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The regenerative capacity of the peripheral nervous system after an injury is limited,
and a complete function is not recovered, mainly due to the loss of nerve tissue after
the injury that causes a separation between the nerve ends and to the disorganized
and intermingled growth of sensory and motor nerve fibers that cause erroneous
reinnervations. Even though the development of biomaterials is a very promising field,
today no significant results have been achieved. In this work, we study not only the
characteristics that should have the support that will allow the growth of nerve fibers,
but also the molecular profile necessary for a specific guidance. To do this, we carried
out an exhaustive study of the molecular profile present during the regeneration of
the sensory and motor fibers separately, as well as of the effect obtained by the
administration and inhibition of different factors involved in the regeneration. In addition,
we offer a complete design of the ideal characteristics of a biomaterial, which allows the
growth of the sensory and motor neurons in a differentiated way, indicating (1) size and
characteristics of the material; (2) necessity to act at the microlevel, on small groups of
neurons; (3) combination of molecules and specific substrates; and (4) temporal profile of
those molecules expression throughout the regeneration process. The importance of the
design we offer is that it respects the complexity and characteristics of the regeneration
process; it indicates the appropriate temporal conditions of molecular expression, in
order to obtain a synergistic effect; it takes into account the importance of considering
the process at the group of neuron level; and it gives an answer to the main limitations
in the current studies.
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INTRODUCTION

The peripheral nervous system (PNS) is responsible for
connecting the periphery with the central nervous system,
transmitting sensory signals, from the sensors to the brain
(afferent) and motor and from the brain to the muscles
and glands (efferent). An essential feature of the PNS is
the regenerative capacity it presents after suffering damage.
Depending on the degree of damage, the number of damaged
nerve structures, and the proximity to the nucleus, especially
important for its role in the activation of the regenerative
machinery (regeneration associated genes), regeneration will be
more or less complete. The two main problems were (i) the
distance or gap that is generated between the two ends of the
damaged nerve and (ii) the intermingled growth of sensory
and motor fibers that leads to erroneous reinnervation of the
target tissues, sensors, and muscle fibers, respectively (Ramón
y Cajal, 1959; Nerves and nerve injuries. By Sunderland, 1969,
C.M.G., M.D., B.S., D.Sc., F.R.A.C.S.(Hon.), F.R.A.C.P., F.A.A.
(Melbourne). 10 × 7 in. Pp. 116 + xvi, with 197 illustrations.
1968. Edinburgh: E. & S. Livingstone Ltd., £ 12 10s, 1969;
Sulaiman and Gordon, 2013).

Therefore, the priority objectives of materials engineering
in this specific hot research topic are (i) the development of
biomaterials that allow the bridging of the two ends of the
damaged nerve; (ii) the provision of these biomaterials of a
substrate that guides and supports the regenerating nerves; and
(iii) the achievement of a differentiated growth of the sensory and
motor nerve fibers, each of them toward its original tissues. For
this, it is necessary to have a thorough knowledge of the repair
processes of the PNS and the molecular basis of the regeneration
of each type of nerve fiber, and we have to become able to manage
to incorporate these specific processes in the new biomaterials.

Acquiring this knowledge is a very difficult task because the
regeneration processes are extremely complex; the literature is
very broad, with different methodologies that are not comparable
to each other and results that, in most cases, are very difficult
to interpret and use for the development of new therapies.
The first big problem is that, for reasons of complexity of the
experiments, the studies are neither systematic nor complete.
Each one focuses only on some of the tens or hundreds of
factors that are involved, but the factors are not the same, and
their same form of expression (mRNA, proteins, genes. . .) is not
studied. The task is further complicated because the expression
of these factors depends drastically on the area of the nerve being
studied (neuron soma, injured tissue, proximal stump, distal
stump, target tissue. . .) and changes over time. All this makes

Abbreviations: BDNF, brain-derived neurotrophic factor; CNTF, ciliary
neurotrophic factor; CNTFR, ciliary neurotrophic factor receptor; ECM,
extracellular matrix; FGF2, fibroblast growth factor 2; GDNF, glial cell line–derived
neurotrophic factor; IGF1, insulin-like growth factor 1; IGF2, insulin-like growth
factor 2; IL6, interleukin 6; InP, indium phosphide; LIF, leukemia inhibitory factor;
LIFR, leukemia inhibitory factor receptor; MAG, myelin-associated glycoprotein;
MBP, myelin basic protein; N-CAM, neural cell adhesion molecule; NGF, nerve
growth factor; NT3, neurotrophin 3; NT4/5, neurotrophin 4/5; P0, myelin protein
0; p75, low-affinity nerve growth factor receptor; PANi, polyaniline; PMP22,
peripheral myelin protein 22; PNI, peripheral nerve injury; PNS, peripheral
nervous system; PTN, pleiotrophin; Trk, tropomyosin receptor kinase.

it very difficult to compare the results published in the different
articles and even more difficult to synthesize them. However,
the most serious problem is the excessive simplification of the
studies: there is a huge number of articles on the influence of
the different molecules on the regeneration of the peripheral
nerves, but this influence is studied considering the molecules
in isolation when, as will be explained throughout this article,
the regeneration process is very complex and is carried out,
thanks to the synergistic action of a large number of molecules,
each of which has a temporal expression pattern very different
from the others.

All this represents a very big obstacle for scientists who are
dedicated to tissue engineering, the development of advanced
biomaterials, and cell therapy for the repair of peripheral
nerve injury (PNI). Almost all of up-to-day approaches are
limited to choosing restricted amounts of biomolecules or
cells with regenerative properties, incorporating them into
scaffolds and testing to see their efficiency, but obviously, with
very poor results.

In this article, (i) we offer an understandable synthesis of the
regeneration processes after a PNI and the role that neurotrophic
molecules play in those processes; (ii) we create a framework
and rationale to be able to engineer therapeutic solutions based
on biomaterials and molecules scientifically and non-empirically
neurotrophic; and (iii) we propose biomimetic approaches for
the development of advanced bio-hybrid devices to be used
not only in severe PNI but also in nerve–machine interfaces
for amputee people.

PERIPHERAL NERVES, NERVE
INJURIES, AND AMPUTATIONS

The PNS is responsible for transmitting sensory information
from the periphery and from the internal organs to the
central nervous system (spinal cord and/or brain) and for
transmitting motor neural activity from the brain and/or spinal
cord to the muscle fibers and glands (Flores et al., 2000;
Catala and Kubis, 2013).

The main architectural elements of the PNS are the axons of
the neural cells. Thick ones (Ø > 1 µm), normally associated
with motor and exteroceptive or proprioceptive information,
are myelinated, which means surrounded by the membranes of
several Schwann cells that cover the whole axon, placed one
after the other from the soma to the synaptic terminals. The
gaps between Schwann cells, the spaces where axons are not
wrapped by the myelin sheath, are called Nodes of Ranvier. Thin
axons (0.5 < Ø < 1.5 µm), normally associated with temperature
and/or pain perception, are not individually myelinated, but
rather a single Schwann cell wraps up to 15 or more axons
together (Figure 1; Sherman and Brophy, 2005; Griffin and
Thompson, 2008; Catala and Kubis, 2013). Each myelinated axon,
or group of unmyelinated axons, is surrounded and protected by
the endoneurium, a thin cylinder of lax connective tissue made
by collagen fibrils, fibroblasts, capillaries, fixed macrophages,
and perivascular mast cells; endoneuria are filled with the
endoneural fluid, a liquid containing fine proteins equivalent
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FIGURE 1 | Representative structure of a peripheral nerve. (Top) Representation of the functional unit made up of axons wrapped by the Schwann cell. The
representation of myelinated and unmyelinated fibers and their differences by the presence of myelin and by the number of axons involved by each Schwann cell can
be observed. (Bottom) In the peripheral nervous system, each nerve fiber is surrounded by a Schwann cell and the endoneurium individually, consisting of loose
connective tissue. In turn, the individual neurons are grouped into bundles, called fascicles, and each of these is surrounded by the perineurium. The epineurium, the
outermost layer, is going to be in charge of protecting and unifying the nerve. Finally, we find the presence of the vasa nervorum.

to the cerebrospinal fluid of the central nervous system, within
which the axons are suspended (Figure 1).

The axons of each modality are divided in several fascicles,
each of them surrounded by the perineurium, a connective tissue
denser than the endoneurium, composed of several layers of
flattened fibroblasts, enclosed in basal lamina (Stewart, 2003;
Brushart, 2011). The basal lamina is a thin layer of extracellular
tissue that underlies the epithelium and surrounds muscle fibers,
adipocytes, and Schwann cells to separate them from the adjacent
connective tissue on both sides and provides strength and
elasticity to the peripheral nerve (Bunge et al., 1986; Court et al.,
2006). Perineuria tissue is circularly oriented with respect to the
direction of the axons (Figure 1; Battista and Lusskin, 1986;
Flores et al., 2000).

The total numbers of fascicles are finally covered with the
epineurium, a dense tissue sheet longitudinally oriented with
respect to the nerve fibers, made up of connective cells, some
fat cells, and collagen that holds the fascicles and irrigates the
whole structure through the vasa nervorum that run along inside
(Figure 1; Adams, 1942; Zochodne, 2018), which constitute the
blood–nerve barrier, present at epineurium and endoneurium
level where the smallest vessels are present. Formally, the
epineurium is the component that defines the peripheral nerve
as an organ, as a functional structure built by multifascicular
anatomical structures of a high number of unidirectional
channels (Figure 1). Depending on the type of information
transmitted by the neurons, their soma will be found at the level
of the dorsal root ganglia in the case of the sensory neurons

(Krames, 2015) and on the ventral horn of the spinal cord in the
case of the motor neurons of the PNS (Nógrádi et al., 2011).

The damage of any of the physical components of a peripheral
nerve, caused by accidents, military activities, endogenous or
exogenous toxins, metabolic diseases, etc., is included on the
PNI (Dubový, 2004; Gu et al., 2011). A very special case of
PNI are amputations and severe mutilations in which the distal
part of a member gets lost together with a part of the nerve
as well as with the target organs, sensory organs, and muscles.
Amputations are due to accidents or therapeutic surgeries,
mostly vascular diabetes in developed countries and war-like
actions, infections, or trauma in developing and underdeveloped
countries (Dillingham et al., 2002; Olasinde et al., 2002; Abou-
Zamzam et al., 2003). Amputations are normally accompanied
by neuropathies, by phantom limb symptoms and in the 60 to
80% of the cases also by phantom limb pain (Cuartero et al., 2012;
Nikolajsen and Christensen, 2015).

In 2005, it is estimated that there were 1.6 million people
suffering from limb amputations in the United States and a
similar number in the EU (Mohanna et al., 2003; Ziegler-
Graham et al., 2008; Marshall and Stansby, 2010). By 2050, in
the United States, the number of cases is estimated to reach 3.6
million (Varma et al., 2014).

Although many of the cases of amputations are trauma-related
[2879 patients between 2011 and 2012 in the United States (Low
et al., 2017)], the leading cause continues to be diabetes mellitus,
with more than 1.5 million lower amputations worldwide, with
1.1 million being without prosthesis (Zhang et al., 2020).
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Peripheral Nerve Regeneration and
Repair
In PNI, spontaneous repair occurs if the nerve, although
damaged, has not been sectioned, with the outer membrane
(epineurium) remaining intact regardless of the severity of the
injury suffered by the internal structures, which can be damaged
or even sectioned (Seddon, 1942; Sunderland, 1951; Menorca
et al., 2013). Inside the nerve, the damaged Schwann cells change
their phenotype, from myelinating to repairing one, and start
secreting neurotropic and neurotrophic biomolecules, creating
a facilitator environment that promotes the regeneration of the
injured axons and guides them to their targets, sensitive or motor
ones (Dubový, 2004; Eberhardt et al., 2006; Höke et al., 2006).
Sensory/motor axon injury divides the neuron in two parts: the
“proximal” (to the spinal cord), which comprises the soma, the
part of the axon attached to the soma and the arborizations,
and the “distal” (from the spinal cord), which comprises the
segment of the axon detached from the soma together with
their sensory/motor endings (Figure 2). The distal part of the
nerve undergoes degeneration, whereas the proximal part starts
growing and invading the space of the distal one, now left free.
The growing fibers in the proximal part are attracted by the
distal part and conveyed separately to their respective targets by
the neurotropic and neurotrophic biomolecules secreted by the
Schwann cells. These processes occur into the intact epineurium,
which preserves the facilitator environment by retaining the
secreted biomolecules close to the injured axons, and at the same
time, it works as a conduit for the regenerating fibers, directing
them toward the territory they have to reinnervate (see The Need
of an Ordered and Differentiated Regeneration of Sensory and
Motor Fibers in Amputee People for details).

Unfortunately, in the majority of the cases, PNI also implies
nerve tissue losses, either due to the accident itself, or because
of tissue removal during the surgical intervention. In these
circumstances, to allow the neuroreparative processes, we must
(artificially) restore the continuity of the epineurium and create
a bridge for the intercommunication of the two ends of the
sectioned nerve (Brattain, 2014; Grinsell and Keating, 2014;
Faroni et al., 2015; Figure 3). State-of-the-art devices are
tubular scaffolds (Pabari et al., 2014; Dalamagkas et al., 2016),
grafts (Mackinnon et al., 2001; Brushart, 2011; Brattain, 2014;
Dalamagkas et al., 2016) or tissue engineering bio-hybrids
(Gonzalez-Perez et al., 2018).

The Need of an Ordered and
Differentiated Regeneration of Sensory
and Motor Fibers in Amputee People
Evidently, because of the lack of the distal end, repair is not
possible in case of amputation. However, in amputees there
are two very powerful reasons to achieve nerve regeneration
patterns similar to those of non-amputated people, despite the
lack of their (amputated) limbs. The first reason is to reduce
the appearance of traumatic neuropathies and phantom limb
pain, both of them caused by the aberrant regeneration of the
peripheral nerves and by the formation of neuromas in the
proximal stump. Indeed, aberrant regeneration and neuromas

in sensory nerves could be reduced using selective electrical
stimulation of the regenerating fibers (Herrera-Rincon et al.,
2011; Figure 4). However, because almost all peripheral nerves
are mixed, stimulation-based therapeutic approaches require
the separated regeneration of sensory and motor axons. The
second reason is to connect the sensory and motor nerves
of the amputees to the sensors and actuators of the bionic
neuroprostheses that are being available in the market, which
demand well-differentiated and ordered sensory and motor axons
to be separately guided and connected to the artificial sensors and
actuators (Raspopovic et al., 2014; Micera, 2016; Lee et al., 2018;
Günter et al., 2019; Deshmukh et al., 2020).

To achieve the differentiated regeneration also in amputee
persons, the most intuitive and straightforward solution would
be to reproduce in the amputated nerves the processes that
naturally occur in damaged nerves with preserved epineurium
and target organs, which means to create in the amputated
member an artificial anatomical and biomolecular environment
(a bio-hybrid medium) similar to the environment that favors
the natural regeneration of the peripheral nerves. Unfortunately,
and despite the enormous efforts dedicated in the last 70 years
to this enterprise, differential regeneration of the sensory and
motor fibers has not been yet totally achieved (Johnson et al.,
2015; Anand et al., 2017; del Valle et al., 2018). Among
the main reasons of this failure are the high complexity of
the involved biomolecular processes and the variability of the
employed experimental protocols, which make experimental
data difficult to interpret. However, even more important
is the total absence of a scientific article describing the
way these biomolecular processes should be implemented
by tissue and biomedical engineers to achieve the desired
regeneration of the amputated nerves. In contrast, there is
an extremely high number of scientific articles analyzing the
regenerative processes.

Some of the commercially available upper-limb prostheses
are Michelangelo (©Otto Bock, Germany), I-Limb Ultra
(©Touch Bionics, United Kingdom) Bebionic (©RLS Steeper,
United Kingdom), The Taska Hand (©Taska prosthetics,
New Zealand), implantable at hand level or The LUKE arm,
(©Mobius Bionics, LLC, United States), the DynamicArm elbow
(©Otto Bock, Germany), and the Hero Arm (©Open Bionics,
United Kingdom) implanted at shoulder level and allowing
mobility over the patient’s head, being the last one the first three-
dimensionally (3D) printed bionic arm. Commercially available
lower limb prostheses include the C-Leg (©Otto Bock, Germany),
the emPOWER ankle (©BionX Medical Technologies, Inc.,
United States), the Proprio Foot (©Ossur, Islandia), the BiOM
ankle (©BiOM, United States), and the Elan Foot (©Endolite).
All them are controlled using myoelectric signals coming from
residual muscles in the amputee stump.

Much of research work is focusing on obtaining prosthetic
sensory signals (Graczyk et al., 2018; Cuberovic et al., 2019),
necessary not only to elicit the sensory perceptions of the natural
limbs (George et al., 2019; Navaraj et al., 2019), but also to
increase the control and the coordination of the prosthetic device
without the need of visual and/or auditory signals, to identify the
type of element being manipulated and to create proprioception
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FIGURE 2 | Nerve injury and regeneration under ideal conditions. Time course and biomolecular processes. (A) Normal neuron that suffers an injury (crush or section)
that triggers the regeneration process. (B) The proximal part undergoes retrograde degeneration and chromatolysis. The distal part suffers Wallerian degeneration,
provoking the denervation of the target tissue and leaving the endoneurium clean for the axon to regenerate (MAG, MBP, PMP22, and P0 levels decrease, whereas
GDNF, LIF, CNTF, and IL6 production increases). (C) Schwann cells form bands of Büngner to guide the regenerated axons into the distal endoneural tube (with high
levels of NGF, BDNF, NT3, and NT4–5). (D) The axon grows in contact with the surfaces of the Schwann cells toward the target organ. As the axons grow, the
Schwann cells start the remyelination process, producing the myelin-associated molecules (MAG, MBP, PMP22, and P0 return to their initial levels).
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FIGURE 3 | Nerve injury and regeneration with the aid of grafts or biomaterials scaffolds. (A) Neuron divided into proximal stump and distal part that innervates the
target tissue. (B) After the damage takes place, the gap created between the two parts provokes that the regeneration cannot take place properly because of the
lack of communication between the two stumps. (C) Different approaches to obtain the connection of the two stumps and the guidance of the growing axons: left,
nerve graft; right, biomaterials and tissue engineering. (D) Once the reconnection of the two ends of the injured nerve is achieved, these neurons will be able to
reinnervate the former target tissue, divided into sensors and muscles; or in the case that the target tissue has been lost, the reconnection with bionic interfaces.

(Micera et al., 2011; Zecca et al., 2017; Clemente et al., 2019;
D’Anna et al., 2019; Sensinger and Dosen, 2020).

Patients with either intrafascicular and intraneural electrode
implants show good proprioception and object identification
capabilities (Micera et al., 2008; Di Pino et al., 2012). However,
disruptive neuroprosthetic solutions require individual or quasi-
individual nerve–electrode connections.

With the present article, we aim at offering a comprehensive
compendium describing how to create neural regeneration
devices, either scaffolds or tissue-engineered bio-hybrids, and
how to implement the biomolecular processes that will foster
the regeneration of the amputated peripheral nerves in a well-
organized and guided manner. For this endeavor, we need a
deep understanding of the biomolecular processes that underlie
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FIGURE 4 | Effects of electric neurostimulation on the macroscopic anatomical structure of an amputated rat trigeminal peripheral nerve (Herrera-Rincon et al.,
2011). Masson trichrome staining of nerve tissue from Control, Amputated, and Prosthetic animals. Nerve fibers can be detected as red-stained “bundles” crossing
from left to right, surrounded by a blue-stained matrix (mostly collagen). In control nerve (top) the axons are organized in regular fascicles separated by connective
tissue, whereas in the amputated nerve (middle), the regular organization of the tissue is altered. However, whereas in amputated nerves, organization is completely
lost with haphazardly arranged axons dispersed inside the connective tissue, in prosthetic nerve (bottom), the fascicular organization is preserved. The importance
of stimulation as a therapy to improve the regeneration of the growing fibers resides in the ability to achieve a guided and organized growth. Through Masson
trichrome, we can observe the fascicular organization of the fibers, stained in brown and marked with arrow. In the left side of the images, the “trunk” is shown, the
undamaged “proximal” area, which is in charge to activate the biomolecular regenerative processes. In the right, we can observe the regenerated fibers. Here we
can see how when no treatment is performed, the tissue is disorganized, with a predominance of connective tissue (stained in blue, marked with arrow), whereas the
treatment with electrical stimulation allows a more organized growth, maintaining the fascicular structure throughout the section (marked with arrow). Original
magnification 100×. ©[2011] IEEE. Reprinted, with permission, from IEEE Proceedings.
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spontaneous nerve regeneration and of the spatiotemporal
patterns of the expression of these biomolecules, as well as of their
dynamic interactions over time, and to be able to implement them
in a bio-hybrid biomaterial environment (Schmidt and Leach,
2003; Matsumoto and Mooney, 2006; Mikos et al., 2006; Biondi
et al., 2008; Wang et al., 2009; Atala et al., 2012; Gu et al., 2014;
Gonzalez-Perez et al., 2018).

In the following section, we will briefly review the
biomolecular processes after PNI, and then we will go in
depth to the specific processes to differentiate regeneration of
sensory and motor fibers in amputee people.

SPONTANEOUS REGENERATION AND
REPAIR AFTER PNI

As mentioned previously, cellular and biomolecular processes in
the proximal and the distal parts of the nerve are different. In both
places, processes occur in two phases, a preparatory and a repair
one. Any biomimetic device aiming at an ordered regeneration
of the sensory and motor nerves has to implement both the
anatomical structure of the distal part and the biomolecular
processes that take place there.

Preparatory Phase
In the proximal part, both the damaged axon and the myelin
sheath that surrounds it undergo retrograde degeneration,
approximately up to the first node of Ranvier (Figure 2;
Fu and Gordon, 1997).

In the distal part, 48 to 96 h after the lesion starts the
“Wallerian degeneration,” axon and myelin decompose, whereas
both Schwann cells and macrophages recruited by these cells get
rid of the debris and leave empty the whole distal endoneural
tube (Stoll et al., 2002; Vidal et al., 2013; Chen et al., 2015; Barton
et al., 2017), during the first 7 days after the injury (Caillaud et al.,
2019). The empty endoneural tubes connect the injury region
to the target organs, either sensors or muscle fibers (Eva and
Fawcett, 2014; Romano et al., 2015). At this stage, we observe
an increase of the production of proinflammatory molecules,
such as cytokines [glial cell line–derived neurotrophic factor
(GDNF), leukemia inhibitory factor (LIF), ciliary neurotrophic
factor receptor (CNTFR), and interleukin 6 (IL6)], accompanied
by a decrease in the production of myelin-associated molecules
[myelin-associated glycoprotein (MAG), myelin basic protein
(MBP), peripheral myelin protein 22 (PMP22), and myelin
protein 0 (P0)] (Figure 2).

The physical structure of a biomimetic regenerative device
should implement the above architecture of a high number
of artificial conduits and be able to support the analogous
neuroregenerative biomolecular processes.

Repair Phase
In the proximal part, 7 days after the damage, small branches
sprout from the extreme of the sectioned axon and form the so-
called “growth cone” (Figure 5; Ramón y Cajal, 1959; Bradke
et al., 2012). It is a mobile structure with specialized receptors
that recognize surfaces and molecules (Ertürk et al., 2007;

Koch et al., 2012) and decides to which direction should grow
the regenerating axon (Figure 5; Eva and Fawcett, 2014), guiding
the regeneration.

In the distal part, the byproducts (molecules) of the
degenerated axon and myelin stimulate the denervated Schwann
cells to divide inside the endoneural tube; there, they get
distributed along the longitudinal axis forming a column, the so-
called bands of Büngner (Figure 2C; Pfister et al., 2011). The
bands of Büngner create a bridge between the regenerating axons
and the target tissue, also producing the necessary neurotrophic
and neurotropic biomolecules to help axons to grow. In turn,
Schwann cells in the tube attract the regenerating axon to enter
the distal endoneural tube (Figure 2C; Lee and Wolfe, 2000).
They do it by releasing neurotrophic and neurotropic molecules
(Politis et al., 1982; Politis and Spencer, 1983) recognizable by the
receptors present in the surface of the growth cone (Maggi et al.,
2003; Gordon, 2009; Griffin et al., 2013; Faroni et al., 2015). It is
worthy to underline that each endoneural tube attracts axons of
its own (sensory or motor) modality (Ramón y Cajal, 1959).

Once introduced into the endoneural tube, the axon grows
in contact with the surfaces of the Schwann cells toward
the target organ. Upon reinnervation, Schwann cells return
back to synthesize myelin and isolate the axon again (Grinsell
and Keating, 2014). Axons that do not connect with their
targets or do not reach the endoneural tube (as in the
case of amputation) continue to grow but in a disorganized
way and form an abnormal tissue structure, the neuroma
(Grinsell and Keating, 2014).

A biomimetic regenerative device should incorporate a
biomolecules-generating mechanism to release the same
molecules with the same concentrations in space and time as
the aforementioned Schwann cells. This is a highly dimensional
problem, and it is important to mimic/duplicate the cues of
endogenous regenerative microenvironment, when endogenous
repair systems work.

Differential Regeneration of Sensory and
Motor Axons
The differential regeneration and guidance of sensory and
motor axons toward their specific targets are determined by
the molecules that are expressed by the Schwann cells of
the distal endoneural tubes. Such molecules can be classified
into two groups.

The first group includes five types of neurotrophic factors:
axonal growth promoters (neurotrophins), neuropoietic
cytokines, fibroblast growth factors, transforming growth factors,
and insulin-like growth factors (Boyd and Gordon, 2003; Jin
et al., 2009; Li et al., 2020).

The second group includes molecules integrated into the
surrounding nerve tissue, mainly axonal growth promoters,
such as molecules that facilitate and modulate cell–cell and
cell–extracellular matrix (ECM) adhesion [glycoproteins such
as neural cell adhesion molecule (N-CAM), N-cadherin,
L1, integrins, etc.] (Seilheimer and Schachner, 1988;
Smith et al., 1994; Franz et al., 2005; Saito et al., 2005,
2010; Gardiner et al., 2007; Tucker and Mearow, 2008;
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FIGURE 5 | Representation of the growth cone in charge to interact with the Schwann cells and the ECM that surrounds the growing axons. Zoom of growth cone:
representation of the growth cone in detail. The organization of the filopodia and the mobile structure in charge of interaction with the physical and chemical
environment are supported by actin filaments accumulated in the proximal stump. Zoom of the filopodia: representation of the different molecules expressed in the
growth cone. The molecules can be divided in three groups: (i) expression of neurotrophic factors receptors, for neurotrophins (Trk A, B, C, and p75) and
neuropoietic cytokines [leukemia inhibitory factor receptor (LIFR), CNTFR. . .]; (ii) cell–cell junction molecules (N-CAM, L1), which will allow the interaction between the
regenerating axons and the Schwann cells present in the bands of Büngner, in the distal zone, and (iii) molecules that bind to the ECM (integrins), which will act as a
support for axonal guidance to its target tissue.

Gardiner, 2011; Anand et al., 2017) and molecules present
in the ECM (fibrinogen, fibronectin, laminin, etc.) (Politis, 1989;
Hammarberg et al., 2000; Zhang et al., 2003; Tucker and Mearow,
2008; Webber et al., 2008; Gardiner, 2011; Fudge and Mearow,
2013; Gonzalez-Perez et al., 2016; Table 1).

With the only exception of nerve growth factor (NGF), there
are no molecules favoring the growth of one type of neurons
while inhibiting the growth of the other, which means favoring
the growth of sensory fibers while inhibiting the growth of the
motor ones, or vice versa (Wang et al., 1997; Boyd and Gordon,
2003; Pehar et al., 2004, 2006). Some of them strongly favor
the regeneration of sensory fibers but have limited effect on the
motor ones; others strongly favor the regeneration of the motor
fibers, but they don’t display facilitatory effects on the sensory
ones; finally, a third group of molecules favor the regeneration
of both types of fibers, although the facilitating effect may be
greater on one type of fibers than on the other (see Table 2
and references therein). Conversely, inhibition of their function
through the administration of antibodies against them or against
their receptors normally leads to inhibition of the regeneration
process and also abnormal regeneration of the fibers (Table 2
and references inside). Several cocktails of these molecules have
been designed and incorporated to scaffolds for peripheral nerve
regeneration and repair with deceptive up-to-day results (Table 2;
Johnson et al., 2015; Anand et al., 2017; del Valle et al., 2018).
Doses of the most relevant neurotrophic factors, which have been

tested to improve the molecular environment for the regenerating
axons, are shown in Table 3.

Although artificially delivered axonal growth-promoting
molecules improve, in general terms, nerve regeneration and
repair, they fail when they are used to differentiate the growth
of sensory and motor fibers. This is due to the massive
delivery from up-to-day devices (pumps, injections, releases
from embedded biomaterials or biofunctionalized scaffolds,
etc.), which neither simulate neither mimic the profile of the
production of the neurotrophic factors during the regeneration.
Even more important than the correct administration of the
facilitator molecules is the timing of the delivery of such
molecules. Timing determines if there will be an effect and
which type of effect it will be. A very illustrative example is the
administration of brain-derived neurotrophic factor (BDNF) and
GDNF, two neurotrophic factors that, if delivered immediately
after the injury, do not favor the regeneration of the nerve, while
when administered after a brief period of adverse conditions
for the regeneration process, their administration will have a
clear favorable effect (Gordon, 2009). In PNI, what is important
is timing for delivery of one or another molecule, but there
is no “sensitive period” for inducing nerve regeneration after
injury, typical in central nervous system injuries such as stroke
(Dromerick et al., 2015; Zeiler et al., 2016; Ballester et al., 2019).

Summarizing, unsuccessful artificially guided differential
regeneration of sensory and motor fibers is due to at least
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TABLE 1 | Neurotrophic and neurotropic molecules that are expressed by the
Schwann cells in the distal endoneural tubes.

Neurotrophic factors

Axonal growth
promoters

NGF, BDNF,
NT3, NT4/5

Boyd and Gordon, 2003; Jin et al.,
2009; Li et al., 2020

Transforming
growth factors

GDNF Allodi et al., 2012; Hoyng et al.,
2014; Anand et al., 2017

Insulin-like
growth factors

IGF1 e IGF2 Di Giulio et al., 2000; Brushart
et al., 2013

Fibroblast
growth factors

FGF2 Allodi et al., 2012; Brushart et al.,
2013; Santos et al., 2016b

Neuropoietic
cytokines

PTN, CNTF,
IL6, LIF

Mi et al., 2007; Gordon, 2014

Molecules integrated into the surrounding nerve tissue

Axonal growth
promoters

N-CAM,
N-cadherin, L1,
integrins, etc.

Seilheimer and Schachner, 1988;
Smith et al., 1994; Hammarberg
et al., 2000; Franz et al., 2005;
Saito et al., 2005, 2010; Gardiner
et al., 2007; Tucker and Mearow,
2008; Gardiner, 2011; Anand et al.,
2017

Extracellular
matrix
molecules

fibrinogen,
fibronectin,
laminin, etc.

Politis, 1989; Hammarberg et al.,
2000; Zhang et al., 2003; Previtali
et al., 2008; Tucker and Mearow,
2008; Webber et al., 2008;
Gardiner, 2011; Fudge and
Mearow, 2013; Zeng et al., 2014;
Santos et al., 2016b

Each endoneural tube contains a specific blend of such molecules depending on
the type of its axon (i.e., sensory or motor). Moreover, blends change in time.

three main causes: (1) the delivery of neurotrophic factors
acts on the whole nerve instead of on specific nerve fibers;
(2) delivered doses are too high in comparison with the
concentrations of the neurotrophic molecules observed in the
nerve during the regeneration process; and (3) administration
of the different biomolecules does not follow the time course
of the concentrations of such molecules during the natural
regeneration process.

DESIGN OF DEVICES AND SCAFFOLDS
FOR THE DIFFERENTIATION OF
SENSORY AND MOTOR FIBERS

Biological Principles
The above experimental data lead us to formulate the two
biological principles that govern the regeneration of the
peripheral nerves: (1) the separation of the fibers and their
guidance toward their corresponding targets depend on the
dynamics of the molecular gradients along the regeneration
pathway (how the concentration of each molecule, at each point,
varies with time), rather than on the concentration of the factors
themselves; and (2) the molecules underlining these regenerative
processes act at the microscopic level and not at the macroscopic
one (they act at the level of individual fibers or fascicles of fibers,
and not at the level of clusters of fascicles or of the whole nerve).

TABLE 2 | Effects of the supply (+) or depletion (−) of axonal growth-promoting
molecules in the surrounding tissue of sensory (S) or motor (M) fibers.

Molecule S+ M+ S− M−

NGF ↑ ↓ ↓ ↑

BDNF ↑ ↑ ↓

NT3 ↑ ↑ ↓ ↓

NT4/5 ↑ ↑

GDNF ↑ ↑

IGF1 ↑ ↑ ↓

IGF2 ↑

FGF2 ↑ ↑

CNTF ↑ ↑

PTN ↑ ↑

References: NGF: S+, (Apfel, 1999; Höke et al., 2006; Webber et al., 2008; Hoyng
et al., 2014; Santos et al., 2016b; Anand et al., 2017); M+, (Wong et al., 1993;
Wang et al., 1997; Boyd and Gordon, 2003; Pehar et al., 2004, 2006); S−, (Averill
et al., 1995; Suzuki et al., 2016); M−, (Pehar et al., 2004, 2006). BDNF: S+,
(Apfel, 1999; Fine et al., 2002; Höke et al., 2006; Allodi et al., 2012; Gordon,
2014; Grosheva et al., 2016); M+, (Funakoshi et al., 1993; Wong et al., 1993;
Friedman et al., 1995; Kobayashi, 1996; Apfel, 1999; Al-Majed et al., 2000, 2004;
Hammarberg et al., 2000; Terris et al., 2001; Boyd and Gordon, 2003; Allodi et al.,
2012; Gordon, 2014; Hoyng et al., 2014; Santos et al., 2016b); S−, (Geremia
et al., 2010). NT3: S+, (Apfel, 1999; Santos et al., 2016b; Anand et al., 2017); M+,
(Funakoshi et al., 1993; Wong et al., 1993; Apfel, 1999; Hammarberg et al., 2000;
Boyd and Gordon, 2003; Allodi et al., 2012; Anand et al., 2017); S−, (Hou et al.,
2012; Wang et al., 2015); M−, (Wang et al., 2015). NT4/5: S+, (Apfel, 1999; English
et al., 2005, 2011); M+, (Funakoshi et al., 1993; Wong et al., 1993; Friedman et al.,
1995; Apfel, 1999; Boyd and Gordon, 2003; English et al., 2005, 2011). GDNF:
S+, (Apfel, 1999; Keast et al., 2010; Allodi et al., 2012; Santos et al., 2016b; Anand
et al., 2017); M+, (Apfel, 1999; Hammarberg et al., 2000; Boyd and Gordon, 2003;
Allodi et al., 2012; Hoyng et al., 2014; Santos et al., 2016b; Anand et al., 2017;
Ruven et al., 2018). IGF1: S+, (Kanje et al., 1989; Brushart et al., 2013); M+, (Li
et al., 1994; Di Giulio et al., 2000); S−, (Kanje et al., 1989). IGF2: M+, (Brushart
et al., 2013). FGF2: S+, (Grothe et al., 2006; Allodi et al., 2012; Brushart et al.,
2013; Santos et al., 2016b); M+, (Allodi et al., 2012; Brushart et al., 2013; Santos
et al., 2016b). PTN: S+, (Anand et al., 2017); M+, (Mi et al., 2007; Gordon, 2014).
CNTF: S+, (Apfel, 1999); M+, (Wong et al., 1993; Apfel, 1999; Hammarberg et al.,
2000). Up-oriented arrows (↑) indicate facilitation of the regeneration of these fibers,
whereas down-oriented arrows (↓) indicate inhibition. No arrow indicates that this
experimental condition has not been tested. Supply of any of the neurotrophic
factors to the injured fibers, either sensory or motor, favors the regeneration of both
fibers. NGF is the only exception.

The design of novel approaches and devices for peripheral
nerve regeneration and repair and, in particular, for the
connection of amputee nerves to bionic sensory–motor
prostheses should be driven by the above two principles.

Current PNIs Approaches
In case of nerve sections with <5-mm-long gaps, the ideal
PNI repair approach is the neurorrhaphy of the two stumps,
suturing the individual fascicles one-by-one. In >5-mm-long
gaps, the treatment consists of (i) the use of autografts and
allografts or (ii) the implant of tubular biomaterials that
reconnect the two stumps.

The gold standard are autografts, although they have
several associated side effects, such as secondary surgery,
donor site morbidity, size mismatch, and limited tissue
availability. Commercial allografts, such as Avance R© Nerve
Graft (Axogen, Inc., FL, United States), which consists of
the ECM of a human nerve, without cellular or non-cellular
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TABLE 3 | Baseline protein levels of the most important molecules involved in the regeneration process and doses employed to obtain a favorable
regenerative environment.

Nt Factor Baseline protein levels Experimental doses

Mixed nerves Sensory nerves Motor nerves

Preclinical trials

NGF 211 pg/mg [Grosheva et al.,
2016] 130 pg/mL [Shakhbazau
et al., 2012]

0.8–1 µg/mL [Kemp et al.,
2011; Santos et al., 2016a]
0.5 µg/mL [Chang et al., 2017;
Li et al., 2018]

1 µg/mL [Kemp et al., 2011;
Santos et al., 2016a] 20 µg/mL
[Anand et al., 2017]

BDNF 5 pg/mg [Grosheva et al., 2016]
14.8 pg/mL [Omura et al.,
2005; Shakhbazau et al., 2012;
Shakhbazau et al., 2012]

10 µg/mL [Kemp et al., 2011;
Santos et al., 2016a]
10–100 µg/mL [Chang et al.,
2017]

2 µg/mL [Kemp et al., 2011;
Santos et al., 2016a] 20 µg/mL
[Anand et al., 2017]

NT3 6 pg/mL [Shakhbazau et al.,
2012] 100 pg/mg [Omura et al.,
2005; Shakhbazau et al., 2012]

2 µg/mL [Kemp et al., 2011;
Santos et al., 2016a]

1 µg/mL [Glazner et al., 1993] 0.5 µg/mL [Sterne et al., 1997]

GDNF 150 pg/mL [Shakhbazau et al.,
2012]

20 µg/mL [Alsmadi et al., 2018] 20 µg/mL [Anand et al., 2017] 20 µg/mL [Anand et al., 2017]

IGF1 793 pg/mg [Grosheva et al.,
2016]

50–100 µg/mL [Sullivan et al.,
2008]

100 µg/mL [Apel et al., 2010] 100 µg/mL [Apel et al., 2010]

IGF2 39 pg/mg [Grosheva et al.,
2016]

1 µg/mL [Caplan et al., 1999] 1 µg/mL [Glazner et al., 1993] 0.05 µg/mL [Near et al., 1992]

FGF 45 pg/mg [Grosheva et al.,
2016]

0.025–0.5 µg/mL [Kemp et al.,
2011; Santos et al., 2016a]
0.5 µg/mL [Li et al., 2018]

10 µg/mL [Lee et al., 2017] 100 µg/mL [Guzen et al., 2016]

CNTF 100 ng/mg [Grosheva et al.,
2016]

300 µg/mL [Newman et al.,
1996]

50 µg/mL [Dubový et al., 2011]

PTN 20.2–24 pg/mL [Höke et al.,
2006]

20 µg/mL [Alsmadi et al., 2018] 20 µg/mL [Anand et al., 2017] 0.1 µg/mL [Mi et al., 2007]

Clinical trials

NGF 0.1 µg/kg [Apfel, 2002; Apfel, 2002; Li et al., 2020]

FGF 2 ml [Apfel, 2002; Wu et al., 2011; Li et al., 2020]

The reference articles for this value are in square brackets.

debris (Karabekmez et al., 2009), avoid such effects; however, it is
associated with the misdirection of the growing neurons and the
necessity of immunosuppressant treatment.

Biomaterials to support reconnection and guidance of the
regenerating axons present a series of specific characteristics
that not only facilitate axon guidance but also allow acceptance
of the implant by the nervous tissue like biocompatibility,
biodegradability, mimetics of the host tissue, etc. Almost the
totality of commercial devices for <30-mm-long PNIs consists
of a hollow tubular scaffold that allows physical regeneration
of the sectioned nerve through it. These scaffolds can be made
by different biomaterials, such as porcine submucosa ECM,
Axoguard R© Nerve Connector (Axogen, Inc., FL, United States);
collagen I, NeuraGen R© (Integra LifeSciences Corporation,
United States); polyglycolic acid, Neurotube R© (Synovis Micro
Companies Alliance, Inc., AL, United States); and poly-
DL-lactide-co-caprolactone and polyvinyl alcohol, Neurolac R©

(Polyganics, Netherlands) (Tian et al., 2015; Costa Serrão de
Araújo et al., 2017). Several improvements have been tested
in animal models, including (i) fillings with hydrogels that
favor axons regeneration; (ii) inclusion of topographic cues,
like microfilaments/nanofilaments or groove patterns, to favor
guidance and directionality by interacting with the growth cone;

or (iii) incorporation of growth factors and supporting cells
(Carvalho et al., 2019; Wang and Sakiyama-Elbert, 2019).

Guided axon regeneration in >30-mm-long gaps presents
serious difficulties. In these cases, nerves lose their original
topographic organization, which provoke the misdirection of
the axons and the intermingled growth of the different types
of neurons (Yi et al., 2019). Even though the guidance and
regeneration of the neurons have been improved, axonal
misdirection and innervation of the inappropriate target tissues
are still unanswered clinical issues.

Approaches for Differential Regeneration
Two main approaches have been used to guide a specific type of
neuron to its originally innervating tissue: (1) use of biomaterials-
built devices with two separated compartments (“Y-shaped” form
scaffolds) to create separate molecular environments and thus
achieve a separated regeneration of the sensory and motor
neurons (Anand et al., 2017; del Valle et al., 2018) and (2)
replacement of the classic single lumen tube by multichanneled
scaffolds, each channel resembling the endoneurium (Tran et al.,
2014) and creating independent molecular environments with
different neurotrophic factors (Chang et al., 2017). 3D printing
is boosting the development of novel biomaterial solutions
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and therapeutic approaches (Dinis et al., 2015; Dixon et al.,
2018; Petcu et al., 2018). However, although the aforementioned
developments envision a great future for PNI therapy and
restoration of the sensory and motor functions to amputee
people, the correct guidance and regeneration of the peripheral
neurons to their target tissues are still an open problem.

To improve axon growth control, a more complex artificial
molecular environment is necessary mimicking the biomolecular
processes that guide natural axon regeneration. It is essential to
achieve a complete control of the spatial and temporal dynamics
of the release of the appropriate molecules, taking always into
account the synergies between molecules.

Design Principles for a Biomimetic
Artificial Nerve
Novel devices should be biomimetic in both the structure and the
biomolecular environment they create around the regenerating
axon. They should be built by hundreds or thousands of
scaffolding structures, such as microtubes or high-performance
fibers, each of which recreating the dynamic molecular gradients
of the naturally regenerating nerves (Figure 6). However, it is
worthy to note that nerve rewiring is not necessary to be perfect.
Brain remodeling of the sensory and motor maps will correct
deficiencies in wrong peripheral nerve connections and lead to
a good level of sensory and motor functions of the patients
(Merzenich and Jenkins, 1993; Panetsos et al., 2008).

At a microscopic scale, their internal channels, the artificial
endoneural guides/tubes, will guide the growth of only a few
axons, ideally only one (Figure 6). Each scaffold, preferably
biofunctionalized with ad hoc biomolecules, should be capable
of binding to the surface receptors expressed in the growth
cone, as well as of releasing facilitator biomolecules with
arbitrary time profiles.

Functional connection with bionic interfaces will allow
communication and control of afferent and efferent signals
between nervous tissue and artificial systems. Scaffolds should
be produced according to the modality of their supported nerve,
because, at the distal end, we need to place the establish contact
between the motor axons and the actuators of the prosthesis.
Correspondingly, the scaffolds guiding the sensory axons should
allow establishing contact between the axons and the artificial
sensors of the prosthesis.

Implementation of Dynamic Gradients of
Neurotrophic Factors for PNI Devices
and Scaffolds
As stated before, in PNI without amputation, all the
aforementioned biomolecules appear along the pathway of
the growth cone, from the injury to the target organs. For each
biomolecule, concentration values depend on the distance from
the injury point and on the post-injury time (Figure 7A).

Molecules with strong expression during sensory axons
regeneration are NGF, BDNF, and insulin-like growth factor
1 (IGF1); those with strong expression for motor fibers are
pleiotrophin (PTN) and GDNF. Finally, neurotrophin 3 (NT3),
ciliary neurotrophic factor (CNTF), IGF2, and fibroblast growth

factor 2 (FGF2) are factors that do not show big differences in the
regeneration of sensory and motor fibers.

Nerve growth factor, BDNF, and IGF1 are strongly involved
in the regeneration of sensory nerves, showing very high
concentrations since the beginning of the regeneration and very
similar dynamics; in the motor nerve injuries, their expression is
remarkably low (Figure 7B, first row). PTN and GDNF behave in
a similar way but in favor of the motor axons (Figure 7B, second
row). The two groups behave in similar manners, reaching their
maximum concentrations 15 days after injury when promoting
the regeneration, while the increase lasts only up to 5 days when
the molecules are not favoring the growth of that type of fiber.
All but NGF also exert a facilitating influence in the regeneration
of nerves of the other sensibility, although in these cases the
expression of these molecules is very limited on time and amount
(Figure 7B). As for the molecules whose expression is not specific
for the differential growth, such as NT3, CNTF, IGF2, and FGF2,
they display neither intragroup nor intergroup similarities in
their temporal behavior (Figure 7B, third row). It is important
to highlight that the data represented in Figure 7 correspond to
the mRNA and protein expression, which are very correlated, but
not necessarily presenting the exact same profile.

Different methods have been studied for the administration of
neurotrophic factors at the level of the sectioned nerve. Two main
problems are the difficulty of a controlled administration for long
periods of time and the diffusion of the neurotrophic factors
far from the area of interest. The use of biomaterials allowed
higher precision and greater control in the administration of
the neurotrophic factors: osmotic pumps, hydrogels, polymeric
microspheres, and the inclusion of the different molecules at the
level of the tubular conduct implanted (Tajdaran et al., 2019).
Factors are included within the lumen (hydrogels, nanofibers, and
through the presence of cells that produce neurotrophic factors),
in the conduit wall (included in the polymer or in microspheres),
and at the surface (adsorbed or conjugated with other type of
molecules) (Carvalho et al., 2019).

Biomaterials are important to be semipermeable, to allow
the exchange of molecules between the growing axons and the
environment. The size of the scaffold should be adaptable to
the anatomy of each injured nerve. The presence of pores for
a continuous exchange of molecules between the neural axes,
the Schwann cells, and the surrounding tissue is important
(Figure 6). Hydrogels seem to have the greatest future – thanks
to their ability to release, the neurotrophic factors in a controlled
manner, and to the presence and accumulation of high volumes
of water – and to create physical conditions very similar to those
of the nervous system (Li et al., 2018).

Implementation of Neurotrophic
Factors–Based Separation of Sensory
and Motor Fibers
To guide fibers of the two modalities (sensory and motor) toward
their dedicated cylinders, it is necessary, to first identify/select the
sensory and the motor ones. A reasonable way to do that is to
use several neurotrophins to favor the growing of one type of
fibers in one direction, while preventing fibers of the opposite
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FIGURE 6 | Desired biomimetic devices and scaffolds for neurotrophic biomolecules to be implemented in a future PNI-repair scaffold. (A) Transversal section of the
rat sciatic nerve, with two fascicles and the different layers of connective tissue that organize the anatomy of the nerve. The differences on size between the fascicles
can be observed. (B,D) Transversal section showing the 3D scaffold architecture, oriented to sensory–motor–guided regeneration; channels for sensory axons are in
green, and motor in red. Scaffold of Ø 1.5 to 2.0 mm. The outer sheet can be both semirigid (B) or flexible (D), depending on the area of the implant and the
characteristics of the surrounding tissue that defines the most adequate option. (C) Magnification of the biofunctionalized channel. Channels of Ø 100 µm for the
guidance of individual axons, sensory or motor ones. (E) Longitudinal section of the scaffold representing both the physical and chemical cues that determine the
regeneration of the sectioned axons. The biomaterial provides the neurons with supporting cells, such as Schwann cells (SCs), molecules, and drugs. Furthermore, it
acts as a substrate for the attachment of the growing axons.
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FIGURE 7 | Dynamic behavior of the principal axon growth-promoting factors in the injured peripheral nerve. (A) Scheme of the peripheral nerve, of the damage
region and of the growing process of the regenerating axons. A time-dependent expression profile of an axonal growth promoter molecule during the regeneration of
the peripheral nerve at the site of the damage is also depicted. (B) mRNA expression profiles of the principal axonal growth promoter molecules in the distal stump,
close to the injury locus. Left column: Expression profiles in injured sensory nerves. Right column: Expression profiles in injured motor nerves. Profiles are grouped
according to their preferences in facilitating the regeneration of type of nerve: biomolecules mainly favoring the regeneration of sensory fibers (first row), biomolecules
mainly favoring the regeneration of motor fibers (second row), and molecules not showing any preference for a specific type of fiber (third row). Data are represented
in % change and in a logarithmic scale. (C) Protein levels (pg/mL) of the most important neurotrophic factors for the regeneration of both sensory and motor axons.
Values are shown for uninjured nerves and for injured nerves 15 days after the injury [After (Höke et al., 2006)].
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modality from growing with them, and vice versa. This is not a
trivial question because there is only one inhibitory neurotrophic
factor (NGF), and its action is exercised against the motor fibers
(Table 2). This lack of selectively inhibiting biomolecules makes
the separation of the fibers by biomolecular mutual repulsion–
attraction complicated.

Conveying of sensory and motor fibers to these targets using
only one inhibitory neurotrophin could be achieved by an
intermittent short-term release of NGF close to the scaffolds
dedicated to the sensitive fibers, combined with a timely release
of PTN and GDNF from the interior of the motor channels.
Discrete NGF amounts should diffuse in the scaffold and
attract sensory fibers while blocking the motor ones; NGF
deactivation should leave motor fibers free to start growing and
get attracted by the neurotrophins-releasing motor channels.
NGF activation/deactivation has to operate at the microscopic
level (at the level of the channels of the scaffold, see section
“Repair Phase”), creating a very short-term, high-amplitude
attraction gradient (biomolecules concentrations). This NGF
gradient would correlate with the NGF mRNA expression, which
is the fastest molecule that reaches a high level of expression.

The importance of the neurotrophic factors’ administration
goes further than just guiding the growth of the regenerating
neurons. The function that this type of molecules carries out
is well known, in the myelination process, during development
(Piirsoo et al., 2010), and in the case of remyelination, once the
axons reinnervate their target (Chan et al., 2001; Acosta et al.,
2015; KhorshidAhmad et al., 2016; Razavi et al., 2017, 2018). This
type of molecules is involved in the modification of the Schwann
cells into a myelinating phenotype, once the regeneration is
completed, activation that takes place via p75 receptor (Cosgaya
et al., 2002; Notterpek, 2003; Xiao et al., 2013).

Implementation of Substrate-Related
and Other Facilitator Biomolecules
In the design of a biomimetic device, facilitator molecules
integrated into the surrounding tissue, as well as attracting
biomolecules produced by the distal end, should also been
taken into account. Among the former, the most promising
are fibronectin and laminin, and both can be used for the
regeneration of sensory and motor fibers, although the preference
of the fibronectin is slightly higher for motor, and the preference
of laminin is for the sensory (Tucker and Mearow, 2008;
Gonzalez-Perez et al., 2013, 2016). Factors integrated in the
surrounding nerve tissue, which favor the binding of neurons
to the substrate or cell–cell binding (mainly glycoproteins such
as integrins, N-CAM, N-cadherins, or L1) (Seilheimer and
Schachner, 1988; Smith et al., 1994; Hammarberg et al., 2000;
Franz et al., 2005; Saito et al., 2005, 2010; Gardiner et al.,
2007; Tucker and Mearow, 2008; Gardiner, 2011; Anand et al.,
2017); ECM molecules (fibrinogen, fibronectin, or laminin)
(Politis, 1989; Hammarberg et al., 2000; Zhang et al., 2003;
Previtali et al., 2008; Tucker and Mearow, 2008; Webber
et al., 2008; Gardiner, 2011; Fudge and Mearow, 2013; Zeng
et al., 2014; Santos et al., 2016b); and molecules that act as
chemorepellents or chemoattractants (semaphorins, ephrins, and

netrins) (Tessier-Lavigne and Goodman, 1996; Dickson, 2002;
Wang et al., 2013; Kaselis et al., 2014; Alto and Terman, 2017).

Last but not least, more molecules are produced at the distal
end of the damaged nerve that serve to attract regenerating axons
or to create an attractive substrate inside the distal endoneural
tube (Figure 5).

In the case of biomaterial engineering and tissue engineering,
these factors can serve the same functions that they perform in
natural tissue, which is to facilitate the adhesion of axons and
stimulate their growth, being their incorporation necessary when
the artificial material is not attractive to axons.

DISCUSSION

A well-differentiated and ordered regeneration of the sensory
and motor fibers is mandatory in all PNI cases: short/non-
gap injuries, large gap injuries, amputations, neuropathies of
traumatic etiology, phantom limb pain, etc. Clinical problems
such as incomplete regeneration, impossibility of achieving
differential growth of sensory and motor nerves, etc., are all
due to the fact that current therapies (biomolecules, bio-hybrid
scaffolds, etc.) all act at the level of the entire nerve, and its action
cannot be transferred to individual axons or fiber fascicles (Du
et al., 2018; Yi et al., 2019). Any biomolecule showing affinity
for one type of fiber under spontaneous PNI repair, if applied at
the microscopic level (individual axons level), loses its effectivity
if it is applied at macroscopic level (entire peripheral nerve).
Advanced devices and novel biomaterials at the microscopic level
are required for the implementation of the desired functionalities
based on neurotrophic factors and facilitator biomolecules.

From the previous discussion, the basic requirements for these
novel biomaterials can be inferred at three levels: geometrical,
mechanical, and biochemical. The size of the axons and the
fascicles implies that the cross-sectional size of the scaffold
should be in the range between a few and 100 µm, whereas the
longitudinal size should be in the range of millimeters and even
centimeters. This geometry, in turn, possesses a heavy constraint
on the mechanical performance of the biomaterial, because it
must sustain the surgical process, as well as the in-service life. In
addition, the material must be compatible with the neurotrophic
factors and adherent facilitator biomolecules.

Most present solutions cover some, but not all of these
three requirements. Both natural and artificial materials are
used for repairing PNIs (Aijie et al., 2018; Boni et al., 2018).
Present commercial solutions are based on poly(glycolic acid)
(Neurotube) and poly(D,L-lactide-co-e-caprolactone)–based
(Neurolac) (Du et al., 2018), but other solutions were explored
based on polylactic acid (Zeng et al., 2014), polylactic glycolic
acid (Xue et al., 2012), and polyethylene glycol (Liu et al., 2015).
Other proposals based on artificial materials employ electrical
conductive polymers, such as PANi (Xu et al., 2016) and indium
phosphide (InP) (Gautam et al., 2017), or carbon-based materials
(Boni et al., 2018), such as graphene and carbon nanotubes. The
use of artificial materials faces a number of problems. Thus, their
biocompatibility tends not to be optimal, and most artificial
materials cannot be functionalized. Natural materials tend to
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be more biocompatible, and consequently, these materials were
also used as scaffolds for PNIs. Among the natural materials,
solutions were proposed based on collagen (Mackinnon and Lee
Dellon, 1990; Archibald et al., 1995) (NeuraGen, NeuroMatrix,
and NeuraWrap), gelatin (Ghasemi-Mobarakeh et al., 2008; Zhu,
2010), hyaluronic acid (Song et al., 2014; Kondyurin et al., 2017),
alginate (Sitoci-Ficici et al., 2018), chitosan (Wang et al., 2006),
and keratin (Apel et al., 2008). However, most of these materials
are difficult to be processed in scaffolds with the geometry and
mechanical properties indicated above.

The nervous system has a superior level of complexity that
demands sophisticated scaffolds and architectures, as well highly
tolerable biomaterial formulations. Compatibility and toxicity
still are a remaining concern that has not been completely
resolved for an immense number of materials. For many tissues,
classical biomaterials may result in feasible strategies that in
general produce good positive outcomes (Green and Elisseeff,
2016). But neurobioengineering strategies are intricate because
of the restrictive conditions of the nerve microenvironment.
For example, certain byproducts derived from a classic material
such as the hyaluronic acid are immunogenic and may trigger
inflammation (Tesar et al., 2006). Deposits of hyaluronic
acid may accumulate in demyelinated lesions preventing axon
remyelination and functional rewiring (Back et al., 2005).

Among the different biomaterial formats, hydrogels-based
formulations have been engineered and widely used to construct
porous conduits to favor axonal guidance providing suitable
environments or reconnect two peripheral nerve ends (Tao et al.,
2017). Hydrogel conduits have also been assessed to advance
in the resolution of other clinical problems of neurological
origin, e.g., reconstruction of intraspinal neural circuits in spinal
cords injuries (Marchini et al., 2019) or reconstruction of
neurodegenerated nigrostriatal pathways in Parkinson disease
(Struzyna et al., 2018). Considering that not all biomaterials
accomplish for the strict requirements of the nervous system,
silk appears as a very promising solution (Zhang et al., 2012).
Because of its high biocompatibility and excellent mechanical
properties (Heim et al., 2009), silk is currently being explored
for the development of many new therapies (Vepari and Kaplan,
2007; Fernández-García et al., 2018). Furthermore, the possibility
of producing regenerated silk fibers [artificially spun fibers, from
a solution of natural silk protein (Madurga et al., 2017b)] led to
the generation of high-performance silk fibroin fibers with a wide
range of geometries, which, in addition, can be functionalized
(Madurga et al., 2017a). The development of adequate materials
for scaffolds that can be used for nerve repair, bridging gaps in
lesioned nerves, will require a very intensive research program.

However, the present range of available materials in combination
with a deeper understanding of the biology of the natural
repair processes opens new and promising perspectives for the
development of these therapies.

CONCLUSION

Current therapies are not effective and do not achieve a good
regeneration because they act at the level of the entire nerve and
not at the level of neuronal fiber or group of neuronal fibers
and because they do not take into account the synergies between
neurotrophic factors and their dynamic expressions over time
and in the space. For the development of bio-hybrid materials for
the correct regeneration of PNI, effective and reliable solutions
must (i) work at microscopic level and (ii) take into account
the molecular mechanisms of the regeneration and functional
reinnervation of the sensory and motor nerves in both the
proximal and the distal parts of the severed nerve.
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