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Surface oxidation of bacterial cellulose (BC) was done with the TEMPO-mediated

oxidation mechanism system. After that, TEMPO-oxidized bacterial cellulose (TOBC)

was impregnated with silver sulfadiazine (AgSD) to prepare nanocomposite membranes.

Fourier transform infrared spectroscopy (FTIR) was carried out to determine the existence

of aldehyde groups on BC nanofibers and X-ray diffraction (XRD) demonstrated the

degree of crystallinity. FESEM analysis revealed the impregnation of AgSD nanoparticles

at TOBC nanocomposites with the average diameter size ranging from 11 nm to 17.5 nm.

The sample OBCS3 showed higher antibacterial activity against Staphylococcus aureus,

Pseudomonas aeruginosa, and Escherichia coli by the disc diffusion method. The results

showed AgSD content, dependent antibacterial activity against all tested bacteria, and

degree of crystallinity increases with TOBC and AgSD. The main advantage of the

applications of TEMPO-mediated oxidation to BC nanofibers is that the crystallinity

of BC nanofibers is unchanged and increased after the oxidation. Also enhanced the

reactivity of BC as it is one of the most promising method for cellulose fabrication

and functionalization. We believe that the novel composite membrane could be a

potential candidate for biomedical applications like wound dressing, BC scaffold, and

tissue engineering.
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INTRODUCTION

Bacterial cellulose (BC) is one of the most promising biopolymers due to its environmentally
friendly nature (Shao et al., 2017), which can be used for treatment of various bacterial infections
after chemical modification (Zmejkoski et al., 2018). Bacterial infections being a chief health
hazard necessitates antibacterial strategies, among which antibiotics are the most frequently used
treatment (Percival et al., 2015; Qian et al., 2017). However, drug-resistant pathogens have forced
researchers to explore novel antibacterial agents (Almeida et al., 2014; Ge et al., 2014). BC has
several advantages over plant-derived cellulose, including high purity (Reiniati et al., 2017), high
crystallinity, high elasticity (Wang et al., 2016), thermal stability, high degree of polymerization
(Lin et al., 2013), excellent permeability, high porosity, water content, and highmechanical strength
(Moniri et al., 2017). In spite of the several advantages, the significant drawback of the BC is that
it lacks antibacterial property (Sulaeva et al., 2015). Modified BC is a splendid cure to all these
failings of conventional antibiotics. Various treatments can be used to improve the properties of BC
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(Fijałkowski et al., 2017). Suchmodification could improve/boost
the properties of BC, for the applications in food industry as
well as biomedical field (Habibi, 2014; Paximada et al., 2016).
However, to obtain derivatives with innovative features, surface
modification of BC (hydroxyl group on the surface of the BC) is
an appealing strategy (Zmejkoski et al., 2018).

As the modification at C2 and C3, of the BC, usually leads to
the decomposition of BC oligomers in case of using periodate
oxidation (Saito and Isogai, 2004), so, in order to maintain
the mechanical properties of BC, it is necessary to modify the
hydroxyl group at the main surface only, i.e., selective oxidation
(Lee et al., 2012). The commonly used method is the oxidation
under alkaline conditions with TEMPO used in combination
with NaBr/NaOCl (Saito and Isogai, 2004), because it binds the
aldehydic (-CHO) and carboxylic (-COOH) functional groups
obtained from the hydroxylic group present at the C6 position of
BC. The surface modification with carboxylic groups promotes
the decomposition of hydrogen bonds, which improve the
accessibility of macromolecules and enhanced the reactivity
(Okita et al., 2010). Also, the speed of reaction is high and
is one of the most promising method for cellulose fabrication
and functionalization (Isogai et al., 2011). TEMPO-mediated
oxidation only increases the uniformity of accessibility of the
reactive BC carboxylate (Lai et al., 2013). It did not induce
antibacterial activity, which restricts/bounds the possibility of
applications in the areas of biomedical applications. So, in order
to solve this problem, some researchers have added Ag and Ag
nanocomposites as an antibacterial agent (e.g., Ag, ZnO, and
graphene oxide) in BC matrix (Fortunati et al., 2014; Liu et al.,
2017; Khattak et al., 2019). Among them, Ag with sulfadiazine,
i.e., AgSD, has been widely used as an antibacterial agent for
topical treatment for decades (Atiyeh et al., 2007; Muangman
et al., 2010). It also showed broader activity spectrum against
Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus
aureus by disrupting the cell membrane (Hoffmann, 1984) and
inhibiting the DNA replication (Aguzzi et al., 2014). Antibacterial
activity develops by the degradation of AgSD into sulfadiazine
and Ag ions (Fox and Modak, 1974; Fox, 1975). The Ag ion
of the AgSD interrupts the triphosphate (ATP) synthesis (Liu
et al., 2019), whereas sulfadiazine inhibits the synthesis of folic
acid (Cook and Turner, 1975; Wei et al., 2011), because of the
structural analog of p-aminobenzoic acid (PABA) (Baenziger and
Struss, 1976) as shown in the example (Figure 1A). The chemical
structure of AgSD is displayed in Figure 1B. Folic acid plays an
essential role in the growth and reproduction of bacteria (Craig
and Stitzel, 2004; Tacic et al., 2017). Folic acid synthesis and
mode of action of sulfonamides (sulfadiazine) are schematically
presented (Figure 2).

TEMPO oxidation enhances the reactivity of BC due to
which the silver nanocomposites showed excellent antibacterial
activity because the extensive surfacemorphology provides better
contact with microorganisms (Tacic et al., 2017). Also, for
the synthesis of silver nanoparticles, Ifuku et al. (2009) use
the TEMPO-mediated oxidation system to prepare the TOBC
pellicle as a reaction template. Recently, a conjugated highly
porous antimicrobial dressing was developed by Mohseni et al.
(2019), loaded with silver sulfadiazine, and its antibacterial
activity and biocompatibility were evaluated. Silver-carboxylated

nanocellulose was prepared from bagasse waste in treatment with
ammonium persulfate using a facile and green photochemical
approach (Caschera et al., 2020). In another study, the porous
cellulose particles with solvent-releasing method, exhibiting high
catalytic ability, were prepared and evaluated (Fujii et al., 2020).
Garza-Cervantes and his co-workers synthesized a novel silver-
containing biocomposite using green methodology (Garza-
Cervantes et al., 2020). Wang and his co-workers developed
an electroactive regenerated hydrogel with significant exhibited
higher electrical conductivity (Wang et al., 2020). In another
reported study, HEMA-based skin repair hydrogel was prepared
with BC by polymerization (Di et al., 2017). Furthermore,
thermally stable electrically conductive polyaniline-based BC
biosensor nanotubes were prepared by Jasim et al. (2017).
Sajjad and his co-workers also developed curcumin-based
BC nanocomposites as wound dressing (Sajjad et al., 2020).
Biopolymers like BC and chitosan were used to prepare scaffolds
(Ul-Islam et al., 2019). Along with the above cited literature,
silver nanoparticles have also been used in several applications
incorporated with polymers like polyvinylpyrrolidone (PVP),
polymethylmethacrylate (PMMA), zein, polyacrylonitrile (PAN),
chitosan, 3D printing, and others as well (GhavamiNejad et al.,
2015; Yang C. H. et al., 2016; Ullah et al., 2019). The commonly
used modification methods include nanoparticle coating and
metal oxide modification (Smith et al., 2017; Yao et al., 2018).
Therefore, BC was considered to be an ideal matrix for these
modifications (Martínez-Sanz et al., 2012; Yang et al., 2012;
McCarthy et al., 2019). In the present study, TEMPO oxidation
was used to introduce the carbonyl group (carboxylate) to BC,
and it was further composited with AgSD particles. The main
advantage of the TEMPO-mediated oxidation is the retained
crystallinity of BC after oxidation and more reactivity while
silver sulfadiazine (AgSD) makes it antibacterial. We believe that
the composite membrane will find promising applications in
the biomedical field like wound dressing, BC scaffolding, and
tissue engineering.

MATERIALS AND METHODS

Materials
Silver sulfadiazine with molecular weight 357.14 g/mol was
obtained fromMeryer (Shanghai) Chemical Technology Co., Ltd.
(Shanghai, China). Tryptone and yeast extract were obtained
from Oxoid Ltd. (United Kingdom). Agar powder was purchased
from Beijing Solarbio Science and Technology Co., Ltd. All other
chemicals such as CH3COOH, NaOH, and Na2HPO4 were of
analytical grade.

Methods
Preparation of BC Membrane and Incubation

Conditions

MicroorganismsKomagataeibacter xylinus (K. xylinus) (CGMCC
No. 2955) were evaluated/screened by our group (Zhong et al.,
2013). BC films were prepared by the previously described
method (Zhong et al., 2014; Yang X. N. et al., 2016). In brief,
K. xylinus was cultured in a culture medium consisting of
glucose (25.0 g/L), peptone (10 g/L), yeast extract (7.5 g/L),
and disodium phosphate (10.0 g/L). The cultured medium pH
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FIGURE 1 | Para-aminobenzoic acid (PABA) and structural analog of PABA (sulfanilamide) (A) and chemical structure of AgSD (B).

FIGURE 2 | Synthesis of Folic acid and sulfonamide action site.

was kept/adjusted to 6.0. The bacteria were inoculated into
culture medium in a flask. The incubation was carried out at
a temperature of 30◦C and with a speed of 160 rpm for 24 h
in a shaker. With a ratio of 8% (v/v), the cell suspension was
inoculated into different culture medium and kept in incubation
for 7 days at 30◦C (Zhong et al., 2013). The BC membranes
obtained were kept in alkaline solution (0.1M NaOH) to remove
the impurities. Membranes were washed with distilled water until
neutral pH and stored for further use.

TEMPO-Mediated Oxidation of BC
BC was treated with a homogenizer (120W) (Hualeda
Instrument Co., Ltd, Beijing, China) until formation of the
homogeneous slurry/pulp. In deionized water (100ml), sample
(1 g dry weight) of BC was suspended and stirred on a magnetic
stirrer to form the homogeneous suspension of BC to properly
oxidize it. In 20ml of deionized water, sodium bromide (NaBr)
(0.1 g) and TEMPO (0.016 g) were dissolved in order to form
the TEMPO medium. This TEMPO-mediated solution was
added to BC suspension with magnetic stirring. To initiate
TEMPO-mediated oxidation, NaClO solution was added 10%
(0.5 mmol/g) to the TEMPO-mediated BC suspension at room
temperature. The pH of the solution was maintained between
10.5 and 11.0 with the addition of 0.5 mol/L NaOH solution.
After 12 h, the oxidation was quenched by the addition of
ethanol (C2H5OH) (5ml). The oxidized BC was collected by

centrifugation at 1000 rpm for 30min, and with deionized water,
it was washed thoroughly (Habibi et al., 2006; Okita et al., 2010).
After washing, the precipitates of oxidized BC (TOBC) were
stored at 4◦C for further use (experiments).

Preparation of TOBC–AgSD
Nanocomposites
The method of preparing TOBC–AgSD was described in
literature with slight modification (Shao et al., 2016). To prepare
the TOBC–AgSD composite, AgSD was dissolved in distilled
water at room temperature and stirred with a magnetic stirrer the
whole day and then sonicated for 90min to form a homogeneous
solution. AgSD was added into the TOBC dispersions and mixed
for 1 h at magnetic stirring. The weight ratio of AgSD to TOBC
was controlled to be 0.1 wt.%, 0.2 wt.%, and 0.3 wt.% (marked as
OBCS1, OBCS2, andOBCS3, respectively). Then, themixture was
treated by ultrasonication for 20min. The weight of the TOBC
(known) is kept constant. After the formation of AgSD–TOBC
nanocomposites, samples were filtered and dried in the oven
at 40–50◦C.

Characterization
The FT-IR spectra of pure BC, TOBC, and TOBC–AgSD
nanocomposites were measured using a Nicolet IS50 FT-
IR spectrometer with a wavenumber ranging from 4000 to
400 cm−1. XRD patterns of TOBC films and TOBC–AgSD
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nanocomposites were obtained using a Shimadzu XRD-6100
X-ray diffractometer at 40 kV with a scan range of 5–40◦

and a scan speed of 5◦/min. The morphology of TOBC–
AgSD nanocomposites was examined by FESEM. The elemental
composition of AgSD was confirmed by EDS [energy-dispersive
X-ray (EDX) analysis by EDAX].

Crystallinity Analysis
The degree of crystallinity (CrI) has been calculated by the
reported method with slight modification (Pelegrini et al., 2019).
Briefly,CrI is calculated from the ratio of the area of all crystalline
peaks to the total area. XRD spectrum is used to calculate the
CrI, by using software (Origin or Peak Fit) (Garvey et al., 2005).
Gaussian functions in curve-fitting process are commonly used
for the deconvolution of XRD spectra (Teeaar et al., 1987).
Crystallinity can be calculated by using the equation.

Crystallinity degree(CRI)

=
Area of crystalline peaks

Area of all peaks ( crystalline + amorphous)
× 100

Antibacterial Activity
The antibacterial activity of TOBC and TOBC–AgSD
nanocomposites against P. aeruginosa, E. coli, and S. aureus was
carried out by disk diffusion method. The disk diffusion method
was performed in solid agar medium LB. TOBC (control) and
AgSD–TOBC nanocomposites were cut into spherical shapes
(10mm diameter) and sterilized with an ultraviolet lamp for
30min. The sterilized samples were then placed on solid agar
carefully containing bacterial solution (1ml) in 90-mm-diameter
petri dishes. The plates (petri dishes) were incubated for 24 h
in an incubator at 37◦C. The diameter of the inhibition zones
formed was measured and recorded using a Vernier caliper
(Mohseni et al., 2019).

RESULTS AND DISCUSSION

Formation of TOBC–AgSD
Nanocomposites
We used various concentrations of AgSD with TOBC to prepare
TOBC–AgSD nanocomposites. Firstly, BC membranes, with the
help of a homogenizer, were converted into BC slurry. Then,
it was modified by the introduction of a carboxylic group
under mild conditions using TEMPO-mediated oxidation. As the
degree of oxidation increases, the hydrogen bonding between the
TOBC matrix becomes stronger (Jia et al., 2019). The process is
shown in Figure 3. Secondly, after oxidation, AgSD was mixed
with TOBC slurry with different ratios. The proposedmechanism
of the formation of TOBC–AgSD nanocomposites is shown
in Figure 4.

EDX Analysis
EDX analysis was performed to quantitatively measure the
content of Ag and sulfur in the nanofibers. It can be seen from
Figure 5 that OBCS1 has lower Ag and S values than OBCS2.
The OBCS2 has lower Ag and S values than Sample D, which
means that Ag and S contents increase as the concentration of
AgSD increases while keeping the content of the BC constant.
Therefore, this is a direct control of the presence of Ag and S as
active ingredients of the prepared nanofiber. In the EDX analysis,
it was also observed that both Ag and S showed an upward trend
in the EDX analysis.

FTIR
Fourier transform infrared spectroscopy (FTIR) analysis, was
performed to assess the interaction between TOBC and AgSD.
Figure 6 shows the spectra of BC and TOBC, whereas Figure 7
shows the spectra of TOBC–AgSD nanocomposites. In the case
of BC and TOBC (Figures 6A,B), the FTIR spectrum obtained is

FIGURE 3 | Primary hydroxyls oxidation by TEMPO/NaBr/NaClO to C6 carboxylic group of cellulose.

FIGURE 4 | Schematic representation of TOBC–AgSD nanocomposites.
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FIGURE 5 | EDX analysis of TOBC (A), OBCS1 (B), OBCS2 (C), and OBCS3 (D).
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FIGURE 6 | FTIR spectra of BC (A) and TOBC (B).

FIGURE 7 | FTIR analysis of TOBC nanocomposites with different loadings of AgSD.

typical and the dominant signals are at 3342.5–3,350 cm−1, which
corresponds to the intra hydrogen bonding and OH stretching
(Feng et al., 2012; Wasim et al., 2020). The absorbance at 1,738
cm−1 (Figure 6B) appeared to correspond to the carboxylic
(carbonyl) group (Luo et al., 2013). The peaks at 1,163 and

1,161 cm−1 represent C–O asymmetric stretching, whereas the
peaks at 1110.7 and 1109.8 cm−1 (Figures 6A,B) correspond
to the C–O–C pyranose ring skeletal vibration of BC (Park
et al., 2013). The characteristic bands exhibited by AgSD–TOBC
nanocomposites are shown in Figure 7 (curves C, D, and E).
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The bands that appeared at 1205.7 cm−1 (C), 1,261 cm−1 (D),
and 1,262 cm−1 (E) were assigned to the asymmetric stretching
of SO2 bonds (Shao et al., 2016). The bands that appeared at
1542.2 cm−1 (C), 1,534 cm−1 (D), and 1543.7 cm−1 (E) can be
assigned to pyrimidine skeletal vibrations due to silver (Ag+)
ions. The obtained results were similar to the reported study
(Shao et al., 2016). Moreover, the bands present at 3334.8, 3,289,
and 3,296 cm−1 were assigned to -NH2 stretching bands. As
the concentration of AgSD increases, the peak intensities in
TOBC–AgSD nanocomposites in Figure 7 (curves C, D & E)
also increase. The sample (Figure 7C) with a high concentration
of AgSD exhibits a significant peak at 1543.71 cm−1 due to the
free N–H. Similar observations have previously been reported
(Fajardo et al., 2013; Zepon et al., 2014; Liu et al., 2019). From the
obtained results, it can be observed that the characteristic peaks
of silver sulfadiazine are present and with an increase in the peak
intensity in the FTIR spectra.

XRD Analysis
Figure 8 shows the XRD analysis of BC, TOBC, and TOBC–
AgSD nanocomposites (Figure 8). Two broader peaks and one
small (less obvious) peak at 2θ = 14.7◦, 2θ = 17◦, and 2θ = 22.8◦

(Figure 8F) were observed and attributed to the characteristic
peaks (cellulose Iβ crystal) of BC. TOBC also shows these
characteristics peaks (Figure 8B), which confirms the crystalline
nature of TOBC. The sharp peaks at 2θ = 10.2◦ (C), 9.7◦ (D),
8.5◦ and 9.9◦ (E), 2θ = 18.4◦ (C), 18.3◦ (D), and 18◦(E), and
numerous small peaks at 2θ = 37◦ and 38.4◦ (C, D, and E) show
and confirmed the presence of AgSD (Ullah et al., 2019). Also,
after the impregnation of TOBC with AgSD, crystallinity was
increased, which means that the crystalline structure of TOBC
was retained (Khamrai et al., 2017). Furthermore, an increase in
the ratio of AgSD to TOBC increases peak intensity. BC exhibited
a crystallinity of 88%, whereas TOBC exhibited 90%, which was
higher than BC. It could be due to the fact that the carboxylate

FIGURE 8 | XRD analysis of BC, TOBC, and TOBC–AgSD nanocomposites with different ratios of AgSD.

FIGURE 9 | FESEM images of original BC (A) and TOBC (B).
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FIGURE 10 | FESEM images of TOBC–AgSD nanocomposites. OBCS1 (A–C), OBCS2 (D–F), and OBCS3 (G–I) with different magnification.

generated in disordered regions combines with the hydroxyl
groups to form inter-acetal linkages (Luo et al., 2013; Shao et al.,
2016). The TOBC–AgSD nanocomposites showed crystallinities
of 90, 92, and 93%, respectively.

FESEM Spectroscopy
Surface morphological studies of BC and TOBC (Figure 9)
and TOBC–AgSD nanocomposites (Figure 10) were studied
by FESEM. The results show that TEMPO oxidation did not
change the morphology, i.e., the crystalline structure of BC is
retained after the oxidation reaction, indicating the selective
oxidation of the primary hydroxyl group on the surface of BC (Lu
et al., 2014). TOBC and TOBC–AgSD nanocomposites exhibit
a highly porous structure having interconnected pores, which
is consistent with the other reported study (Shi et al., 2014). A
denser network structure of AgSD particles with a significant
dispersion in the TOBC matrix is shown in Figures 10C,F,I.
An increase in the ratio of AgSD to TOBC results in the dense
network structure, i.e., Figure 10G. However, for TOBC–AgSD
nanocomposites with higher AgSD percentage (Figures 10G,H),
larger AgSD particles accumulated in the matrix. This is because
of the higher percentage of AgSD or loading of the AgSD,
which leads to the overlapping with each other within the TOBC
matrix. AgSd particles appear as white spots (Figure 10). In
Figure 11, the average diameter graph of TOBC-AgSd nanofibers

FIGURE 11 | Average diameter distribution of TOBC and AgSD–TOBC

nanocomposites.

is displayed. The change in the diameter of nanofiber was
observed with the addition of AgSD into the TOBC. The
average of 50 nanofibers from each sample was selected and
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FIGURE 12 | Illustrating the inhibition zones for (A) TOBC, (B) OBCS1, (C) OBCS2, and (D) OBCS3 by the disc diffusion method.

analyzed using ImageJ software. The average diameters of TOBC,
OBCS1, OBCS2, and OBCS3 nanocomposites were 44, 27, 24,
and 23 nm. The diameter of the TOBC nanofiber was nearly
unchanged by the TEMPO oxidation as BC fibers consist of 50–
100 nm, whereas the average diameters of the AgSD particles
were 11, 13, and 17 nm (Wu et al., 2018). Usually, with the
addition of nanoparticles, there is an increase in the diameter of
nanocomposites. However, in this case, the results were opposite.
This could be due to the strong bonding between TOBC and
AgSD nanoparticles as the sonicated AgSD particles were more
uniform to permeate easily in the BC fibril network (Luan
et al., 2012). Similar results were also observed with the previous
reported study (Khan et al., 2019; Ullah et al., 2019).

Antibacterial Activity
E. coli, P. aeruginosa (both Gram-negative bacteria), and S.
aureus (Gram-positive bacteria) were selected for antibacterial
testing because they are usually the main cause of infection
during the healing of infection (Jo et al., 2012; Fajardo et al.,
2013). After 12 h, zone of inhibition was measured to check the
antibacterial activity around the sample as shown in Figure 12

using different concentrations of TOBC–AgSD. TOBC is used as
a control, and no inhibition zone was observed around TOBC,
which means that it does not possess any antibacterial activity
against P. aeruginosa, E. coli, and S. aureus. On the other
hand, due to the presence of AgSD, significant inhibition zone
areas around other samples containing TOBC–AgSD confirmed
their antibacterial properties as TOBC membrane is used as
a matrix (Table 1). As the concentration of AgSD compound
increases, there is an increase in the inhibition zone that
is consistent with the reported literature (Mi et al., 2002).
The zone of inhibition depends on the concentration of the
AgSD. All samples exhibited excellent antibacterial efficacy, but
the sample with 0.3% AgSD exhibited excellent antibacterial
activity, which was also confirmed from the EDX and showed
consistent results for the used bacteria. The amount of AgSD
in the sample was found to increase and was very important.
According to Laura et al. (2013), silver ion has major antibacterial

TABLE 1 | The inhibition zones of TOBC–AgSD nanocomposites.

Samples Inhibition zone (mm)

P. aeruginosa S. aureus E. coli

TOBC (control) 00 00 00

OBCS1 19.11 ± 0.5 19.76 ± 0.4 12.29 ± 0.5

OBCS2 19.49 ± 0.4 18.60 ± 0.6 13.36 ± 0.4

OBCS3 21.25 ± 0.6 18.99 ± 0.5 13.81 ± 0.6

activity against several bacteria, whereas sulfadiazine exhibits
bacteriostatic properties.

Perhaps, the difference in diameter in the zone of inhibition
will be due to the difference of bacteria and their susceptibility
to the prepared nanofibers. So, the results of this study are
consistent with other studies especially on the bactericidal effects
of AgSD (Fajardo et al., 2013).

This study clearly shows that TOBC–AgSD compounds
have excellent antibacterial activity against Gram-negative
and -positive bacteria; combined with all beneficial
qualities, the prepared TOBC–AgSD compound is a good
antibacterial material for wound dressings and also in other
biomedical applications.

CONCLUSION

In summary, TOBC–AgSD nanocomposites were prepared by
TEMPO-mediated oxidation. TEMPO oxidation enhances the
reactivity of BC. Another advantage is retaining the structure
of BC after the structure modification. TEMPO oxidation
pertains to mechanical properties and reactivity to BC, while
silver sulfadiazine (AgSD) makes it antibacterial. To check
antibacterial activity, zone of inhibition test was performed
against P. aeruginosa, S. aureus, and E. coli. OBCS3 showed good
antibacterial activity, which showed that AgSD concentrations by
weight are an effective way to significantly increase antibacterial
activity. In addition, the results obtained from FTIR and
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XRD indicated that TEMPO oxidation retains the mechanical
properties and reactivity of BC, while silver sulfadiazine (AgSD)
makes it antibacterial. XRD results also showed that crystallinity
increases with TEMPO oxidation of BC. The results also
show the potential new antibacterial applications of AgSD–
TOBC membranes. Altogether, our results suggest that it
could be a promising candidate for biomedical applications
especially in wound dressing, tissue engineering, and BC scaffold.
However, human clinical trials and studies are required to
use the potential medical/pharmaceutical interest of TOBC–
AgSD nanocomposites.
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