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Inertial measurement units (IMU) are proven as efficient tools for swimming analysis

by overcoming the limits of video-based systems application in aquatic environments.

However, coaches still believe in the lack of a reliable and easy-to-use analysis system

for swimming. To provide a broad view of swimmers’ performance, this paper describes

a new macro-micro analysis approach, comprehensive enough to cover a full training

session, regardless of the swimming technique. Seventeen national level swimmers (5

females, 12 males, 19.6 ± 2.1 yrs) were equipped with six IMUs and asked to swim 4

× 50m trials in each swimming technique (i.e., frontcrawl, breaststroke, butterfly, and

backstroke) in a 25m pool, in front of five 2-D cameras (four under water and one

over water) for validation. The proposed approach detects swimming bouts, laps, and

swimming technique in macro level and swimming phases in micro level on all sensor

locations for comparison. Swimming phases are the phases swimmers pass from wall

to wall (wall push-off, glide, strokes preparation, swimming, and turn) and micro analysis

detects the beginning of each phase. For macro analysis, an overall accuracy range of

0.83–0.98, 0.80–1.00, and 0.83–0.99 were achieved, respectively, for swimming bouts

detection, laps detection and swimming technique identification on selected sensor

locations, the highest being achieved with sacrum. For micro analysis, we obtained the

lowest error mean and standard deviation on sacrum for the beginning of wall-push

off, glide and turn (−20 ± 89ms, 4 ± 100ms, 23 ± 97ms, respectively), on shank

for the beginning of strokes preparation (0 ± 88ms) and on wrist for the beginning

of swimming (−42 ± 72ms). Comparing the swimming techniques, sacrum sensor

achieves the smallest range of error mean and standard deviation during micro analysis.

By using the same macro-micro approach across different swimming techniques, this

study shows its efficiency to detect the main events and phases of a training session.

Moreover, comparing the results of bothmacro andmicro analyses, sacrum has achieved

relatively higher amounts of accuracy and lower mean and standard deviation of error in

all swimming techniques.
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INTRODUCTION

As a highly competitive sport, swimming is one of the most
popular events with world-class athletes, aiming to optimize their
performance. Among the coach’s principal duties are monitoring
the swimmers permanently, evaluating their performance
and providing feedback for their improvement (Bompa and
Buzzichelli, 2018; Marinho et al., 2020). To help coaches with
these tasks, research community has studied swimming from
various perspectives such as physiology (Pendergast et al., 1980;
Lavoie andMontpetit, 1986; Zamparo et al., 2005), motor control
(Seifert et al., 2011a; Morais et al., 2020), and biomechanics
(Payton and Bartlett, 1995; Morais et al., 2012). Although all
these aspects have their own significance, studies show the
dominance of biomechanical factors over the other aspects
(Figueiredo et al., 2013). Moreover, swimming coaches also
consider biomechanics the most critical area of improvement for
swimmers (Mooney et al., 2016a).

Using video-based systems is a common tool for motion
analysis, which is still considered as the most accurate method
and gold standard (Mooney et al., 2015; Seifert et al., 2015).
However, as a result of its limitations in aquatic environments
(Callaway et al., 2010), the number of studies on swimming
with inertial measurement units (IMUs) has been increased
(Guignard et al., 2017). There is a multitude of research on
measuring the swimming kinematic parameters using IMUs in
different swimming phases, such as start (Stamm et al., 2013a;
Vantorre et al., 2014), swimming (Ohgi et al., 2003; Davey et al.,
2008), or turn (Slawson et al., 2012; Nicol et al., 2018). To evaluate
the swimmer’s performance, many studies focused on extracting
specific parameters such as stroke rate (Siirtola et al., 2011;
Beanland et al., 2014), distance per stroke (Bächlin et al., 2008),
velocity (Wright and Stager, 2013; Dadashi et al., 2015), lower
limbs actions rate (Fulton et al., 2009), or body coordination
(Osborough et al., 2010; Silva et al., 2015).

The general approach of most studies is limited to a specific
swimming technique or phase. As the most prevalent swimming
technique, frontcrawl has been more investigated in the literature
(Mooney et al., 2016b) and development of swimming technique
specific algorithms is proposed as a future application for IMUs
(Magalhaes et al., 2015). Swimming phases are the phases
swimmers pass from wall to wall (wall push-off, glide, strokes
preparation, swimming, and turn). Among different phases,
swimming phase has been noticed the most, while start or turn
have not captured enough attention. It is well-established that
these phases are of utmost importance for coaches (Mooney et al.,
2016b). Another downside is focusing only on a small number of
swimmers, lacking variety of technique among subjects (Slawson
et al., 2012; Hagem et al., 2013; Seifert et al., 2014).

Using the least number of IMUs is another challenge for
a wearable analysis system, as they induce drag unlike video-
based systems. By reducing the number of sensors and providing
adequate fixation or integrating the wearable sensor into the
suit, goggles or watch, swimmers face less drag. Only one study
performed a qualitative comparison for possibility of direct or
indirect extraction of kinematic parameters with IMU on lower
and upper limbs (Pansiot et al., 2010).

FIGURE 1 | Macro-micro analysis approach diagram to show the scope of

this study.

As a result, a comprehensive study over different swimming
techniques and swimming phases with IMUs on various sensor
locations during a training session is necessary to provide a
complete view over swimmer’s performance from macro level
to micro level. All four main swimming techniques i.e., front
crawl, breaststroke, butterfly, and backstroke can be decomposed
into different locomotion phases from wall to wall. There is an
analogy between swimming and gait analysis in terms of the
way one can narrow down from a big picture to the detailed
parameters, also known as macro-micro approach (Lord et al.,
2013). Using body-worn sensors, such as accelerometers, this
approach first detects the amount and variability of ambulatory
activity (lying, sitting or standing, and gait) as macro level and
then continues to gait phases and spatiotemporal parameters as
micro level. Likewise in swimming analysis, detecting the amount
of swimming (swimming bouts and laps) in different swimming
techniques in each lap constitutes the macro level, while the
micro level targets detecting the swimming phases in each lap and
finally extracting parameters within each swimming phase.

Following this approach, the main objective of this study
was to design an IMU-based wearable system for swimming
analysis during training sessions including four main swimming
techniques. As illustrated in Figure 1, the approach was macro-
micro, where swimming bouts, laps, and techniques were
detected in macro level, and swimming phases within each lap
are identified in micro level. More detailed parameter extraction
in each phase (e.g., detecting stroke cycle sub-phases) is the
next step of micro analysis, which is out of the scope of this
study (Figure 1). This approach aims to provide a thorough
view over the swimmer’s performance to the coach during each
training session.

We hypothesized that changes in motion and posture alter the
kinematic profile of wrists, sacrum, head, and shanks motion,
which could be recognized by adequate IMU-based algorithms
to detect swimming bouts, laps, swimming technique, and
subsequently swimming phases. The accuracy and precision
of detection algorithms for each sensor location are estimated
and compared in order to find the most suitable location for
monitoring swimmers’ training with this approach. All the
abbreviations used in this study are explained in a table of
glossary in Supplementary Table 4.
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MATERIALS AND METHODS

Measurement Setup
Seventeen national level swimmers (with attributes listed in
Table 1) were asked to perform four 50-m trials in each
swimming technique in a 25-m indoor pool, with 80% of their
best speed. Since swimming analysis during training sessions is
the main goal of this research, 80% is considered as a moderate
pace close to what used during the training sessions, allowing the
balance between speed and motion accuracy (Schmidt and Lee,
2019). The moderate pace helps the swimmers to keep efficient
performance while avoiding fatigue in a long training session.
Moreover, wearable sensors induce more drag on swimmer’s
body, specifically in high pace and it is necessary to compensate
for this effect by reducing the pace (Magalhaes et al., 2015;
Guignard et al., 2017). The trials were separated with a short
break, leading to several swimming bouts and the total duration
of the measurement was 1 h per swimmer. During the test,
the coach was observing and evaluating the pace qualitatively,
and asked the swimmers to correct it in case of fast or slow
pace. The swimmers are selected from national swimming clubs
and practice swimming more than five times per week for
competitions. Each swimmer was informed of the procedure and
gave their written consent prior to participation. This study was
approved by the EPFL human research ethics committee (HREC,
No: 050/2018).

A wearable measurement system including six IMUs
(Physilog R© IV, GaitUp, CH) was used. IMUs were attached to
right and left shanks (R/LS), right and left wrists (R/LW), sacrum
(SA), and head (HE) using waterproof bands (Tegaderm, 3MCo.,
USA). The swimmers were asked to wear two swimming caps
to keep the head sensor as fixed as possible on the back of their
head. The rest of the sensors were taped directly on swimmer’s
skin. Each unit contained a 3D gyroscope (± 2,000 ◦/s) and
a 3D accelerometer (± 16 g), with a sampling rate of 500Hz
(Figure 2).

Five 2-D cameras (GoPro Hero 7 Black, GoPro Inc., US)
were used for validation, four of them under water (attached
to the pool wall, distributed along the length of the pool) to
capture all lap events and one camera over water moving with the
swimmer (Figure 3), all capturing with a rate of 60Hz. A push-
button, which was used to start the data acquisition by IMUs, also
provided a flashlight in front of the cameras to synchronize the
two systems. This procedure is done at the beginning and end
of each measurement to make sure that the systems remained
synched through the measurement.

To make the IMU data independent of sensor exact placement
on swimmers’ body, a functional calibration was performed after
sensors installation. As a result of this calibration, the data
will represents the true motion of the limb, regardless of the
exact sensor location and the difference of sensor placement

TABLE 1 | Statistics of the measurement population.

Male Female Age (yrs) Height (cm) Weight (kg) Record50m (s) FINA50m

12 5 19.6 ± 2.1 179.5 ± 6.7 74.5 ± 7.1 Front crawl 24.56 ± 1.26 725 ± 53

Breaststroke 32.13 ± 1.52 631 ± 42

Butterfly 26.86 ± 1.68 652 ± 83

Backstroke 28.63 ± 1.41 612 ± 95

All variables are presented as mean ± standard deviation. Record50m and FINA50m are the average and standard deviation of 50m record and FINA points (for 2019) of the swimmers
separately for each swimming technique.

FIGURE 2 | IMU-based measurement setup. Six IMUs were attached to shanks, wrists, sacrum and head using waterproof tapes. During functional calibration, for

each segment, the data will be transformed from sensor frame (xyzS ) to anatomical frame (xyzA ).
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FIGURE 3 | For validation system, four cameras (Cam#1–Cam#4) were

distributed along the pool in the same depth (0.5m) underwater and one

camera (Cam#5) moved with the swimmer in land to capture the events over

water.

on different swimmers or limbs does not affect the data. The
purpose of this calibration is to find the transformation matrix
that matches the sensor frame (xs, ys, zs)i of each sensor i (i =
1,. . . ,6) to the corresponding body segment anatomical frame
(xA, yA, zA)i (Figure 2). The procedure of functional calibration
is explained in Dadashi et al. (2014), which includes simple
movements (upright standing, squats, and arm rotation) in land.
After this calibration, each sensor coordinate system has its axis
y along the longitudinal axis of the limb directed upward (y),
x axis along the anterior-posterior axis pointing forward (x),
and z axis along the mediolateral axis (z), pointing to the right
direction (Figure 2). The trunk pitching and rollingmotion while
swimming are defined as its rotation around body medial-lateral
and inferior-superior axes, respectively.

Analysis Approach
During a training session, there are several swimming bouts
in different swimming techniques (front crawl, breaststroke,
butterfly, backstroke), each one consisting of one or more laps.
Within each lap, from one pool wall to the other, swimmers
pass five main phases: wall push-off (Push), glide (Glid), strokes
preparation (StPr), swimming (Swim), and turn (Turn).

1. Wall push-off Phase starts on the frame with forward motion
of swimmer’s trunk and finishes upon swimmer’s feet leaving
the wall (Slawson et al., 2010; Stamm et al., 2013b). This phase
is the same for all swimming techniques except it happens in
supine posture during backstroke.

2. Glide phase continues as long as swimmer’s body glides
under water without upper or lower limb movement. This
phase ends with butterfly lower limbs action (for front crawl,
butterfly, and backstroke) or one upper limbs cycle and then
a lower limb action under water (for breaststroke) (Stamm,
2013; Vantorre et al., 2014). Although it is allowed to do one
butterfly lower limbs action for breaststroke, the swimmers
were trained to follow the traditional method.

3. Strokes preparation is the phase after glide, which continues
up to the first upper limbs cycle (Silveira et al., 2011; Vantorre
et al., 2014).

4. Swimming phase is usually the longest phase, which lasts as
long as the swimmer performs upper limbs cycles. During
tumble turn, swimming phase ends with the last upper limbs
cycle and head downward motion for rolling, while during
simple turn, it finishes by touching the wall (Pereira et al.,
2015; Mooney et al., 2016b).

5. Turn phase happens after swimming phase and ends on the
frame of the next wall push-off phase start (Le Sage et al., 2010;
Vannozzi et al., 2010).

The training session can be conceptualized at a macro level
estimating the volume of training, i.e., number and duration of
swimming bouts and laps with a specific swimming technique,
and at a micro level including different phases of each lap
as well as spatiotemporal features of swimming within each
phase (number, duration, or distance per stroke). Here, macro
analysis consists of swimming bouts detection, laps detection,
and swimming technique identification, while micro analysis is
limited to phase detection within each lap (Figure 4) and more
detailed parameters in each phase is not included in this study.
As these phases follow each other sequentially, we focused on
finding the beginning of each phase for lap segmentation. The
start and end of each phase triggers specific change in the profile
of acceleration and angular velocity of body segment and requires
specific rules for its detection, the details of which are discussed
in Supplementary Tables 1, 2. These rules are based on common
processing functions described in the following section.

Common Processing Functions
Despite the differences between the movement patterns of body
segments, there are common function that are used frequently in
macro-micro analysis algorithms. These functions are explained
in Table 2 and applied on acceleration (Accx, Accy, Accz) and
angular velocity (Gyrx, Gyry, Gyrz) or their norms (|Acc| and
|Gyr|) expressed in the bone anatomical frame after noise removal
with low-pass filtering (second order Butterworth filter, fc =

10Hz). These methods are thresholding (Cronin and Rumpf,
2014), extremum detection (Chardonnens et al., 2012), sharp
change detection (Dadashi et al., 2013a), principle component
Analysis (Jollife and Cadima, 2016), frequency analysis (Aung
et al., 2013), empirical mode decomposition and Hilbert-Huang
transform (Ge et al., 2018).

For macro-micro analysis algorithms, a mixture of these
methods are used for all sensor locations. As most of the
motions are symmetric, always the sensor on the right wrist
and shank are used in algorithms unless mentioned otherwise.
The details of macro and micro algorithms are explained in
Supplementary Tables 1, 2.

Macro Analysis Algorithms
Swimming Bouts Detection
Each swimming bout starts and ends with an abrupt change in
swimmer’s body posture between upright and supine or prone
postures. This change is observed either after (for swimming
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FIGURE 4 | Analysis approach and segmentation events considered in this study (sacrum acceleration signal during frontcrawl is used as an example). The approach

steps are: (A) swimming bouts detection in a training session, (B) laps separation and swimming technique identification using a short period of upper limbs cycles,

(C) segmentation of the lap into five swimming phases of wall push-off, glide, strokes preparation, swimming, and turn using the segmentation events.

TABLE 2 | Common processing methods used for macro-micro analysis.

Method Description Example

Thresholding

(TH)

When the signal goes higher or lower than a threshold (TH) due to an event,

thresholding can detect it.

Acceleration amplitude change for swimming

bouts detection on wrist

Extremum detection

[A, t] = EXT(s, TH)

Local increase or decrease of the signal (s) generates peaks or troughs

comparable with a threshold (TH). Extremum detection finds the magnitude

(A) and time (t) of extremums

Peak on sacrum forward acceleration at the

beginning of wall push-off phase

Sharp change detection

t = SC (s, TH)

The occurrence time (t) of some events are abrupt, easier to detect on the

derivative of the signal (s) by comparing it with a threshold (TH)

Swimming bout start and end detection with

sacrum

PCA analysis

[PC1, PC2, PC3] = PCA (v)

Finding the principle components (PC1, PC2, PC3) of a vector (v) is useful

for decreasing dimensionality to identify the type of movement

Swimming technique identification with head

Frequency analysis

FFT(s)

The single-sided power density spectrum of the signal (s) and its analysis

reveals the behavior of the signal in frequency domain

Differentiating between breaststroke and

butterfly techniques with sacrum

Empirical mode decomposition

IMF = EMD(s)

It decomposes the signal (s) into its intrinsic modes to facilitate the change

detection in time domain

Detecting the beginning of upper limbs cycles

on sacrum

Hilbert-Huang transform

inse = HHT(s)

It extracts many features of a signal (s) such as instantaneous energy, which

is useful to find the change start

Detecting the beginning of upper limbs cycles

on head

bout start) or before (for swimming bout end) a rest period. The
detection method on all sensor locations except right wrist is to
use SC(Accy, THB), where THB =± 0.3× EXT(low pass filtered
˙Accy), where ˙Accy denotes the derivative of Accy. Negative and

positive threshold is used for detecting troughs (corresponding
to approximate start) and peaks (corresponding to approximate
end), respectively.

t = SC
(

Accy, 0.3 × EXT
(

Low pass filtered ˙Accy
))

(1)

Approximate start = t
(

negative peaks on Ȧccy
)

(2)

Approximate end = t
(

positive peaks on Ȧccy
)

(3)

For the right wrist sensor, while it has a clear cyclic pattern
during swimming phase in all swimming techniques, its motion
is erratic before upper limbs actions. Despite the inter-individual
variability in swimmer’s wrist motion during swimming phase
(Martens et al., 2016), the swimming bout was detected as the
period where the envelope of |Acc| is higher than an empirical
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threshold (THBW = 1.6 g). This period starts with the upper
limbs cycles in the first lap, until the end of the swimming bout.

Lap Detection
In our measurement protocol, each swimming bout consisted
of two laps, separated by a turn. Therefore, lap detection
requires finding the approximate turn. The detection algorithm
for sacrum, head, and right shank finds the highest peak
during the swimming bout on Accx and

∣

∣Accy,z
∣

∣ . For right
shank the peak is detected using a threshold with the function
EXT(Accz or Gyrz (the one happens earlier), THLS = highest
peak in a 2-s period during swimming phase). As wrist’s
angular velocity amplitude decreases during turns (compared
to swimming phase), the algorithm detects a decrease of
∣

∣Gyr
∣

∣ where low pass filtered
∣

∣Gyr
∣

∣ is less than the threshold
(THLW = 200 ◦/s).

Swimming Technique Identification
For head and sacrum, a two-upper-limbs-cycle period was
chosen. The PCA(Gyrx,y,z) to separate swimming techniques
with dominant trunk pitching motion (breaststroke/butterfly)
from the techniques with trunk rolling motion (front
crawl/backstroke), gravity effect (positive vs. negative sign
of Accx average to distinguish backstroke) and threshold-based
Fast Fourier Transform (FFT) of Accx for sacrum and |Accx,y|
for head (to distinguish between butterfly and breaststroke) were
used for swimming technique identification (THStyleHE = 0.2 g,
THStyleSA = 0.16 g). Equation (4) explains the use of FFT analysis
for technique identification on sacrum and head.

EXT(power density spectrum magnitude,THStyleHE or THStyleSA)

→ Butterfly technique (4)

A period including five lower limbs actions is chosen during
swimming phase for swimming technique identification with
right shank, which was not a limit, as all of the swimmers
did more than five lower limbs actions in every lap. Gravity
effect (same as head and sacrum to distinguish backstroke) and
PCA analysis of angular velocity vector are used for swimming
technique identification on right shank. For right wrist, the PCA
of acceleration separates backstroke from other techniques and
themean and variation of |Acc| are comparedwith two thresholds
(THStyleWmean = 1.7 g, THStyleWvar = 0.01 g) to identify butterfly
and front crawl, respectively.

Micro Analysis Algorithms
The results achieved from macro analysis (approximate start,
approximate end, approximate turn, and swimming technique)
were used for further detailed lap components detection. These
approximate events are enough to find the exact locations of the
events for phase detection in micro level.

Beginning of Wall Push-Off (PushB)
Wall push-off accompanies a forward acceleration increase close
to approximate start. For sacrum and head during backstroke,
the detection is done with EXT(Accy) for both sensor locations,
while for other techniques with sacrum, concavity change of Accy
is used to find a negative trough, close to PushB. For head during

other swimming techniques, EXT(|Acc|) estimates the answer.
Right wrist has a downward motion during wall push-off causing
a negative trough on Accy and right shank represents a peak on
∣

∣Gyr
∣

∣ close to PushB.

Beginning of Glide (GlidB)
As the glide phase starts, the whole body glides in water with
no propulsion. The first trough after PushB detected by EXT(-
Accy) for sacrum and head or the first peak found by EXT(

∣

∣Gyr
∣

∣)
for right shank is considered as GlidB. On the right wrist, Accy
gets close to zero and shows a peak right after beginning of wall
push-off, which is GlidB.

Beginning of Strokes Preparation (StPrB)
Strokes preparation phase includes underwater lower limbs
actions (except for breaststroke, which includes one lower
limb action and one upper limb cycle). Detection method for
sacrum, head, and right wrist is threshold-based and the idea
is using thresholds on peak magnitude, peak prominence or
signal variation depending on sensor location (for sacrum;
EXT(|Accx| ,THSPSA = g, THSPSAvar = 0.06 g), for head;
EXT(

∣

∣Accy
∣

∣ , THSPHE = −0.5 g, THSPHEprom = 0.1 g), for
right wrist; EXT(|Acc| ,THSPRW = −0.9 g). On right shank,
the first positive peak of Accy is StPrB for backstroke, while
for other swimming techniques, the peak is detected with
EXT(|Accx| , THSPRS =1.3 g) and then the next sample on |Acc|
passing from g is StPrB.

Beginning of Swimming (SwimB)
In swimming phase, swimmer’s body starts the rolling (for
front crawl and backstroke techniques) or pitching motion (for
breaststroke and butterfly techniques). On sacrum, the detection
for front crawl and backstroke is done using EXT(

∣

∣Gyry
∣

∣,
THSSA−FCBaS =200 ◦/s). For breaststroke and butterfly, the
second intrinsic mode of low pass filtered Gyrz and Accy
were obtained. For breaststroke, instantaneous energy of Gyrz
increases more than THSSA−BrS =550 ◦/s2 at SwimB. For
butterfly, EXT (second intrinsic mode ofAccy, THSSA−BF = 0.1 g)
detects a peak close to SwimB. On head, instantaneous energy of
Gyry (for front crawl) and Gyrz (for breaststroke, butterfly, and
backstroke) are used. The decrease (for backstroke) or increase
(for front crawl, breaststroke, and butterfly) of instantaneous
energy is taken as the criterion for SwimB detection by thresholds
THSHE−FC = 5,000 ◦/s2, THSHE−BFBrS = 12,000 ◦/s2 and
THSHE−BaS = 1,000 ◦/s2.

For wrists during front crawl and backstroke, both wrists are
used to find SwimB because upper limbs cycles can start on either
one. The detection method is to find the trough before the first
peak on right and left wrists. It is performed over Accy for front
crawl and butterfly and over Accx for backstroke. The same is
done over Gyry for breaststroke to find an approximation of
SwimB. On right shank, the lower limbs action pattern changes
after SwimB, which is noticeable on the second intrinsic mode
of Accx (for front crawl, butterfly, and backstroke) or Accy
(for breaststroke). The trough before the first peak found with
EXT(second intrinsic mode of Accx or Accy, THT−RS = 1.7 g) is
considered as SwimB.
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Beginning of Turn (TurnB)
Regardless of the turn type (simple or tumble turn), the
algorithms use approximate turn to find the beginning of turn.
During backstroke, approximate turn fits greatly as TurnB. For
the rest of the techniques, TurnB on sacrum is the first trough
before the large peak onAccx close to approximate turn. On head,
EXT(|Acc|) and EXT(Gyrx) were used shortly before approximate
turn for tumble turn and simple turn, respectively, to find TurnB.
On right wrist, EXT(low pass filtered Accy) and EXT(Accy) are
used for tumble turn and simple turn, respectively, to find TurnB.
Right shank motion also shows a peak detectable, respectively, by
EXT(Gyrz) and EXT(Accz) for tumble turn and simple turn.

Validation and Error Analysis
For validating the temporal macro and micro events described
above, cameras were used as ground truth. To validate the macro
events the camera over water was used as the main reference,
while the detection of swimming phases start during micro
analysis was done by underwater cameras by one observer. For
validation of swimming bouts and laps detection, the accuracy,
sensitivity, and precision are defined based on the number of
true or false detections (Equations 5–7). Accuracy shows how
much the algorithms work correctly and the results match the
true values. Precision represents how much the algorithm results
are correct when it claims the detection of an event (if it is
truly happened or not), and sensitivity displays how much the
algorithm is sensitive to occurrence of an event (if it is correctly
detected or not)

Accuracy =

∑

True positive+
∑

True negative
∑

Total
(5)

Sensitivity =

∑

True positive
∑

True positive+
∑

False negative
(6)

Precision =

∑

True positive
∑

True positive+
∑

False positive
(7)

For example, the results are checked if the beginning and end of a
swimming bout or turns are correct (true positive), missed (false
negative), or mixed with other motions (false positive). Total
parameter includes all the cases (e.g., the number of all the turns)
and true negative is zero for our algorithms, as the purpose is to
detect the happening of the event. The same logic holds true for
swimming technique identification, if the technique is correctly
identified or mixed with another technique.

Synched with the IMUs, the cameras were used to mark the
frames when each phase started and finished. The detected event
using IMUs was then compared to the corresponding frame on
the cameras and the mean and standard deviation of the errors
were calculated. This method is used for validation in swimming
for comparing IMUs and cameras in similar studies (Dadashi
et al., 2013b). To assess the reliability of the validation process,
two observers detected the events on cameras and compared
with each other using Bland-Altman plots for the beginning of
each phase. For each event, mean and standard deviation of
the difference between the event observed on camera and IMU
were calculated.

For phase duration (denoted by 1 of the phase name,
e.g., 1Push for wall push-off phase duration) confined with
its starting and ending event, the absolute and relative error
of phase duration are calculated. This error is the difference
of estimated duration and the true duration (obtained from
validation system). The relative phase duration error is then
calculated by dividing it to the true phase duration. Equations (9)
and (10) are examples for Push phase duration error and relative
error. 1Push denotes the duration of Push phase, 1PushIMU

signifies the duration of Push phase estimated by IMUs and
1PushTrue is the duration of Push phase estimated by cameras.
Then mean and standard deviation of phase duration error and
phase duration relative error were calculated.

1Push = GlidB − PushB (8)

Phase duration error = 1PushIMU − 1PushTrue

(9)

Phase duration realive error, % =
1PushIMU − 1PushTrue

1PushTrue
(10)

Three swimmers were chosen randomly from the dataset (one
female and two males, making 20% of the dataset) who were
trained with different coaches and tested in different pools. These
swimmers were from the same technique level as others and
trained regularly as planned by coaches. To make the algorithms
more generalizable, they were developed using the data from
these three swimmers and then tested over the other 14 swimmers
to include as much diversity as possible in the algorithms.

All of the algorithms that use threshold have been analyzed
in terms of their results sensitivity to the change of threshold
values. The results are the accuracy and precision for macro
analysis algorithms and the error mean and standard deviation
for micro analysis algorithms. The table including the exact
values is presented in Supplementary Table 3. Each threshold is
changed at least 10% in both directions and the corresponding
effect on algorithm results have been explored.

RESULTS

In order to generate the results, the data of all laps are
used for swimming technique identification and the phases are
investigated from the beginning of each swimming bout up to
the end of the turn to have all the phases completely.

Macro Analysis Results
Figure 5 shows a typical example of macro analysis using sacrum
sensor. As described in section Macro Analysis Algorithms,
posture changes at the beginning and end of swimming bout were
detected by the filtered ˙Accy (Figures 5I-A,B). The approximate
turn within each swimming bout are detected for separating
laps (Figure 5III-A). Swimming techniques were identified
based on PCA(Gyrx,y,z), gravity effect of Accx and dominant
frequency during a period of swimming phase (Figures 5II-A–
F). It is worth mentioning that the frequency resolution of fast
Fourier transform analysis was at least 0.35Hz considering all
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FIGURE 5 | Example of macro analysis with sacrum Accy data. (I) Swimming bouts detection: swimming bout start causes a change in filtered Accy amplitude level

(I-A), detected using its derivative (I-B) and the rule is the same for swimming bout end. (II) Swimming technique identification: a short period of upper limbs cycles is

selected for swimming technique identification. Principal component of angular velocity (II-A for front crawl or backstroke, II-B for breaststroke or butterfly), gravity

effect on Accx (II-C for front crawl, breaststroke, or butterfly, II-D for backstroke), and FFT of the data (II-E for butterfly, II-F for breaststroke) are mainly the tools used

for this purpose. (III) Lap detection: at the end of each lap, turning accompnies with a peak on Accx.

FIGURE 6 | Sensitivity, precision and accuracy achieved for swimming bouts and laps detection on all sensor locations (SA, HE, RS, and RW).

swimmers and swimming techniques, small enough to capture
the dominant frequency.

According to Figure 6, sacrum shows the most promising
results in terms of both accuracy and precision for swimming
bouts and lap detection. After lap detection, the swimming
technique is identified with each sensor separately (Table 3).
Sacrum represents the best results for all swimming techniques.

It is possible to identify all front crawl and backstroke laps
correctly and differentiate between breaststroke and butterfly
with precision and accuracy higher than 0.97.

Micro Analysis Results
Figures 7, 8 show one example of detecting the beginning of these
events on corresponding locations and signals. The examples
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TABLE 3 | Accuracy and precision for swimming technique identification of four swimming techniques over different sensor locations (SA, HE, RS, and RW).

Sensor location SA HE

Swimming technique Front crawl Breaststroke Butterfly Backstroke Front crawl Breaststroke Butterfly Backstroke

Precision 1.00 0.98 0.97 1.00 1.00 0.86 0.83 1.00

Accuracy 1.00 0.97 0.98 1.00 0.99 0.82 0.86 0.97

Sensor location RS RW

Swimming technique Front crawl Breaststroke Butterfly Backstroke Front crawl Breaststroke Butterfly Backstroke

Precision 0.80 0.86 0.93 1.00 0.77 0.76 0.91 0.79

Accuracy 0.91 0.81 0.82 1.00 0.81 0.73 0.90 0.86

FIGURE 7 | An example of the swimming phases beginning event detection, (A) PushB, (B) GlidB, (C) StPrB, (D) TurnB, on all sensor locations during front crawl.

The estimated values are represented on the corresponding signal with red dots and the true value is shown as a vertical dashed line.

show the estimated values on different locations (red dots) are
close to each other and to the true value (the black dashed line),
such as beginning of wall push-off, whereas estimations are more
diverse for some other events, such as swimming start. The main
challenge is whether or not the phase starts at the same time on all
sensor locations and which limb is used to define the beginning
of the phase. The mean and standard deviation of error for the
beginning of each phase on all sensor locations are displayed in
Table 4.

The accuracy of detecting each event changes with the sensor
location and type of event. Based on the results, right shank
has the highest error mean at the beginning of the lap (for
beginning of wall push-off and beginning of glide) where the

motion is the same for all swimming techniques. However,
right shank provides an estimation with lowest error mean and
standard deviation for beginning of strokes preparation, while it
is detected with negative (on right wrist and sacrum) or positive
(on head) error mean on other sensor locations. Beginning of
swimming seems to be the most challenging event since the mean
and standard deviation of error is high on all locations other
than right wrist, where the swimming phase starts. Although
beginning of turn results depend on turn type, sacrum and head
both estimate it with low error mean and standard deviation.

Although the results depend on swimming technique, they
match with the detected events displayed in Figures 7, 8. The
mean and standard deviation of absolute and relative error for
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FIGURE 8 | An example of SwimB event detection on all sensor locations during butterfly. (A) SwimB detection on SA and HE during front crawl, (B) SwimB

detection on RW and RS during front crawl, (C) an example of the process of using EMD technique for SwimB detection during butterfly technique. It is shown that

the second intrinsic mode function (IMF) separates the motion after SwimB. The estimated values are represented on the corresponding signal with red dots.

each phase duration (1Push, 1Glid, 1StPr, 1Swim, 1Turn)
over all sensor locations are displayed in Table 5. Depending
on the duration of each phase, error percentage vary based on

the sensor location. For short phases (such as wall push-off),
the relative error is higher than long phases, since even a small
error will cause a high relative error in phase duration estimation.
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TABLE 4 | Phases starting event detection error in ms by comparing IMU and camera results on all sensor locations (SA, HE, RS, and RW).

Phase event PushB GlidB StPrB SwimB TurnB PushB

SA −20 ± 89 4 ± 100 −32 ± 107 136 ± 226 23 ± 97 −1 ± 65

HE −35 ± 76 −35 ± 58 87 ± 214 58 ± 563 53 ± 195 −1 ± 70

RS −118 ± 77 76 ± 77 0 ± 88 342 ± 473 −47 ± 390 −64 ± 89

RW 40 ± 71 49 ± 51 −151 ± 124 −42 ± 72* 118 ± 151 44 ± 82

The events are PushB, GlidB, StPrB, SwimB and TurnB and the next PushB, which completes the lap segmentation.
*Obtained using both right and left wrists.

TABLE 5 | Estimated phase duration (with IMU), its phase duration error and phase duration relative error compared to the true phase duration (with camera) for each

sensor location (SA, HE, RS, and RW).

Phase duration 1Push 1Glid 1StPr 1Swim 1Turn

True values (validation data) 218 ± 29 880 ± 476 2,673 ± 1,268 12,423 ± 1,905 1,223 ± 166

SA Estimated (mean ± SD) 242 ± 37 991 ± 560 2,732 ± 1,439 12,241 ± 1,754 1,180 ± 170

Error (mean ± SD) 22 ± 51 10 ± 218 152 ± 300 −100 ± 286 −26 ± 69

Relative error (mean ± SD) 12 ± 24 −1 ± 24 4 ± 12 −0.8 ± 2 −2 ± 5

HE Estimated (mean ± SD) 211 ± 52 936 ± 442 2,424 ± 1,185 12,263 ± 2,700 1,069 ± 355

Error (mean ± SD) −7 ± 53 121 ± 218 −27 ± 1,124 −14 ± 1,255 −149 ± 334

Relative error (mean ± SD) −2 ± 25 8 ± 27 −1 ± 42 0.6 ± 9 −11 ± 26

RS Estimated (mean ± SD) 415 ± 70 815 ± 470 3,093 ± 1,127 10,812 ± 2,873 1,198 ± 390

Error (mean ± SD) 199 ± 80 −82 ± 113 479 ± 737 −767 ± 1,096 −2 ± 393

Relative error (mean ± SD) 96 ± 46 −7 ± 15 21 ± 35 −6 ± 8 −3 ± 29

RW Estimated (mean ± SD) 204 ± 43 775 ± 460 2,730 ± 1,234* 12,358 ± 1,732* 1,082 ± 225

Error (mean ± SD) 1 ± 46 −188 ± 184 118 ± 147* 154 ± 190* −122 ± 170

Relative error (mean ± SD) 2 ± 22 −21 ± 19 5 ± 6* 1 ± 1* −10 ± 17

All value are expressed in ms except for relative error expressed in percent.
*Obtained using both right and left wrists.

To provide a comparison between four swimming techniques in
terms of micro analysis results, the range of micro analysis error
is reported inTable 6. The table represents the range of both error
mean (mean range) and standard deviation (standard deviation
range) for four techniques.

In order to check the reliability of the validation method,
the true frames on cameras are detected with a second observer
and compared with the first observer using Bland-Altman plots.
Figure 9 show the agreement between two observers with a
95% limit of agreement (LoA). The plots show that the limit
of agreement is higher for swimming start (225ms), turn start
(115ms), and strokes preparation start (100ms), while it is lower
than 65ms for other phases.

All of the thresholds have been modified at least 10%
depending on their values, while the results changed <5% for all
of them except for THSPHE and THSPHEprom, which changed the
estimated beginning of strokes preparation with head result more
than 10%, meaning that they should be chosen more carefully.

DISCUSSION

In this study, a novel swimming analysis method with a
macro-micro approach was proposed, which applies the same
unified analysis for all main techniques. Our hypothesis was

that adequate IMU-based algorithms are capable of studying a
training session both in macro and micro levels, confirmed by
the achieved results. These results were presented in terms of
accuracy and precision to find the most suitable sensor location
for this approach. In order to have a higher sample size, we
did not separate male and female swimmers. Although the
algorithms used only right shank or right wrist, the same results
are likely to be achieved with left shank or left wrist because
of motion similarity. The range of swimming velocity during
the tests for front crawl, breaststroke, butterfly, and backstroke
are [1.5–1.9], [1.0–1.4], [1.3–1.7], and [1.3–1.7] m/s, respectively.
As a result, the algorithms and discussion are valid for
these paces.

Macro Analysis
Starting with macro analysis from swimming bout
detection, sacrum has the best results among all locations
(sensitivity= 0.99, precision = 0.97, accuracy = 0.98). Located
closer to body center of mass, sacrum and head motions are
more distinguishable among the sensor locations for macro
analysis and more robust for swimming bouts detection based on
our analysis method. Our algorithm cannot distinguish between
head motion during simple turns and the swimming bout start in
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TABLE 6 | The range of error mean (Mean range) and standard deviation (SD range) during micro analysis using four sensor locations (SA, HE, RW, and RS) in four

swimming techniques.

SA HE RW RS

Mean range SD range Mean range SD range Mean range SD range Mean range SD range

Front crawl 78 123 421 346 234 106 427 322

Breaststroke 314 63 516 306 427 88 358 595

Butterfly 287 109 152 384 411 37 569 390

Backstroke 154 186 413 503 455 180 723 306

The values are in millisecond.

some cases, which decreases the algorithm precision (precision
= 0.78).

Sacrum and head reached the best results for lap
detection. Right shank achieves worse lap detection results
(sensitivity= 0.87, precision = 0.89, accuracy = 0.80) than
sacrum or head because it is less affected by the sudden change of
acceleration pattern due to turn rapid dynamics. Lap detection
with right wrist works during the swimming bouts starting from
first lap swimming phase, which is a downside for this location.
As a result, lap detection algorithm with right wrist worked on
a shorter period and reached better results (sensitivity = 1.00,
precision = 0.98, accuracy = 0.91) than right shank. Previous
studies only focused on lap detection on sacrum (Le Sage et al.,
2011) and head (Jensen et al., 2013) and reached lower accuracies
than ours.

The results of swimming technique identification show that
sacrum is the most reliable sensor location which identifies front
crawl and backstroke correctly and has an accuracy and precision
higher than 0.95 for breaststroke and butterfly. Right wrist
motion is the most variant among swimmers and resulted in the
worst results. It is well-established that hand movement pattern
shows significant variances owing to various factors including
individual anthropometric and technique differences or skill
level (Seifert et al., 2011b). Moreover, inter-cyclic variation
is another important factor (Barbosa et al., 2005; Figueiredo
et al., 2012) which might cause error in technique identification,
which was not examined in this study. Our method, however,
presents a higher accuracy in comparison to reported result
in the literature based on sacrum sensor (Davey et al., 2008;
Omae et al., 2017). Some studies use a network of IMUs
(Wang et al., 2016) or a smartphone (Pan et al., 2016) for
swimming technique identification while we focused on each
sensor location separately.

Micro Analysis
Running a Wilcoxon rank sum test over the segmentation
error of male and female swimmers showed that there is
no significant difference (p > 0.05) between them and the
results can be mixed. Lap segmentation results are presented
in Table 4. Starting from PushB, the algorithms developed for
sacrum and head achieved lower error mean and standard
deviation. Since PushB is defined as the beginning of trunk
forward motion, these two locations are more suitable to

capture it. Error mean is negative and higher on right shank
both for first (−118ms) and second (−64ms) wall push-off
(the PushB after turn). This is because during wall push-off
phase, swimmer starts extending shanks for push-off during
body posture change from vertical to horizontal before sacrum
forward motion.

GlidB is detected with the lowest and highest error mean on
sacrum (4ms) and right shank (76ms), respectively. As sacrum,
right wrist and head are located superior to right shank, the
transition between wall push-off to glide phase happens more
abruptly in these locations, whereas the right shank angular
velocity change is smoother (the peak of

∣

∣Gyr
∣

∣ is difficult to
observe in some cases) on glide start.

StPrB is detected earlier on right wrist (−151ms) and the
error standard deviation is high for head (214ms) and right
wrist (124ms), while right shank shows the lowest error mean
and standard deviation. Strokes preparation phase accompanies
with generating a wave in the whole body after glide phase.
This wave starts from right shank by the first lower limb
action but for many swimmers, wrist motion happens earlier for
reaction force generation during lower limb actions, resulting
in high negative error for right wrist. As the wave starts in
lower limb or upper limb, the error standard deviation for the
sensor attached to the upper limb increases (right wrist and
head). Located in the middle of this wave, sacrum captures the
motion with a moderate error mean and standard deviation
(−32± 107 ms).

Since SwimB is defined as upper limbs cycle start on hand,
wrists obtain the best result (−42 ± 72ms). During front crawl
or backstroke, sacrum is delayed (136ms), sometimes two or
three upper limbs cycles, in receiving the rolling motion during
swimming phase, which is used for SwimB detection. Right shank
is also delayed (342ms) mostly during butterfly or breaststroke
techniques since lower limb action starts always after the upper
limbs cycle on hand. High standard deviation for swimming start
detection on sacrum (226ms), head (563ms), and right shank
(473ms) are the result of high variation between swimmers and
motion transfer delay to these sensor locations. For example,
the lower limbs action might start after or before upper limbs
cycle during front crawl and backstroke as it is not dependent
on upper limbs.

Although the detection of TurnB relies mainly on turn type
(simple or tumble turn), sacrum is the best location for it (23 ±
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FIGURE 9 | Bland-Altman plot for inter-observer agreement for micro analysis event detection, including wall push-off start (A), glide start (B), strokes preparation

start (C), swimming start (D), turn start (E) and next wall push-off start (F), which completes the lap.

97ms), as the turn motion reaches sacrum right after it starts on
head (tumble turn) or wrist (simple turn). Right wrist has a late
response during tumble turn, which causes high positive error
mean (118ms) since the swimmer tries to keep wrists backward
and right wrist does not necessarily follow the turn quick motion.
The wall reaching speed also affects the standard deviation of

TurnB detection with right shank (390ms) and head (195ms).
The swimmer should estimate the wall distance at the right time
before turn and adapt their speed. When the swimmer touches
the wall with low or high speed in simple turn, the algorithms
detect TurnB on head and right shank earlier or later than the
true value.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 13 January 2021 | Volume 8 | Article 597738

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Hamidi Rad et al. Swimming Analysis With Macro-Micro Approach

To understand better the event detection error, the estimated
phase duration and its absolute and relative error compared
to the true value are shown in Table 5. Detecting the phase
duration for short phases accompanies with higher relative error.
For example, this value for 1Push detection on sacrum is 12
± 24%, while the same value for 1Swim on sacrum is −0.8
± 2%. Hence, the detection of long phases duration such as
swimming phase is more reliable than short phases. The absolute
value of each phase duration error is affected by both phase
start and end detection error. As shown in Table 5, right wrist
has the highest amount of error for 1Swim estimation, while
it was the best location for SwimB detection, the reason of
which is its poor performance for TurnB detection. Although the
short phases duration estimation has higher relative error, the
parameters within these phases are possible to extract. Interesting
parameters, such as maximum push-off velocity (Stamm et al.,
2013a) during wall push-off lies between wall push-off start
and end. The superiority of sacrum for micro analysis over
other sensor locations is pointed out by the results displayed in
Table 6.

The smallest range of error mean (78ms for front crawl,
314ms for breaststroke, 287ms for butterfly, and 154ms for
backstroke) and standard deviation (123ms for front crawl,
63ms for breaststroke, 109ms for butterfly, and 186ms for
backstroke) for all swimming techniques are achieved with
sacrum. In conclusion, this location is the best for micro
analysis in all swimming techniques. Since sacrum also worked
better in macro level, this is the best candidate for a
single sensor analysis system. In macro scale, sacrum data
can provide reliable results, and in micro level, it captures
the events starting from upper limbs and lower limbs with
less delay than other sensor locations, as it is located in
the middle of the body. As shown by Bland-Altman plots
(Figure 9), the inter-observer limit of agreement is 225, 115,
and 100ms for beginning of swimming, beginning of turn,
and beginning of strokes preparation detection, respectively.
Since the mean and standard deviation of error for detecting
these events were higher than others in most cases (e.g., for
sacrum and head), part of the error is due to observer error
in validation.

In terms of usability, sacrum, head, and right wrist are
suitable locations, as they can easily fit into the swimming
suit and goggles or be used as a watch. It is observed that
head is capable of macro level analysis with lower standard
deviation and higher accuracy than wrist or shank. Other
than its performance for SwimB detection, head seems to be
the second promising location for micro analysis. Right wrist
or right shank both suffer from high error in both macro
and micro levels, which might be the result of intra-swimmer
variability. As a biomechanically driven approach, macro-micro
analysis can provide a detailed view about the nature of
movements but its downside is being prone to error caused
by technique diversity or being more sensitive to thresholds.
Wrist and shank did not perform well with our algorithms
and they need further investigation for dealing with their
pattern variability.

We included both male and female swimmers, as there were
no significant difference between them in the results. Comparing
the swimmers due to their individual differences is out of the
scope of this study. Since the measurements started from in-
water situation, the algorithms cannot cover the dive at the
beginning but it is possible to add to our method. The main
influence is replacing the wall push-off phase with dive phase.
Since we included a moderate pace in our measurements (80%
of the best speed), the algorithms are not generalizable to all
competitive paces and are valid only within the range of paces
included in the measurements. However, improving technique at
a moderate pace and then increasing speed is used in training.
The use of the highest speed during training is generally required
as competitions approach. Therefore, our system can be used
in most training sessions where the pace is moderate. Although
the validity of our system is not demonstrated by the highest
pace, it nevertheless covers a wide range of paces for main
swimming techniques. Since we included a moderate pace in
our measurements (80% of the best speed), the algorithms
are not generalizable to all competitive paces and are valid
only within the range of paces included in the measurements.
Another limit of this study is the observer error while using the
validation system (cameras), showing itself in lap segmentation
into swimming phases. Moreover, using camera from the side
view, the detection of some events is difficult to observe such as
swimming phase start during breaststroke or butterfly, as they are
easier to detect in front view.

CONCLUSION

The analysis approach proposed in this research detected key
temporal events during a training session. It started with finding
swimming bouts and laps during a training session. Swimming
technique in each lap is then identified, which is useful for
finding the lap components during micro analysis. Then each
lap is divided into five phases of wall push-off, glide, strokes
preparation, swimming, and turn for all techniques. This study
has shown that the macro-micro approach with the developed
algorithms can cover all the motion phases during a training
session. It has been observed that sacrum provides equally good
or more promising results than other sensor locations in both
levels (other than a few cases such as the beginning of swimming
or strokes preparation). In macro level, sacrum achieved the
highest accuracy within a range of 0.83–0.98 for swimming bout
detection or a range of 0.73–0.97 and 0.82–0.98, respectively,
for breaststroke and butterfly technique identification. It also
achieved the relatively lower error mean and standard deviation
for lap segmentation in most cases. All of these results proves
sacrum as the most appropriate sensor location for a single-
sensor analysis system, which aims to cover both macro and
micro level parameters. To improve the algorithms, we consider
investigating machine learning methods, which can better deal
with inter and intra variability of swimmers’ technique. Future
studies with focus on the detailed parameters in each swimming
phase will be the next step of the current analysis approach.
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