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Purpose: To investigate corneal biomechanical response parameters in varying degrees

of myopia and their correlation with corneal geometrical parameters and axial length.

Methods: In this prospective cross-sectional study, 172 eyes of 172 subjects, the

severity degree of myopia was categorized into mild, moderate, severe, and extreme

myopia. Cycloplegic refraction, corneal tomography using Pentacam HR, corneal

biomechanical assessment using Corvis ST and Ocular Response Analyser (ORA), and

ocular biometry using IOLMaster 700 were performed for all subjects. A general linear

model was used to compare biomechanical parameters in various degrees of myopia,

while central corneal thickness (CCT) and biomechanically corrected intraocular pressure

(bIOP) were considered as covariates. Multiple linear regression was used to investigate

the relationship between corneal biomechanical parameters with spherical equivalent

(SE), axial length (AXL), bIOP, mean keratometry (Mean KR), and CCT.

Results: Corneal biomechanical parameters assessed by Corvis ST that showed

significant differences among the groups were second applanation length (AL2,

p = 0.035), highest concavity radius (HCR, p < 0.001), deformation amplitude (DA,

p < 0.001), peak distance (PD, p = 0.022), integrated inverse radius (IR, p < 0.001)

and DA ratio (DAR, p = 0.004), while there were no significant differences in the means

of pressure-derived parameters of ORA between groups. Multiple regression analysis

showed all parameters of Corvis ST have significant relationships with level of myopia

(SE, AXL, Mean KR), except AL1 and AL2. Significant biomechanical parameters showed

progressive reduction in corneal stiffness with increasing myopia (either with greater

negative SE or greater AXL), independent of IOP and CCT. Also, corneal hysteresis (CH)

or ability to dissipate energy from the ORA decreased with increasing level of myopia.

Conclusions: Dynamic corneal response assessed by Corvis ST shows evidence of

biomechanical changes consistent with decreasing stiffness with increasing levels of

myopia in multiple parameters. The strongest correlations were with highest concavity

parameters where the sclera influence is maximal.
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INTRODUCTION

Myopia is the most common eye disorder in the world with
a worldwide prevalence of more than 22% (Wu et al., 2015).
High myopia can increase the risk of ocular problems such as
glaucoma, retinal detachment, and chorioretinal degeneration
(Paluru et al., 2003).

The cornea is a viscoelastic tissue and corneal biomechanics,
including the material properties of the cornea, determine its
shape. Biomechanical properties of the cornea are influenced by
extracellular matrix components, collagen lamella organization,
osmotic pressure, hormonal factors, and environmental
conditions (Pinero and Alcon, 2015). In recent years a wide
variety of work has been completed on corneal biomechanics
in health and disease with the introduction of non-invasive
devices able to measure in vivo biomechanical parameters
(Perez-Rico et al., 2015; Lee et al., 2016b; Vinciguerra et al.,
2016). A better understanding of corneal biomechanical
response can allow for better diagnosis and staging of various
corneal disorders, refinement of suitable patients for refractive
surgery or intrastromal ring segment implantation and provide
further insights into biomechanics-modulating treatments such
as corneal crosslinking (CXL) and keratoplasty (Kling and
Hafezi, 2017; Ziaei et al., 2019, 2020). However, the analysis and
evaluation of corneal biomechanics is complex as the cornea is a
viscoelastic tissue.

In recent years a wide variety of work has been
completed on corneal biomechanics in health and disease
with the introduction of non-invasive devices able to
measure in vivo biomechanical deformation response such
as the Ocular Response Analyzer (ORA) and Corvis ST
(Lee et al., 2016b; Vinciguerra et al., 2016).

Corneal hysteresis (CH) and corneal resistance factor (CRF)
which are the main biomechanical parameters for evaluating
corneal viscoelasticity are measured by the ORA (Reichert
Ophthalmic Instruments, Buffalo, NY, USA) (Roberts, 2016).
Previous studies have reported a significantly lower CH in high
myopia compared to emmetropia (Shen et al., 2008). Assessment
of corneal biomechanical response using the ORA in a Chinese
population confirmed the reduction of CH only in high myopia,
while spherical equivalents had a positive correlation with both
CH and CRF (Jiang et al., 2011). A similar study in a Caucasian
population reported slightly lower values of CH in high myopes,
with no correlation between CRF and refractive error. This
suggest that minor alteration of corneal viscoelastic properties
occur in moderate myopia (Plakitsi et al., 2011).

Corvis ST (OCULUS Optikgeräte GmbH; Wetzlar, Germany)

is a newly introduced device for measuring biomechanical
deformation response of the cornea. Lee et al. compared the
corneal biomechanical parameters in myopic and emmetropic
subjects using the Corvis ST and reported greater corneal
mean outward applanation velocity in high myopic subjects
compared to emmetropes (Lee et al., 2016a). They also reported

a positive correlation for deformation amplitude (DA) with
axial length (AXL); and a negative correlation for highest

concavity radius (HCR) withmean keratometry reading and AXL
(Lee et al., 2016a).

Although a number of studies have evaluated corneal
biomechanical parameters in mild to moderate myopia (Shen
et al., 2008; Chang et al., 2010; Xu et al., 2010; Jiang et al., 2011;
Bueno-Gimeno et al., 2014; Wang et al., 2015; Lee et al., 2016a;
Qiu et al., 2016) there is a paucity of research on extreme myopia
(myopia >9D). Also, control of the effects of corneal thickness
and intraocular pressure as two influencing factors on corneal
biomechanics are important points that are sometimes ignored
in comparative studies. Therefore, the present prospective study
was designed to assess the biomechanical parameters of the
cornea in different amounts of myopia matched according to
corneal thickness, corneal curvature, and intraocular pressure.
In addition, the correlation of biomechanical parameters with
spherical equivalent, IOP, AXL, corneal curvature, and thickness
was assessed.

MATERIALS AND METHODS

This cross-sectional study was conducted from November 2019
to January 2020 at a tertiary referral center in Iran. One hundred
and seventy two eyes of 172 myopic patients seeking refractive
surgery were recruited. The study was approved by the Ethics
Committee of Mashhad University of Medical Sciences (Code
No.: 980275). Written, informed consent was obtained from all
patients after they voiced understanding of the purpose and
the procedures of the study in accordance with the Declaration
of Helsinki.

Inclusion criteria were myopic spherical equivalent (SE) with
refractive astigmatism lower than 1.5 diopters (D). Subjects with
a history of ocular pathology such as glaucoma, cataract, ocular
hypertension, corneal ectasia, or prior refractive surgery or those
with history of contact lens wear in the last 3 months, systemic
disease such as diabetes, hypertension, and collagen-vascular
disorders were excluded. To avoid the effect of diurnal variation
on corneal biomechanics, all biomechanical measurements were
performed between 4 and 8 pm.

Patient Assessment
Along with detailed ophthalmic examinations including visual
acuity, slit-lamp biomicroscopy and tonometey, cycloplegic
refraction was done finally after application of Tropicamide
1% eye drops, administrated 3 times at 5min intervals and
after a 30min waiting period. Auto-kerato-refractometer 8000
(Topcon Corporation, Tokyo, Japan), Pentacam HR (Oculus,
Wetzlar, Germany), Ocular Response Analyser (ORA, Reichert
Ophthalmic Instruments, Buffalo, NY, USA), Corvis ST (Oculus;
Wetzlar, Germany), and IOLMaster 700 (Carl Zeiss Meditec,
Jena, Germany) exams were performed for all subjects.

Measurements Variables
The degree of myopia was classified into mild (-3.0D
<SE≤−0.50D), moderate (-3.0D ≥SE> −6.0D), severe
(-9.0D <SE≤−6.0D) and extreme (SE≤−9.0D) myopia (Tang
et al., 2018). The tomographic parameters included in the study
were mean anterior keratometry in the central 3mm and central
corneal thickness (CCT). Corneal biomechanical parameters
derived by Corvis ST were applanation length at the first and
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second applanations (AL1 and AL2), the velocity at the first and
second applanations (AV1 and AV2), peak distance (PD), highest
concavity radius (HCR), deformation amplitude (DA), and non-
compensated (IOPnct) and biomechanically corrected (bIOP)
intra-ocular pressure. The novel parameters provided by Corvis
ST such as stiffness parameter at the first applanation (SPA1),
integrated inverse radius (IR), and deformation amplitude ratio
(DA ratio) were also analyzed. The classic parameters by ORA
were corneal hysteresis (CH) and corneal resistance factor
(CRF). All imaging techniques were done by an experienced and
qualified operator.

In the dynamic corneal response parameters and corneal
tomography parameters evaluated using Corvis ST and Pentacam
HR, only measurements with an “OK” quality specification were
included in the analysis. The quality of the pressure-derived
parameters by ORA was evaluated according to the waveform
score (WS) provided by the device and scans with a WS of more
than 3.5 were included in the analysis. The axial length provided
by the IOLMaster 700 was repeated several times and the average
of three repeated measurements with a difference of < 0.02mm
were used.

Statistical Analysis
Data were analyzed using SPSS.26 software (SPSS, Chicago, IL).
The normality of data was checked using the Kolmogorov-
Smirnov test. The Kruskal-Wallis test was used to compare
axial length (AXL), corneal curvature (Mean KR), central
corneal thickness (CCT), and IOP between the different myopic
groups. A general linear model was used to compare corneal
biomechanical parameters obtained using the ORA and Corvis
ST in various degrees of myopia, while central corneal thickness
(CCT) and biomechanically corrected intraocular pressure

(bIOP) were considered as covariates. Pairwise comparisons were
performed using Dunn-Bonferroni post-hoc test., Multiple linear
regression with stepwise method of predictors (Entry P < 0.1;
removal P > 0.2) was carried out to investigate the relationship
between each corneal biomechanical parameter with SE, AXL,
CCT, Mean KR, and bIOP. The significance level was set at a
p < 0.05. Data from only one eye randomly selected from each
participant were used for analysis.

RESULTS

The study comprised of 172 eyes of 172 myopic patients (80
males, 92 females). The subjects’ mean age was 27.89± 4.51 years
with a range of 20–35 years. Assessed eyes in mild, moderate,
high and extreme myopia groups were 46 (26.7%), 46 (26.7%),
44 (25.6%), and 36 (20.9%) eyes, respectively. There was no
significant difference in the mean age (p= 0.212) and the gender
distribution among the different groups (p= 0.156).

The mean refractive status (sphere, cylinder, and spherical
equivalent), axial length and mean KR, CCT, and the IOPs
measured by Corvis ST in different myopia groups are
presented in Table 1. There was no significant difference
between the groups apart from AXL (p < 0.001) and refractive
status (p < 0.001).

The mean corneal biomechanical parameters assessed using
Corvis ST and ORA while CCT and bIOP were considered as
covariates are presented in Table 2. Considering the Corvis’s
classic biomechanical parameters, there was a statistically
significant difference for AL2 (8.043, p = 0.035), HCR
(p < 0.001), DA (18.78 p < 0.001) and PD (p = 0.022)
among the different myopic groups. Dunn-Bonferroni post-hoc
test showed in Table 1. Among the new parameters provided

TABLE 1 | Mean and SD of refraction, axial length, mean keratometry reading, intra-ocular pressure, and central corneal thickness separately in different myopia groups.

Variables

Myopia Mean ± SD

(95% CI)

P-value

Low (n = 46) Moderate (n = 46) High (n = 44) Extreme (n = 36)

Sphere

(D)

−1.73 ± 0.37

(−1.84 to −1.62)

−3.66 ± 0.58

(−3.83 to −3.49)

−6.60 ± 0.81

(−6.84 to −6.35)

−11.53 ± 2.81

(−12.49 to −10.58)

<0.001*

Cylinder

(D)

−0.40 ± 0.37

(−0.51 to−0.29)

−0.55 ± 0.40

(−0.67 to −0.44)

−0.92 ± 0.81

(−1.05 to −0.80)

−1.14 ± 0.47

(−1.30 to −0.98)

<0.001*

SE

(D)

−1.93 ± 0.37

(−2.04 to −1.82)

−3.93 ± 0.58

(−4.11 to −3.76)

−7.06 ± 0.84

(−7.31 to −6.80)

−12.09 ± 2.80

(−13.04 to −11.14)

<0.001*

AXL

(mm)

24.47 ± 0.69

(24.27–24.68)

24.86 ± 0.65

(24.67–25.06)

26.06 ± 0.84

(25.81–26.32)

27.79 ± 1.84

(27.10–28.47)

<0.001*

Mean KR

(D)

43.58 ± 1.17

(43.23–43.93)

43.82 ± 1.43

(43.40–44.25)

44.17 ± 1.38

(43.75–44.59)

43.87 ± 1.39

(43.39–44.36)

0.093

IOPnct

(mmHg)

15.59 ± 1.38

(15.42–16.00)

15.83 ± 1.37

(15.53–16.24)

16.13 ± 1.31

(15.72–16.53)

15.81 ± 1.28

(15.35–16.27)

0.102

bIOP

(mmHg)

15.68 ± 1.35

(15.24–16.12)

15.80 ± 1.64

(15.29–16.30)

16.55 ± 0.97

(16.05–17.05)

16.10 ± 0.01

(16.10–16.10)

0.069

CCT

(µm)

536.79 ± 31.75

(526.89–546.68)

537.54 ± 35.71

(526.94–548.15)

535.40 ± 26.12

(527.36–543.43)

529.85 ± 25.06

(521.11–539.85)

0.552

Significant results are represented with*. (n = 172 eyes) (SD, Standard Deviation; CI, Confidence Interval; SE, Spherical Equivalent; AXL, Axial Length; KR, Keratometry Reading; IOPnct,

non–corrected Intra–Ocular Pressure; bIOP, Biomechanically corrected IOP; CCT, Central Corneal Thickness).
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TABLE 2 | Mean and SD corneal biomechanical parameters using Corvis ST and ORA in different myopia groups and CCT and bIOP as covariates.

Parameters

Myopia Low (n = 46)

(a)

Moderate (n = 46)

(b)

High (n = 44)

(c)

Extreme (n = 36)

(d)

P–value

[Pairwise

Comparisons]Mean ± SD

(95% CI)

Mean ± SD

(95% CI)

Mean ± SD

(95% CI)

Mean ± SD

(95% CI)

Corvis ST parameters

AL1

(mm)

2.36 ± 0.62

(2.27–2.46)

2.31 ± 0.58

(2.22–2.40)

2.30 ± 0.60

(2.20–2.390)

2.23 ± 0.68

(2.12–2.33)

0.308

AL2

(mm)

1.73 ± 0.81

(1.61–1.86)

1.60 ± 0.85

(1.47–1.73)

1.50 ± 0.83

(1.38–1.63)

1.49 ± 0.94

(1.35–1.64)

0.035*

[a,c:0.012, a,d: 0.013]

AV1

(m/s)

0.13 ± 0.03

(0.13–0.13)

0.13 ± 0.03

(0.13–0.14)

0.13 ± 0.03

(0.13–0.14)

0.14 ± 0.03

(0.13–0.14)

0.614

AV2

(m/s)

−0.33 ± 0.034

(−0.34 to −0.32)

−0.30 ± 0.03

(−0.33 to −0.27)

−0.32 ± 0.03

(−0.35 to −0.28)

−0.34 ± 0.03

(−0.36to−0.33)

0.223

HCR

(mm)

7.72 ± 0.56

(7.56–7.90)

7.52 ± 0.66

(7.36–7.68)

7.24 ± 0.70

(7.02–7.35)

6.40 ± 0.49

(6.28–6.45)

<0.001*

[a,b: 0.078, Other

pairs: <0.05]

DA

(mm)

1.03 ± 0.13

(1.01–1.05)

1.04 ± 0.12

(1.02–1.06)

1.10 ± 0.13

(1.09–1.12)

1.14 ± 0.14

(1.12–1.16)

<0.001*

[a,b: 0.548, Other

pairs: <0.05]

PD

(mm)

5.10 ± 0.49

(5.02–5.17)

5.12 ± 0.46

(5.05–5.20)

5.26 ± 0.49

(5.18–5.33)

5.29 ± 0.54

(5.20–5.37)

0.022*

[a,c:0.002, a,d: 0.001,

b,c: 0.011, b,d: 0.005]

SPA1

(mmHg/mm)

106.03 ± 136.36

(85.06–127.0)

99.83 ± 129.89

(79.86–119.81)

123.83 ± 134.91

(102.60–143.55)

105.75 ± 151.45

(81.80–128.37)

0.439

IR

(mm−1 )

7.46 ± 1.25

(7.27–7.65)

7.63 ± 1.18

(7.45–7.81)

8.04 ± 1.23

(7.85–8.23)

8.78 ± 1.39

(8.57–9.00)

<0.001*

[a,b: 0.199, Other

pairs: <0.05]

DAR 4.21 ± 0.60

(4.11–4.30)

4.24 ± 0.57

(4.15–4.33)

4.37 ± 0.59

(4.28–4.63)

4.42 ± 0.67

(4.32–4.52)

0.004*

[a,c:0.013, a,d: 0.003,

b,c: 0.038, b,d: 0.008]

ORA parameters

CH

(mmHg)

10.71 ± 2.24

(10.35–11.07)

10.32 ± 2.13

(9.97–10.66)

10.20 ± 2.27

(9.83–10.57)

10.42 ± 3.35

(9.88–10.96)

0.24

CRF

(mmHg)

10.40 ± 2.02

(10.06–10.74)

10.29 ± 1.93

(9.70–10.11)

10.35 ± 2.06

(10.00–10.67)

10.78 ± 4.38

(10.04–11.51)

0.693

Significant results are represented with*.

(n = 172 eyes) (SD, Standard Deviation; CI, Confidence Interval; AL, Applanation Length; AV, Applanation Velocity; HCR, Highest Concavity Radius; DA, Deformation Amplitude; PD,

Peak Distance; SP–A1, Stiffness Parameter at First Applanation; DAR, Deformation Amplitude Ratio; IR, Integrated Radius; CH, Corneal Hysteresis; CRF, Corneal Resistance Factor).

by Corvis ST, IR (p < 0.001), and DAR (p = 0.004) showed
a statistically significant difference among the various groups.
Dunn-Bonferroni post-hoc test showed a significant difference
in mean IR between all pairs except for low with moderate
(p = 0.199) myopia groups, and in mean DAR between all pairs
except for low with moderate (p = 0.632) and high with extreme
(p= 0.693) myopia.

The pressure-derived parameters of ORA, CH (p= 0.240) and
CRF (p= 0.839), did not show a significant difference among the
different myopia groups.

The results of multiple regression analyses to assess the
relationship between corneal biomechanical parameters with SE,
AXL, bIOP, mean KR, and CCT were shown in Table 3.

In multiple regression analysis, while both CCT and bIOP
were shown as predictors for many of the biomechanical
parameters, only one of the parameters directly related to level
of myopia (SE or AXL) appeared with each biomechanical
parameter. Only AL1 and AL2 have no relationship with a

parameter of myopia in the multiple regressions. Other than AL1
and AL2, these results show progressive reduction in the corneal
stiffness with increasing myopia, independent of IOP and CCT.
Higher levels of myopia are associated with increased corneal
velocity during the first and second applanation phases; increased
distance between corneal peaks (PD), decreased corneal radius
of curvature (HCR), increased axial corneal displacement or
deformation (DA) at the concavity phase; increased integrated
inverse radius (IR), and reduced corneal stiffness at the first
applanation (SPA1). The Corvis ST parameters showing a
significant correlation with SE were AV1 (B coefficient=−0.002,
p = 0.016), HCR (B coefficient = 0.322, p < 0.001), DA (B
coefficient = −0.014, p < 0.001), SP-A1 (B coefficient= 2.035,
p = 0.016), and IR (B coefficient = −0.108, p < 0.001), and
also CH (B coefficient = 0.259, p = 0.004) using ORA. In other
words, for each extra diopter in myopic SE, there was a 0.002 m/s
increase in AV1, a 0.322mm decrease in the radius of corneal
curvature in HC phase, a 0.014mm increase in DA, a 2.035
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TABLE 3 | Multiple regression analysis for variables predicting corneal biomechanical parameters.

Variables Predictors Unstandardized

Coefficient B

Standardized

Coefficient Beta

P–value Adjusted R2

AL1 CCT 0.003

(0.001–0.005)

0.322 0.005 0.070

bIOP 0.051

(0.004–0.099)

0.237 0.035

AL2 CCT 0.004

(0.001–0.006)

0.285 0.005 0.072

AV1 CCT 0.000

(−0.011–−0.008)

−0.460 <0.001 0.506

bIOP −0.010

(0.001–0.005)

−0.817 <0.001

SE −0.002

(−0.0031 to 0.000)

−0.179 0.016

AV2 bIOP 0.016

(0.003–0.028)

0.280 0.013 0.085

CCT 0.000

(0.000–0.001)

0.172 0.123

AXL −0.022

(−0.041 to −0.003)

−0.225 0.024

PD bIOP −0.130

(−0.175 to −0.086)

−0.559 <0.001 0.299

CCT −0.003

(−0.005 to −0.001)

−0.322 <0.001

AXL 0.110

(0.041–0.179)

0.271 0.002

HCR CCT 0.007

(0.004–0.011)

0.385 <0.001 0.250

SE 0.106

(0.048–0.163)

0.322 <0.001

DA bIOP −0.056

(−0.067 to −0.045)

−0.823 <0.001 0.532

CCT −0.001

(−0.002 to −0.001)

−0.432 <0.001

SE −0.014

(−0.022 to −0.007)

−0.279 <0.001

SPA1 bIOP 9.011

(6.571–11.451)

0.660 <0.001 0.406

CCT 0.348

(0.242–0.454)

0.580 <0.001

SE 2.035

(0.390–3.680)

0.196 0.016

IR CCT −0.013

(−0.017 to −0.010)

−0.629 <0.001 0.399

bIOP −0.249

(−0.338 to −0.160)

−0.511 <0.001

SE −0.108

(−0.169 to −0.048)

−0.293 <0.001

Mean KR 0.089

(0.001–0.176)

0.167 0.048

DAR CCT −0.009

(−0.011 to −0.007)

−0.751 <0.001 0.505

bIOP −0.148

(−0.191 to −0.104)

−0.560 <0.001

Mean KR 0.104

(0.062–0.146)

0.363 <0.001

(Continued)
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TABLE 3 | Continued

Variables Predictors Unstandardized

Coefficient B

Standardized

Coefficient Beta

P–value Adjusted R2

CH CCT 0.015

(0.008–0.022)

0.388 <0.001 0.243

SE 0.259

(0.087–0.432)

0.274 0.004

Mean KR 0.149

(0.023–0.274)

0.216 0.021

CRF CCT 0.023

(0.016–0.030)

0.600 <0.001 0.357

bIOP 0.335

(0.170–0.499)

0.385 <0.001

Mean KR 0.192

(0.032–0.352)

0.202 0.019

(n = 172 eyes) (AL, Applanation Length; AV, Applanation Velocity; HCR, Highest Concavity Radius; DA, Deformation Amplitude; PD, Peak Distance; SP–A1, Stiffness Parameter at

First Applanation; DAR, Deformation Amplitude Ratio; IR, Integrated Radius; CH, Corneal Hysteresis; CRF, Corneal Resistance Factor; SE, Spherical Equivalent; AXL, Axial Length; KR,

Keratometry Reading; bIOP, Biomechanically corrected IOP; CCT, Central Corneal Thickness).

mmHg/mm decrease in SPA1, a 0.018 mm−1 increase in IR
and a 0.259 mmHg decrease in CH. Only parameters showing
significant relationship with AXL were AV2 and PD.

A scatter plot of changes in corneal biomechanical parameters
as a function of spherical equivalent is presented in Figure 1.

A stepwise comparison was performed to predict level of
myopia using biomechanical parameters obtained using Corvis
ST and ORA as independent factors showed the HCR (B & beta
coefficients= 2.463, 0.553, p< 0.001 & Adjusted R square: 0.301)
as the strongest predictor of the myopia level. Repeating the
analysis using only Corvis ST’s parameters as predictors showed
a significant relationship for SE with HCR (B coefficient= 2.630,
p < 0.001), DA(B coefficient = −8.892, p = 0.001), and AV1
(B coefficient = 25.947, p = 0.009). The adjusted R square
for this model was 0.394, so that 39.4% of changes in myopia
were predicable based on the predictors remained in this model.
Standardized beta coefficients for the predictors were 0.513,
−0.241, and 0.172, respectively. It showed that each unit decrease
in HCR has more considerable effect on the myopia level.

DISCUSSION

The current study analyzed the effects of varying degrees of
myopia on corneal biomechanical properties using non-contact
tonometers which measure corneal deformation and has been
shown to have acceptable repeatability (Hon and Lam, 2013; Ye
et al., 2015; Lopes et al., 2017). This study is novel in compared to
others conducting corneal biomechanical assessment in myopia
in that we also assessed patients with extreme myopia.

Our results suggest that among the corneal biomechanical
parameters assessed by Corvis ST and ORA, the parameters
related to the highest concavity (HC) phase during the assessment
by Corvis ST demonstrate not only a significant difference with
increasing levels of myopia, but also the strongest correlations.
It has been shown that the sclera influences corneal deformation
via displaced fluid, and therefore scleral influence is maximum at
highest concavity (Nguyen et al., 2018, 2020).

The precise mechanism of structural changes of the eye
leading to increasing levels of myopia in childhood and
adolescence is not well-understood but previous reports have
shown that axial length changes in myopia are associated with
changes in corneal structure (Bueno-Gimeno et al., 2014). The
biomechanical behavior of the cornea is affected by several
factors such as age, IOP, CCT, corneal hydration status, corneal
tissue composition, and several other factors, some of which
are still under investigation (McMonnies, 2012; Roberts, 2014).
The results of this study demonstrate a positive correlation
between CCT, mean keratometry, and IOPnct with both CH and
CRF, while AXL showed a negative correction only with CH, in
keeping with previous studies (Wong and Lam, 2015; Qiu et al.,
2016; Wan et al., 2018).

No significant correlation was found between SE with CRF
while a positive correlation was seen for CHwith SE. This finding
is in in agreement with the results of previous studies which
have reported a decrease in CH alone with increasing levels of
myopia (Qiu et al., 2016; Inceoglu et al., 2018), or a decrease in
CH in high myopia (Wu et al., 2019). Also, Shen and colleagues
in comparison of ORA’s parameters in high myopia (>9.00 D)
with a control group with a SE between zero to−3.0 D reported
lower CH values in the myopia group (Shen et al., 2008). This is
interesting with the different age group of patients recruited (20–
35 in this study vs. 11–63 years) and subject selection as subjects
were matched subjects upon CCT, IOP, and mean keratometry in
the present study.

The results of this study suggest that CRF does not
significantly change with increasing levels of myopia, while
CH showed a significant decreasing trend generally; same as
Shen et al. who reported a decrease in CH with increasing
levels of myopia (Shen et al., 2008). Presence of a negative
correlation between CH and axial length has been reported
in a number of previous studies (Song et al., 2008; Bueno-
Gimeno et al., 2014) but is not universal as Lim et al.
did not observe any relationship between axial length and
CH (Elsheikh et al., 2010). The difference can be attributed
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FIGURE 1 | Scatter plot of peak distance (PD) and deformation amplitude (DA)

(A) highest concavity radius (HCR), and integrated radius (IR) (B) as a function

of spherical equivalents (n = 254 eyes).

to the difference in the subjects’ age and race between the
two studies.

Whilst a previous study suggested that CH as corneal
biomechanical parameter can predict myopia progression in
children (Wan et al., 2018); the results of the current study
suggest that although there are no significant differences in
CH in different myopia groups, there is a positive correlation
between CH with SE overall. However, the present patient cohort
only included adults and the results cannot be extrapolated to
children. In the study by Wan et al. CH was only associated
with axial elongation in children using spectacles and not Ortho-
K prompting the authors to speculate that CH may be a risk
factor for axial elongation in young children not undergoing

myopia control. However a number of studies have reported a
negative correlation between age and CH/CRF (Kida et al., 2008;
Sharifipour et al., 2016) and in the study byWan et al. a significant
difference in baseline and final CH values was also reported. This
may explain the lack of a significant difference in CH values in
our patient cohort.

However, other biomechanical parameters indicating stiffness,
such as those related to the HC corneal phase by Corvis ST, might
also be predictive. Future studies should consider the predictive
value of the classic and new Corvis ST parameters in determining
axial elongation in children with myopia.

Wang et al. in the assessment of parameters obtained by the
Corvis ST in 82 subjects aged 21–50 years reported statistically
significant differences in DA and HCR between high and
moderate myopia groups (Wang et al., 2015). We were able
to show differences in corneal biomechanics in patients in
comparison between multiple myopic groups.

Comparison of other optical parameters of the eye, assessed in
the present study showed no significant difference in the corneal
curvature and thickness between the four groups suggesting that
the key determinant of the refractive status in the different groups
was AXL. Therefore, the current findings did not agree with
previous reports that longer eyes have flatter and thinner corneas
(Chang et al., 2001). On the other hand, when considering the
possible correlation between biomechanics of the cornea and the
globe, as well as the evidence of associated thinner sclera and
choroidal structures in the larger eyes (Shen et al., 2016) it seems
that the elongation of the eye may point to the presence of an
abnormal biomechanical behavior of the globe without a clear
cause-effect relationship between these factors (Song et al., 2008;
Xu et al., 2010).

The findings of the current study with Corvis ST, especially in
the HC phase parameters highlighted the biomechanical changes
in the group with extreme myopia. The positive correlation
between SE with HCR and negative correlation with IR, indicates
a “softer” cornea in cases with very high degrees of myopia with
longer AXL. In support of this possible conclusion, a recent
study reported lower corneal tangent modulus and consequently
less corneal stiffness in patients with high levels of myopia
(Hon et al., 2017).

Considering SE, the highest correlation with corneal
biomechanical parameters was seen for HCR, suggesting that
HCR increases as SE approaches zero. This findingmay be related
to changes occurring in corneal stiffness and consequently the
entire globe with a considerable increase in axial length (Chang
et al., 2010; Hon et al., 2017) and is in keeping with the findings
of a previous study by Wang et al. (2015). There are a number
of possible explanations regarding why biomechanical properties
of the cornea are correlated to the degree of myopia. Axial
elongation has previously been shown to be associated with
corneal flattening and thinning cornea, which can lead to
changes in corneal biomechanical properties (Chang et al., 2001).
Moreover, myopic eyes have a lower level of ocular rigidity
compared to their emmetropic and hyperopic counterparts (Lam
et al., 2002; Berisha et al., 2010). Finally, myopia progression is
associated with significant reduction in the diameter of the scleral
collagen fibrils (Phillips and McBrien, 1995; McBrien et al., 2001)
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a lower level of collagen content and proteoglycan synthesis
which ultimately results in scleral thinning and weakening
(Rada et al., 2000; McBrien and Gentle, 2003; He et al., 2017).
The unique changes in scleral composition of myopes may
well-translate into measurable differences in corneal viscoelastic
properties and an altered biomechanical response as detected by
the ORA and Corvis ST devices.

Of all the parameters evaluated, the two parameters with
the highest mean difference between extreme myopia and low
myopia groups were HCR and IR, and these parameters also had
the high correlation with SE. IR or integrated inverse concave
radius is calculated according to the integrated area under the
curve of the inverse radius of curvature. A lower IR value points
to a stiffer cornea (Fernandez et al., 2017) and it is possible that
in patients with extreme myopia, changes in the arrangement
of scleral collagen fibers due to axial elongation generates an
influence on the corneal mechanical strength and consequently
on the scleral stiffness based on the structural similarity of these
two tissues (Harper and Summers, 2015). It has been shown that
a stiffer sclera will limit corneal deformation. Conversely, a more
compliant or softer sclera that is proposed to exist in high and
extreme myopia may allow greater displacement of the cornea at
highest concavity (Nguyen et al., 2018, 2020).

Our study has a number of limitations. There were a smaller
number of eyes included with extreme myopia compared to
other groups. Another weakness was the lack of analysis of
the ORA signals to include the extracted waveform parameters
for comparison and statistical analysis. Furthermore, only adult
subjects were recruited and the study’s findings cannot be
extrapolated to children.

In conclusion, the results of this study suggest that in
extreme myopia of more than 9.00 D, corneal biomechanical
parameters assessed in the highest concavity (HC) phase
by Corvis ST demonstrate a shift in a weaker direction
biomechanically, whilst the pressure-derived parameters

of ORA showed no significant difference between the
groups, although there is a positive correlation between
CH and SE overall, indicating reduction of ability to
dissipate energy accompanies reduction in stiffness as level
of myopia increases. Future studies including analysis of
corneal biomechanical properties in children with a family
history of extreme myopia or children with progressive
myopia may be appropriate for planning purposes and
prevention programs.
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