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Metabolism plays a central role in cell physiology because it provides the molecular

machinery for growth. At the genome-scale, metabolism is made up of thousands of

reactions interacting with one another. Untangling this complexity is key to understand

how cells respond to genetic, environmental, or therapeutic perturbations. Here we

discuss the roles of two complementary strategies for the analysis of genome-scale

metabolic models: Flux Balance Analysis (FBA) and network science. While FBA

estimates metabolic flux on the basis of an optimization principle, network approaches

reveal emergent properties of the global metabolic connectivity. We highlight how the

integration of both approaches promises to deliver insights on the structure and function

of metabolic systems with wide-ranging implications in discovery science, precision

medicine and industrial biotechnology.

Keywords: genome scale metabolic modeling, network science, systems biology, flux balance analysis, machine

learning, synthetic biology

1. INTRODUCTION

Metabolism comprises the biochemical reactions that convert nutrients into biomolecules and
energy to sustain cellular functions. Advances in high-throughput screening technologies have
enabled the quantitative characterization of metabolites, proteins and nucleic acids at the genome-
scale, revealing previously unknown links between metabolism and many other cellular processes.
For example, gene regulation (Chubukov et al., 2014), signal transduction (Tretter et al., 2016),
immunity (Loftus and Finlay, 2016), and epigenetic modifications (Reid et al., 2017) have been
shown to interact closely with metabolic processes. The increasing availability of data and the
fundamental roles of metabolism in various cellular phenotypes (Tonn et al., 2019) have triggered
a surge in metabolic research, together with a revived need for computational methods to untangle
its complexity.

At the genome scale, metabolism comprises multiple interconnected reactions devoted to the
production of energy and synthesis of essential biomolecules (e.g., proteins, lipids, or nucleic acids).
The notion of a metabolic pathway is typically employed to organize sets of related reactions
into functionally cohesive subsystems. Thus, lipid pathways, for example, are traditionally studied
as distinct subsystems from amino acid or aerobic respiration pathways. Although conveniently
descriptive, such a priori partitioning can obscure the links between other relevant layers of
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metabolic organization. Furthermore, metabolic connectivity is
not static but actively responds and adapts to extracellular cues.
Through various layers of transcriptional, translational, and post-
translational regulation, metabolic pathways can be activated or
shut down depending on external perturbations. These metabolic
shifts drive a number of fundamental biological processes,
such as microbial adaptations to growth conditions (Dai et al.,
2016; Hartline et al., 2020) or the ability of pathogens to
rewire their metabolism and evade the action of antimicrobial
drugs (Olive and Sassetti, 2016). Metabolic adaptations are also
thought to modulate the onset of complex diseases such as
cancer (Hanahan and Weinberg, 2011; Pavlova and Thompson,
2016), diabetes, Alzheimer’s, among others (DeBerardinis and
Thompson, 2012; Suhre and Gieger, 2012). As a result, there is
a growing need for computational tools that go beyond classical
pathway definitions and can uncover hidden relations between
metabolic components.

The complexity of metabolism has prompted the development
of a myriad of methods to analyse its connectivity (Wishart
et al., 2018). For specific pathways, kinetic models based on
differential equations are widely employed to describe temporal
dynamics of metabolites (Steuer et al., 2006; Saa and Nielsen,
2017). At the genome scale, however, the construction of kinetic
models faces substantial challenges (Srinivasan et al., 2015). Such
models require a large number of parameters, many of which
have not been experimentally measured, or their values are
subject to large uncertainty. As a result, the majority of genome-
scale analyses are based on the metabolic stoichiometry alone.
A widely adopted method for genome-scale modeling is Flux
Balance Analysis (Palsson, 2015) (FBA), a powerful framework to
predict metabolic fluxes on the basis of an optimization principle
applied to the network stoichiometry. Alternatively, from the
stoichiometry one can build graphs, a computational description
of complex systems that has become the cornerstone of network
science (Newman, 2010).

In this paper we discuss the relationship between FBA and
graph-based analyses of metabolism, and we underline the
complementary perspectives they bring to the understanding
of metabolic organization. On the one hand, FBA has been
shown to predict metabolic activity in various environmental
and genetic contexts; on the other, network science can shed
light on the emergent properties of global metabolic connectivity.
Both approaches share a common root in the genome-scale
stoichiometry of cellular metabolism, yet they offer different tools
for its analysis. In the following, we discuss their advantages and
caveats, highlighting the need and opportunities for integrated
methods that combine flux optimization with network science.

2. FLUX BALANCE ANALYSIS

A large number of methods have been developed for the analysis
of genome-scale metabolic networks (Lewis et al., 2012); these
are generally described as constraint-based methods (Orth et al.,
2010), an umbrella term for various techniques focused on the
solution of the steady state equation:

Sv = 0, (1)

where S is the n × m stoichiometry matrix for a model with n
metabolites and m reactions, and v is a vector containing the m
reaction fluxes.

In general, Equation (1) is satisfied by an infinite number
of flux vectors. A number of methods aim at probing the
geometry of such flux solution space. For example, Elementary
Flux Modes (Klamt et al., 2017) and Extreme Pathways (Wagner
and Urbanczik, 2005) are two complementary techniques for
decomposing the solution space into simpler units (Zanghellini
et al., 2013; Muller and Bockmayr, 2014). Other methods for
exploring the solution space include random flux sampling
with Monte Carlo methods (Wiback et al., 2004), the use of
dimensionality reduction techniques (Bhadra et al., 2018), and
various structural decompositions of the stoichiometric matrix
(Ghaderi et al., 2020).

The most widespread method for genome-scale modeling is
Flux Balance Analysis (FBA), which selects a vector of metabolic
fluxes v in Equation (1) as a solution to the optimization problem:

maxv J(v)

subject to: Sv = 0

Vmin
i ≤ vi ≤ Vmax

i , i = 1, . . . ,m,

(2)

where (Vmin
i , Vmax

i ) are bounds on each flux. The objective
function J(v) is chosen to describe the physiology of a particular
organism under study. In microbes, biomass production is the
most common choice for the objective function, in which J(v) =
cT ·v, i.e., the rate of biomass production is assumed to be a
linear combination of specific biosynthetic fluxes, defined by
the positive vector of weights c. There are many dedicated
FBA software packages (Lakshmanan et al., 2014; Lieven et al.,
2020) and its popularity has led to a myriad of extensions
(Lewis et al., 2012) that account for other complexities of cell
physiology such as gene regulation (Covert et al., 2008), dynamic
adaptations (Rügen et al., 2015; Waldherr et al., 2015), and many
others (Heirendt et al., 2019).

Flux Balance Analysis has found applications in diverse
domains, including cell biology (McCloskey et al., 2013),
metabolic engineering (Nielsen and Keasling, 2016), microbiome
studies (Khandelwal et al., 2013; Manor et al., 2014; Rosario
et al., 2018), and personalized medicine (Diener and Resendis-
Antonio, 2016; Nielsen, 2017; Raškevičius et al., 2018). A salient
feature of FBA is its ability to incorporate various types of
omics datasets into its predictions. Various approaches have been
developed for this purpose (Becker and Palsson, 2008; Colijn
et al., 2009; Jerby et al., 2010; Lee et al., 2012a; Wang et al., 2012;
Agren et al., 2014; Nam et al., 2014; Yizhak et al., 2014), most of
which incorporate experimental data into the metabolic model
through adjustments of the stoichiometric matrix S or the flux
bounds Vmin

i and Vmax
i in (2).

A popular use case of FBA is the identification of essential
genes, i.e., genes that severely impact cellular growth when
knocked out. Through simulation of gene deletions, FBA can
serve as a systematic tool for in silico screening of lethal
mutations, and identification of biomarkers and drug targets in
disease (Lehár et al., 2009; Raman and Chandra, 2009; Folger
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et al., 2011; Gatto et al., 2015; Krueger et al., 2016; Pagliarini
et al., 2016; Robinson and Nielsen, 2017). A related application
of FBA is the study of metabolic robustness. Since only a fraction
of all metabolic reactions are essential in a given environment,
knocking out non-essential reactions often has little effect on
the phenotype. This is because many reactions have functional
backups through other pathways, so as to preserve cellular
function in face of perturbations. By providing insights into
the reorganization of fluxes under different conditions, FBA
can also help improve our understanding of robustness to gene
knockouts (Blank et al., 2005; Deutscher et al., 2006; Larhlimi
et al., 2011; Palsson, 2015; Ho and Zhang, 2016), gene mutations
(Fong and Palsson, 2004), and different growth conditions
(Ibarra et al., 2002).

One limitation of FBA is the crucial importance of
the objective function to be optimized, which needs to
be designed to represent cellular physiology. In microbes,
a common choice is maximization of growth rate, but it
is questionable whether this is a realistic cellular objective
across organisms or in different growth conditions (Schuetz
et al., 2007; Feist and Palsson, 2010; García Sánchez and
Torres Sáez, 2014). Although the vast majority of FBA studies
rely on the maximization of cellular growth, other objective
functions have been proposed, including maximization of ATP
production (Nam et al., 2014) and minimization of substrate
uptake rate (Raman and Chandra, 2009).

3. NETWORK SCIENCE IN METABOLIC
MODELING

Network science represents complex systems as graphs where
the nodes are the system components and the edges describe
interactions between them. This general description provides a
framework for modeling large, interconnected systems across
many disciplines, including biology, sociology, economics,
and others (Newman, 2010). Numerous works have analyzed
metabolism under the lens of network science. Graph-theoretic
concepts such as degree distributions and centrality measures
(Jeong et al., 2000; Wagner and Fell, 2001; Ma and Zeng, 2003b)
can reveal structural features of the connectivity of the overall
system, while clustering algorithms can uncover substructures
hidden in the network topology. Such tools can be combined
with the analysis of perturbations, such as deletions of network
nodes or edges (Palumbo et al., 2005; Larhlimi et al., 2011), which
can represent changes in the environment, gene knockouts, or
therapeutic drugs that target specific metabolic enzymes. Unlike
FBA, in which the analysis depends on the choice of a specific
objective function, network methods rely on the metabolic
stoichiometry alone.

Metabolic modularity is an area where network science has
shown promising results. Intuitively, a network module is a
subset of the network containing nodes that are more connected
among themselves than to the rest of the network. Several studies
have focused on the modularity of metabolism, and how network
modules can be used to coarse-grain the metabolic connectivity
into subunits (Ma and Zeng, 2003b; Tanaka et al., 2005; Zhao

et al., 2007; da Silva et al., 2008; Kreimer et al., 2008). The
modules identified with network analysis have been found to
capture the organization of textbook biochemical pathways while
uncovering novel links and relationships between them (Ravasz
et al., 2002). A recurring theme in these analyses is the bow-
tie topology, whereby a metabolic network can be divided into
an input component, an output component and a strongly
connected internal component. This architecture aligns well
with an intuitive understanding of metabolism, which comprises
nutrient uptake, waste production and secretion, and a large
number of internal cycles which produce biomass and energy
(Ma and Zeng, 2003b; Tanaka et al., 2005; Zhao et al., 2007;
da Silva et al., 2008; Kreimer et al., 2008; Cooper and Barahona,
2010).

Despite its promise, however, network science has generally
achieved mixed success in metabolic research. For example, from
a network perspective it would be natural to expect that essential
genes should be associated with high centrality scores (Jeong
et al., 2001; Plaimas et al., 2010; Raman et al., 2014; Jalili
et al., 2016). This idea draws parallels from other domains,
such as the internet and social networks, where highly central
nodes are deemed critical for network connectivity. However,
correlations between gene essentiality and node centrality have
been so far shown to be weak, with various essential metabolites
and reactions exhibiting low centrality scores (Mahadevan
and Palsson, 2005; Samal et al., 2006). This happens because
poorly connected nodes are often the sole route for producing
precursors that are essential for growth; in other words, such
nodes lack a functional backup that can compensate for their
loss. For example, Samal et al. (2006) showed that more than
50% of essential reactions in Escherichia coli, Saccharomyces
cerevisiae, and Staphylococcus aureus are involved in such unique
pathways, while other works noted that removal of poorly
connected metabolites nodes can disrupt subsystems leading
to failure of entire networks (Mahadevan and Palsson, 2005;
Winterbach et al., 2011). Other studies have attempted to resolve
this problem with new network metrics specifically tailored to
describe important features of metabolism (Palumbo et al., 2005;
Rahman and Schomburg, 2006; Wunderlich and Mirny, 2006;
Cooper and Barahona, 2010; Kim et al., 2019; Yeganeh et al.,
2020).

A key challenge for the use of network science in metabolic
modeling is the lack of consensus on how to build a graph from
a metabolic model. For a network with q nodes, the graph is
encoded through the q×q adjacencymatrixA, which has an entry
Aij 6= 0 if nodes i and j are connected, and Aij = 0 otherwise. As
illustrated in Figure 1, depending on how nodes and edges are
defined, one can build different graphs for the same metabolic
model described by the stoichiometry matrix S in (2). From a
metabolite-centric perspective one can build a graph where the
nodes are metabolites and the edges corresponds to reactions
between them (Ma and Zeng, 2003b; Asgari et al., 2013). In this
case the adjacency matrix is

An×n = ŜŜ
T
, (3)
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FIGURE 1 | Graph constructions for metabolic networks. Depending on how

nodes and edges are defined, several graphs can be built from a single

metabolic model (Palsson, 2015). The conclusions drawn from graph analyses

depend strongly on the choice of graph. The lack of consensus on the

construction of such graphs is a key challenge for the use of network science

in metabolic modeling.

where Ŝ is the binary version of the stoichiometry matrix S

(i.e., Ŝij = 1 when Sij 6= 0, and Ŝij = 0 otherwise). Conversely,
from a reaction-centric perspective we can construct graphs
with reactions as nodes and edges describing the sharing of
metabolites as reactants or products (Ma et al., 2004; Beguerisse-
Díaz et al., 2018). Such graph has an adjacency matrix

Am×m = Ŝ
T
Ŝ. (4)

One can also build bipartite graphs, where both metabolites
and reactions are nodes of different types (Holme, 2009;
Beber et al., 2012), or even hypergraphs where an edge
connects a set of reactants to a set of products (Cottret
et al., 2010; Pearcy et al., 2016). In addition, all of these
graphs can be directed/undirected (when the matrix A is
asymmetric/symmetric), or weighted/unweighted (where the
elements Aij can have weights encoding different properties).
Such modeling choices can strongly influence the conclusions
drawn from network analyses (Klamt et al., 2009; Bernal and
Daza, 2011; Beguerisse-Díaz et al., 2018). For example, the
existence of power law degree distributions (Jeong et al., 2000)
and the small-world property in metabolism (Wagner and Fell,
2001), two cornerstone concepts in network science, have been
disputed (Arita, 2004; Lima-Mendez and van Helden, 2009) and
attributed to specific ways of constructing the network graph
(Montañez et al., 2010; Bernal and Daza, 2011).

A further limitation of graph-based analyses is their ad hoc
treatment of pool metabolites, e.g., H2O, ATP, NADH, and other
enzymatic co-factors. Because pool metabolites participate in a
large number of reactions, they can distort and dominate the
topological properties of reaction-centric graphs (Ma and Zeng,
2003b). A common approach to mitigate this problem is pruning
the pool metabolites from the graph; yet there are no established

best practices on how to choose which pool metabolites to prune,
or how to mitigate the potential loss of information in so doing
(Ma and Zeng, 2003a; Gerlee et al., 2009).

Another challenge arises from the reversibility of metabolic
reactions in the graph. Although all biochemical reactions are
reversible, they take one direction depending on the physiological
conditions. The analysis of reaction-centric graphs typically
prescribe a direction for reaction flux, or they split them into
forward and backward components (Wagner and Fell, 2001;
Helden et al., 2002). Neither of these approaches is ideal:
assigning the direction of a reaction based on one condition may
not generalize across other conditions, whereas incorporating
bi-directional edges increases the complexity of the analysis.

4. FLUX-WEIGHTED GRAPHS:
INTEGRATION OF FBA AND NETWORK
SCIENCE

As discussed in previous sections, both FBA and network
science require modeling choices that can shape the conclusions
drawn from their analyses. Tools from network science have
already been employed to improve FBA pipelines in various
ways (Lewis et al., 2012). Here we argue that the converse,
i.e., using FBA to enrich the metabolic graphs, offers promising
avenues to overcome some of their individual shortcomings. Flux
information obtained from FBA solutions can be employed to
assign direction and strength to the interactions between nodes
in a graph. Such flux-weighted graphs allow to constrain their
connectivity to various growth conditions, resulting in graphs
that do not represent one universal network but are rather
tailored to specific environmental or physiological contexts.
As illustrated in Figure 2A, the integration of FBA and graph
construction can thus result in a highly flexible pipeline to
study metabolic connectivity in different functional states of
an organism.

Although the literature on this subject is still scarce, a number
of studies have demonstrated the potential of the integration
of FBA into graph analyses. These studies cover a range of
methodologies and applications, including e.g., the identification
of biomarkers (Li et al., 2013), detection of metabolic drug targets
(Li et al., 2010), and quantification of metabolite essentiality
(Riemer et al., 2013; Laniau et al., 2017). In one of the early works
in the subject, Smart et al. (2008) proposed an adaptation of FBA
that takes into account the connectivity of individual nodes. This
idea revealed new insights on how the connectivity of specific
metabolites provides robustness to metabolic networks.

Other studies have explored the use of FBA to construct
flux-weighted graphs with either metabolites as nodes (Yoon
et al., 2007; Koschützki et al., 2010; Riemer et al., 2013) or
reactions as nodes (Kelk et al., 2012; Li et al., 2013; Beguerisse-
Díaz et al., 2018). An alternative approach defined the concept
of flux similarity (Li et al., 2010) to build reaction-drug graphs
for detection of drug targets in cancer. Most recently, Hari and
Lobo (2020) developed Fluxer, a web tool for visualization and
analysis of flux-weighted metabolite graphs. The software allows
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A

B C

FIGURE 2 | Integration of Flux Balance Analysis and graph theory. (A) Construction of flux-weighted graphs. Starting from a network graph, FBA solutions can be

used to weight the graph edges, leading to different instances of the same graph for various perturbations such as gene knockouts, heterologous gene expression, or

changes in growth conditions. (B) Clustering of flux-weighted graphs can reveal hidden groupings in the structure of metabolic networks (Yoon et al., 2007;

Beguerisse-Díaz et al., 2018). (C) Essentiality and node centrality are two areas where flux-weighted graphs offer promising potential. (Left) New essentiality scores

can be defined to rank metabolites according to their impact on the phenotype (Koschützki et al., 2010; Riemer et al., 2013; Laniau et al., 2017). (Right) Changes in

node centrality between wild type (WT) and deletion (WT-) networks can reveal the molecular players associated to disease phenotypes; orange nodes denote

reactions that undergo substantial changes in centrality upon gene deletions (Li et al., 2013; Beguerisse-Díaz et al., 2018).

the inclusion of customizable edge weights based on reaction
fluxes and can perform multi-reaction knockout simulations.

In terms of applications, most studies have focused on flux-
weighted graphs for the analysis of metabolic modularity and
essentiality. Next we briefly discuss some of the approaches so
far in these two application domains.

4.1. Network Clustering
A promising application of flux-weighted graphs is the detection
of modular subunits within genome-scale metabolic models
(Figure 2B). The idea is that flux-weighted graphs can encode
information on the strengths on interactions between graph
nodes that are specific to a particular physiological state, as
modeled by the FBA solution. This can potentially reveal
hidden groupings within metabolism, or how known groupings
change across different contexts. For example, Yoon et al.
(2007) employed experimentally determined fluxes to build flux-
weighted graphs with metabolites as nodes. Using clustering
algorithms on the graphs for energy metabolism of rat
liver and adipose tissue formation, the approach revealed
changes in cluster membership under different physiological
flux distributions.

Another promising approach is the “mass flow graph”
proposed by Beguerisse-Díaz et al. (2018), which uses FBA
solutions to weight the edges of graph with reactions as nodes.
In this approach, if reaction Ri produces a metabolite xk that
is consumed by Rj, then the weight of the edge between both
reactions is

wij =
∑

k

(mass flow of xk from Ri to Rj), (5)

where the sum acts on all the metabolites that are produced by Ri
and consumed by Rj. The mass flows in (5) are directly computed
from the stoichiometric matrix S and a flux vector obtained
with FBA. Different mass flow graphs can be then computed
for FBA solutions corresponding to specific environmental
conditions. Thanks to the flux weighting, mass flow graphs avoid
the need to prune pool metabolites, a common limitation of
reaction graphs (Gerlee et al., 2009). Although pool metabolites
do create many connections between functionally unrelated
reactions, in mass flow graphs such connections are weak as
a result of the flux weighting. This feature allowed the use of
multiscale community detection algorithms to study changes in
the modular structure of E. coli metabolism in various growth
media (Beguerisse-Díaz et al., 2018).

4.2. Centrality and Essentiality
Flux-graph integration has also provided opportunities to explore
centrality scores for quantifying essentiality of reactions and
metabolites (Figure 2C). One example of this approach (Li et al.,
2013) demonstrated that the combination of PageRank centrality
(Newman, 2010) with flux information can help identifying
candidate biomarker genes in disease. The use of flux-weighted
graphs also allows to compare their connectivity between models
that lack specific metabolic genes, e.g., in the case of mutants or
genetic deficiencies found in metabolic disorders. For example,
PageRank centrality was employed in conjunction with mass
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flow graphs (Beguerisse-Díaz et al., 2018) to study structural
changes in hepatocyte metabolism in primary hyperoxaluria type
1, a rare metabolic disease characterized by the lack of the
agt gene involved in glyoxylate breakdown (Pagliarini et al.,
2016). This approach showed that reactions which underwent
the highest PageRank changes between healthy and diseased
states were directly related to the PH1 phenotype (Figure 2C).
Importantly, some of the changes in PageRank centrality did not
correlate with changes in flux, providing strong evidence that
metabolic graphs can encode information that cannot inferred
from FBA alone.

A number of other works have sought to define new,
metabolism-specific, centrality scores that can reveal new
information on the topology of metabolic networks. For example,
Koschützki et al. (2010) built a novel “flux centrality” score
for metabolites in networks where only the carbon exchanges
are modeled as edges. This metric emphasizes the role that a
metabolite plays in biomass formation based on both topology
and flux, penalizing the impact of highly connected pool
metabolites. Riemer et al. (2013) combined the classic notion of
metabolic branch points, i.e., metabolites that are substrates to
multiple downstream pathways, with reaction fluxes so as to rank
metabolites according to various metrics of essentiality. A similar
approach to establish metabolite essentiality was presented by
Laniau et al. (2017), where they classify metabolites on the
basis of their capacity to influence the activation of a target
objective function.

5. DISCUSSION

Recent discoveries have led to a renewed interest in the
interplay of metabolism with other layers of the cellular
machinery (Chubukov et al., 2014; Loftus and Finlay, 2016;
Tretter et al., 2016; Reid et al., 2017; Tonn et al., 2020). Due
to the complexity and scale of metabolic reaction networks,
computational methods are essential to tease apart the influence
of metabolic architectures on cellular function. Here we have
discussed the complementary roles of Flux Balance analysis and
network science in the analysis of metabolism at the genome
scale. Although both approaches start from the metabolic
stoichiometry, they differ in their mathematical foundations
and the type of predictions they produce. FBA predictions can
be accurate but their effectiveness requires high quality omics
datasets. Network science, in contrast, requires nothing more
than the metabolic stoichiometry, yet can lead to misleading
predictions depending on how the network graph is built. As a
result, so far FBA has led to more successful connections with
experimental results than network science.

When used in isolation, both FBA and network science can
be insufficient to understand changes in metabolic connectivity
triggered by physiological or environmental perturbations. Here

we argue that the use of flux-weighted graphs (Figure 2A) allows
for a natural integration of FBA and network science, applicable
in many subject domains. For example, with the rise of big data
in the life sciences, there is a growing interest in using patient
metabolic signatures to tailor treatments (O’Day et al., 2018).
Computational methods can play a key role in detecting drug
targets involved inmetabolic activity, and how their targeting can
disrupt metabolic connectivity. A particularly promising area is
cancer treatment, where there is considerable interest on drugs
that target specific metabolic enzymes (Neradil et al., 2012; Nishi
et al., 2016). Moreover, novel data-driven approaches based on
machine learning can also be integrated with FBA (Zampieri
et al., 2019; Kavvas et al., 2020) and network science to extend
their capabilities into novel applications.

Another promising application domain is industrial
biotechnology (de Lorenzo et al., 2018), where microbial
cell factories are engineered for production of commodity
chemicals and fine products (Lee et al., 2012b). In this field,
FBA is widely employed for strain design, with the goal of
finding combinations of genetic interventions that maximize
production of a desired metabolite. A recent trend is to increase
production with synthetic biology tools and dynamic control
of gene expression (Brockman and Prather, 2015; Liu et al.,
2018). This approach needs computational methods that capture
the dynamic reallocation of metabolic flux (Oyarzún and Stan,
2013). Integrating FBA solutions with network models can
provide a versatile tool to identify suitable genetic modifications
for microbial strains with increased production.

Further developments at the interface of FBA and network
science offer a novel way to explore the impact of perturbations
on metabolic connectivity. The flexibility of FBA allows for the
modeling of metabolic perturbations of various kinds, including
changes in growth conditions, deletion of metabolic genes or
the action of enzyme inhibitors, whereas the application of
network-theoretical tools can bring a broadened understanding
of emergent properties of the overall system. This flexibility
offers promising potential to deploy network science tools
across a range of questions in basic science, biomedicine, and
industrial biotechnology.
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