4 GAS5, lnrCXCR4,

NORAD, SNHG1

−0.0669

CSF3 2 STXBP5-AS1, NORAD −0.045418182

TNFα 6 THRIL, RAD51-AS1,

CASC15, NORAD,

GAS5, NRCP*

−0.044842857

IFNγ 2 TMEVPG1, PRC1-AS1 −0.0257

CXCL10 1 NORAD −0.0319

CCL2 5 MALAT1, TUG1,

RAD51-AS1, SNHG1,

NRAV

−0.04588

CCL3 3 lnrCXCR4, NRAV,

CDK6-AS1

−0.067471429

lncRNAs with an asterisk are not official gene names, and are not annotated in NCBI gene.

ndG; a cutoff to determine whether an RNA molecule interacts with target gene.

interaction and possible mechanism for co-expression using
STRING-DB (Figure 2). We found IL-2 connected to the other
cytokines only through text mining, while all other cytokines
are interconnected with each other through both text mining
and co-expression. In addition, IL-6, TNFα, CCL3, CXCL10, and
IFNγ are all connected to IL-10 through interactions identified
from curated databases. TNF is experimentally determined to be
connected to IFNγ. A network analysis of lncRNA and cytokine
pathway associations was created using Cytoscape (Figure 3).
The lncRNAs lnrCRCX4, NORAD, and RAD51-AS1 significantly

TABLE 3 | The most significant lncRNAs associated with COVID-19 cytokine

storm cytokines, along with the lncRNA accession number.

lncRNA gene name Number of

cytokine targets

Accession number

NORAD 5 NONHSAT079548.2

RAD51-AS1 3 NONHSAT041865.2

lnrCXCR4 3 GSE104018

SBF2-AS1 2 NONHSAT017939.2

TUG1 2 NONHSAT084833.2

GAS5 2 NC_000001.11:c173868882-

173863899

SNHG1 2 NONHSAT021826.2

NRAV 2 NONHSAT031176.2

BANCR 1 NONHSAT131775.2

DRAIC 1 NC_000015.10:69561720-

69571440

lnc-IL7R* 1 AL713738.1

LNCSRLR 1 NC_000003.12:c146069185-

146066344

LNC-LBCS 1 NC_000006.12:c19804759-

19729421

SENCR 1 NONHSAT025072.2

STXBP5-AS1 1 NC_000006.12:c147204614-

146841388

THRIL 1 NONHSAT164169.1

NRCP* 1 NR_046371.2

TMEVPG1 1 NONHSAT029277.2

PRC1-AS1 1 NC_000015.10:90966369-

90988624

MALAT1 1 NC_000011.10:65497738-

65506516

CDK6-AS1 1 NC_000007.14:92836483-

92917187

CASC15 1 NONHSAT108049.2

lncRNAs with an asterisk are not official gene names; not annotated in NCBI database.

target or regulate 3 or more cytokines, while GAS5, NRAV,
TUG1, SBF2-AS1, and lincIRX5 lncRNAs regulate two cytokines.
Three major groups of pathways were cataloged based on the
number of cytokines present in the pathway; in particular, it was
found that eight pathways were associated with the cytokine IL-6.

Pathway Enrichment, Functional
Annotation, and Gene Ontology Analysis of
Significant Cytokines and Identified
lncRNAs Associated With COVID-19
Cytokine Storm
GeneAnalytics mapped 10 out of 10 significant cytokines and 19
out of 21 lncRNAs with official gene names. Forty eight pathways
were found to be associated with the 10 cytokines, including
numerous molecular, cellular and disease pathways (Figure 4,
Supplementary Table 3). All of the significant cytokines were
involved in three pathways: PEDF induced signaling, cytokine
signaling in immune system, and innate immune system. All
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FIGURE 2 | Protein-protein interaction network of the 10 cytokines associated with COVID-19 cytokine storm (Edge color legend; blue: from curated database; pink:

experimentally determined; green: text mining; black: co-expression).

FIGURE 3 | Network of lncRNA and cytokine pathway associations for most significant cytokines in COVID-19 cytokine storm. Cytokines are shown in green,

lncRNAs associated with multiple cytokines are shown in darker shades of pink, and pathways are shown in blue.

significant cytokines except for IFNγ are also involved in the
pathways: Akt signaling, PAK pathway, and ERK signaling.

Fifteen biological processes, 2 cellular components and 1
molecular function gene ontology terms were identified to be
associated with the 10 significant cytokines (Table 4). All of

the significant cytokines correlated with four gene ontology
terms: cytokine activity, immune response, extracellular space,
and extracellular region. One biological process, cytokine-
mediated signaling pathway, is correlated with all significant
cytokines except for IFNγ. Twenty cancer related diseases
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FIGURE 4 | Some of the pathways associated with cytokines significant to COVID-19 cytokine storm (see Supplementary Table 3 for complete list).

were found to be associated with the identified lncRNAs
(Table 5), The cancers identified are not localized, and span
across multiple organ systems. The disease with the most hits,
hepatocellular carcinoma, is associated with ten out of nineteen
mapped lncRNAs.

Evolutionary Trace of lncRNA NORAD and
Stable Folding
Twenty three unique genera were represented in the top 100
results from a NCBI BLASTn search using the lncRNA NORAD.
For genera with multiple species represented in the results,
the species with the max score was selected for phylogenetic
analysis. A phylogenetic tree, labeled by species and accession
number was created and visualized (Figure 5). There are three
major ingroups, though two of the three ingroups have moderate
bootstrap values (0.7 and 0.654). The ingroup with the Homo
sapiens NORAD sequence consists entirely of primates. The
Homo sapiens NORAD sequence was most phylogenetically
related to another lncRNA found in Pan paniscus, with a
bootstrap value of 1. The 23 sequences represented in the tree are
not exclusively from primates; 6 of the 9 sequences in the ingroup
shown in black are from non-primate species. Figure 6A depicts
annotated NORAD conserved regions across several mammalian
genomic sequences and ESTs from the UCSC genome browser,
while Figures 6B–E show two representation of significantly

conserved RNA folding and multiple sequence alignment among
six mammals (human, chimpanzee, monkey, rat, mouse and dog)
with p-values of 0.92 and 1.0, respectively. A p-value above 0.5
shows that lncRNANORAD has a significantly high evolutionary
conservation among these mammalian genomes and that the
higher folding strength of NORAD is above threshold, an
additional evidence of evolutionary conservation.

DISCUSSION

SARS-CoV-2 is a novel pathogen that has evolved into a
pandemic, with significant mortality and morbidity rates.
With millions infected, it is imperative to develop a better
understanding of its pathology in order to develop treatments.
An indicator for increased COVID-19 severity is cytokine storm,
of which its genetic regulatory elements are poorly understood.
We identified lncRNAs that can target significant cytokines
during COVID-19 cytokine storm with computational tools.
Ten cytokines significant in COVID-19 cytokine storm were
selected out of a review of 17 papers for further analysis
(as of May 2020). The cytokine IL-6 was identified to be
significant in 13 out of 17 papers reviewed. IL-6 is currently
being investigated as a potential drug target, with clinical
trials underway for the IL-6 antagonist tocilizumab (Guaraldi
et al., 2020; Kewan et al., 2020; Liu et al., 2020; Xu et al.,
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TABLE 4 | Gene ontology terms associated with cytokines significant to COVID-19 cytokine storm.

GO term GEO ID Ontology type Number of cytokines Cytokines GeneAnalytics score

Cytokine activity GO:0005125 Molecular function 10 IL-10, IL-2, CSF3, IL-7, CCL2,

CXCL10, IL-6, IFNγ, CCL3, TNFα

66.06

Immune response GO:0006955 Biological process 10 IL-10, IL-2, CSF3, IL-7, CCL2,

CXCL10, IL-6, IFNγ, CCL3, TNFα

53

Extracellular space GO:0005615 Cellular component 10 IL-10, IL-2, CSF3, IL-7, CCL2,

CXCL10, IL-6, IFNγ, CCL3, TNFα

34.8

Extracellular region GO:0005576 Cellular component 10 IL-10, IL-2, CSF3, IL-7, CCL2,

CXCL10, IL-6, IFNγ, CCL3, TNFα

30.94

Cytokine-mediated signaling

pathway

GO:0019221 Biological process 9 IL-10, IL-2, CSF3, IL-7, CCL2,

CXCL10, IL6, CCL3, TNFα

52

Signal transduction GO:0007165 Biological process 7 IL-10, CSF3, IL-7, CCL2, CXCL10,

IL-6, CCL3

16.95

Cellular response to

lipopolysaccharide

GO:0071222 Biological process 6 IL-10, CSF3, CCL2, CXCL10, IL-6,

TNFα

33.47

Inflammatory response GO:0006954 Biological process 6 IL-10, CCL2, CXCL10, IL-6, CCL3,

TNFα

26.78

Positive regulation of cell

proliferation

GO:0008284 Biological process 6 IL-2, CSF3, IL-7, CXCL10, IL-6, IFNγ 23.94

Positive regulation of

transcription By RNA

polymerase II

GO:0045944 Biological process 6 IL-10, IL-2, CSF3, CXCL10, IL-6,

TNFα

17.63

Humoral immune response GO:0006959 Biological process 5 IL-7, CCL2, IL-6, IFNγ, TNFα 34.58

Growth factor activity GO:0008083 Molecular function 5 IL-10, IL-2, CSF3, IL-7, IL-6 26.99

Positive regulation of gene

expression

GO:0010628 Biological process 5 IL-7, IL-6, IFNγ, CCL3, TNFα 19.62

Positive regulation of

tyrosine Phosphorylation of

STAT protein

GO:0042531 Biological process 4 IL-2, IL-6, IFNγ, TNFα 24.91

Positive regulation of

DNA-binding transcription

factor activity

GO:0051091 Biological process 4 IL-10, CSF3, IL-6, TNFα 22.41

Cell-cell signaling GO:0007267 Biological process 4 IL-2, IL-7, CXCL10, CCL3 18.44

MAPK cascade GO:0000165 Biological process 4 IL-2, CCL2, CCL3, TNFα 17.8

Negative regulation of

apoptotic process

GO:0043066 Biological process 4 IL-10, IL-2, IL-7, IL-6 13.44

2020). A total of 22 lncRNAs were identified to bind with
the 10 significant cytokines, all with binding free energies <-
0.02. The lncRNA NORAD targeted 5 of the 10 significant
cytokines, while the lncRNAs RAD51-AS1 and lnrCXCR4 each
target three of the significant cytokines. Since lncRNAs are
known to contribute to transcriptional and epigenetic regulation
as well as post transcriptional modifications, we hypothesize
that lncRNAs that are able to target and bind to significant
cytokine nucleotide sequences have the potential to downregulate
cytokine expression, which can ameliorate the pro-inflammatory
immune response to COVID-19 infection, mitigating cytokine
storm in the process. Potential translational approaches to
administering this technology in the clinical setting include
antisense oligonucleotides knockdown, RNAi knockdown, and
viral gene therapy (Fatemi et al., 2014; Lennox and Behlke, 2016;
Roberts et al., 2020).

NORAD targeted five of the ten cytokines involved in
cytokine storm, more than any other identified lncRNA.

NORAD, short for non-coding RNA activated by DNA
damage, is responsible for chromosome stability and mitotic
division (Lee et al., 2016; Tichon et al., 2016). Upregulation
of NORAD is associated with 6 different types of cancers,
and overexpression of NORAD leads to poor overall survival
in cancer patients (Yang et al., 2019). In the context of
SARS-CoV-2 viral infection, upregulation of NORAD
may be a response to aberrant viral nucleotide replication
within macrophages.

RAD51-AS1 is shown to inhibit DNA repair, and has a
conserved E2F1 binding site in its promoter region (Zhang
et al., 2017). RAD51-AS1 has been shown to inhibit DNA
damage repair ability in hepatocellular carcinoma cells. E2F1 is
a transcription factor that regulates the cell cycle and apoptosis
(Qin et al., 1994; Shan and Lee, 1994; Wu and Levine, 1994).
RAS51-AS1 may be expressed in the context of viral replication
within macrophages. RAD51-AS1 has also been proposed as a
prognostic marker for epithelial ovarian cancer (Zhang et al.,
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TABLE 5 | Diseases associated with identified lncRNAs in COVID-19 cytokine storm.

Disease Number of hits lncRNAs GeneAnalytics score

Hepatocellular carcinoma 10 BANCR, CASC15, CRDNE, DRAIC, GAS5, MALAT1,

NORAD, PRC1-AS1, SNHG1, TUG1

12.21

Gastric cancer 7 BANCR, CASC15, CRDNE, DRAIC, GAS5, MALAT1,

SNHG1, TUG1

8.95

Colorectal cancer 7 BANCR, CRDNE, GAS5, MALAT1, NORAD, SNHG1,

TUG1

8.29

Breast cancer 7 CRDNE, DRAIC, GAS5, MALAT1, NORAD,

STXBP5-AS1, TUG1

8.22

Bladder cancer 6 BANCR, DRAIC, GAS5, MALAT1, NORAD, TUG1 8.39

Lung cancer 6 BANCR, GAS5, MALAT1, SBF2-AS1, SNHG1, TUG1 7.13

Osteogenic sarcoma 5 BANCR, GAS5, MALAT1, SNHG1, TUG1 7.64

Melanoma 5 BANCR, GAS5, MALAT1, SBF2-AS1, SNHG1, TUG1 6.9

Esophageal cancer 5 GAS5, MALAT1, NORAD, SBF2-AS1, SNHG1 6.83

Pancreatic cancer 5 CRDNE, GAS5, MALAT1, NORAD, TUG1 6.65

Prostate cancer 5 DRAIC, GAS5, MALAT1, SNHG1, TUG1 6.03

Thyroid cancer, Non-medullary 1 4 BANCR, CRDNE, GAS5, MALAT1 7.17

Malignant glioma 4 CRDNE, GAS5, MALAT1, TUG1 6.39

Bladder urothelial carcinoma 4 CRDNE, GAS5, MALAT1, TUG1 6.1

Astrocytoma 4 CASC15, CSK6-AS1, GAS5, SNHG1 5.61

Neuroblastoma 4 CASC15, GAS5, MALAT1, SNHG1 5.46

Cervical cancer 4 CRDNE, GAS5, MALAT1, TUG1 5.24

Renal cell carcinoma, Non-papillary 4 CRDNE, GAS5, MALAT1, TUG1 5.17

Lung cancer susceptibility 3 4 DRAIC, GAS5, MALAT1, TUG1 5.11

Ovarian cancer 4 CRDNE, GAS5, MALAT1, TUG1 5

2017). In the context of SARS-CoV-2 infection, RAD51-AS1 may
be expressed in response to cellular damage from viral replication
within macrophages, leading to expression of pro-inflammatory
cytokines. The lncRNA lnrCRCX4 has an NCBI GEO entry, but
does not have any associated published literature.

The lncRNAs SBF2-AS1, TUG1, GAS5, SNHG1, and NRAV
all target two of the significant cytokines. SBF2-AS1 has been
proposed as a disease marker for A. fumigatus (Riege et al., 2017).
TUG1 knockdown has been found to decrease inflammatory
response in atherosclerotic lesions (Zhang H. et al., 2018). In
contrast, TUG1 overexpression results in decreased levels of
pro-apoptotic factors and inflammation in lipopolysaccharide
exposed H9c2 cells cytokines (Zhang L. et al., 2018). GAS5
has also been shown to inhibit NF-κB and Notch signaling
pathways and reduce lipopolysaccharide inflammatory injury
in ATDC5 chondrocytes (Li et al., 2018). SNHG1 upregulation
has been found to significantly decrease the production of
pro-inflammatory cytokines–NO, PGE2, IL-6, and TNFα in
human chondrocytes (Lei et al., 2019). These lncRNAs have been
demonstrated to have the potential to be disease markers and
negative regulators of pro-inflammatory cytokines.

Notably NRAV, abbreviated for negative regulation of antiviral
response, is shown to downregulate interferon stimulating
genes (ISG) (Ouyang et al., 2014). Silencing NRAV has been
shown to suppress influenza A virus replication and virulence.
Interestingly, the receptor for COVID-19, ACE2, is an ISG
(Ziegler et al., 2020). Because SARS-CoV-2 must balance

aggravating the host immune response and promoting infectivity,
the expression levels of NRAV would be an interesting lncRNA
for future studies to characterize gene expression.

The metabolic pathways that involve 8 or more of the 10
significant cytokines; PEDF signaling, cytokine signaling in the
immune system, innate immune system, Akt signaling, PAK
pathway, and ERK signaling; are all related to an inflammatory
response to a pathogen (Kurosawa et al., 2000; Yabe et al., 2005;
Chan et al., 2007; Sun et al., 2018). Likewise, the gene ontology
terms associated with the 10 significant cytokines are consistent
with pro-inflammatory innate immune response. The diseases
associated with the identified lncRNAs are cancers of multiple
organ systems possibly because lncRNAs are tissue specific. The
breadth of the organ systems affected may be linked to the
systemic nature of cytokine storms. Cancers are a dysregulation
of normal cellular processes resulting in uncontrolled growth;
thus, it parallels with cytokine storm in that both are hyper-
activations of normal cellular processes.

An evolutionary trace was performed on the lncRNANORAD
using 23 highly similar sequences from neighboring species.
Despite lncRNAs as a whole being poorly conserved (Hezroni
et al., 2015), NORAD shows a high degree of conservation among
related species, especially in mammals. All of the sequences in the
same branch of the tree (in blue) as the Homo sapiens NORAD
sequence are primates. The species sharing the closest common
ancestor, Pan paniscus, is paired with theHomo sapiens sequence
with a bootstrap value of 1. This indicates that Pan paniscus
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FIGURE 5 | Evolutionary trace of lncRNA NORAD in 23 related species, with bootstrap values at each node.

FIGURE 6 | Annotated reference sequence of human lncRNA NORAD, its genomic and expressed sequence tags (ESTs) conservation across the mammalian

genome (A); thermodynamically stable and evolutionarily conserved RNA-fold from multiple sequence alignment of six mammalian NORAD genomic sequences with

probabilities of 0.92 (B) and 1.0 (D), respectively; multiple sequence alignment of six mammalian NORAD genomic sequences used for predicting secondary

structures; colors show mutational pattern with respect to the structure (C,E). Pale color indicates a base pair cannot be found in some alignment.
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is a promising model organism for further evaluating the role
and pathology of NORAD in COVID-19 disease pathology, and
potentially useful for testing newmedications before clinical trials
in humans. LncRNAs could fold in diverse complex manner
to form secondary and varying functions. Our study reveal a
strong evidence of conserved NORAD structural folding across
mammalian genomes with a high thermodynamic stability, given
its peculiar ability to interact or bindmany cytokines. In addition,
its high folding strength suggests a positive correlation with
expression and functional significance. Taken together, these
results provide evidence of significant evolutionary conservation
and functional stability across mammalian genomes, further
strengthening its candidacy for gene regulation during immune
response to SARS-CoV-2 perturbation.

CONCLUSION

In SARS-CoV-2 infection, no treatments are approved to
treat cytokine storm, a precursor to ARDS. We sought
to computationally identify cytokines that were significantly
upregulated in COVID-19 cytokine storm, and lncRNAs that
can target these cytokines. From literature review, we found 10
cytokines to be significantly upregulated in COVID-19 cytokine
storm and were selected for further analysis. We identified
22 lncRNAs that can target these cytokines, 8 of which can
target multiple cytokines. Of particular and possibly clinical
importance, we report that lncRNA NORAD can target 5 of the
10 significant cytokines. Though lncRNAs are known to be less
conserved across species, conversely and of interest, we found
NORAD to be highly conserved across multiple mammalian
species, in addition to previous reports of its overexpression
associated with multiple cancer phenotypes. Additionally, 5
lncRNAs that target multiple cytokines have been experimentally
identified to have roles in inflammatory responses. Therefore,
these lncRNAs show potential as targets for intervention during
SARS-CoV-2 pathogenesis, and are prime candidates for further
in vivo and in vitro analysis.
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