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Oral cancer is an aggressive tumor that invades the local tissue and can causemetastasis

and high mortality. Conventional treatment strategies, e.g., surgery, chemotherapy, and

radiation therapy alone or in combinations, possess innegligible issues, and significant

side and adverse effects for the clinical applications. Currently, targeting drug delivery

is emerging as an effective approach for oral delivery of different therapeutics. Herein

we provide a state-of-the-art review on the current progress of targeting drug delivery

for oral cancer therapy. Variously oral delivery systems including polymeric/inorganic

nanoparticles, liposomes, cyclodextrins, nanolipids, and hydrogels-based forms are

emphasized and discussed, and biomimetic systems with respect to oral delivery like

therapeutic vitamin, exosomes, proteins, and virus-like particles are also described with

emphasis on the cancer treatment. A future perspective is also provided to highlight

the existing challenges and possible resolution toward clinical translation of current oral

cancer therapies.
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INTRODUCTION

Oral cancer refers to tumors that occur in the lips, hard palate, upper, and lower alveolar ridges,
anterior two-thirds of the tongue, sublingual, buccal mucosa, posterior deltoid muscle of molars,
and oral cavity (Vogel et al., 2010). More than 90% of oral cancers are carcinomas with squamous
differentiation from the mucosal epithelium, thus called oral squamous cell carcinoma (OSCC),
which is the sixth most common cancer worldwide with ∼50% of the 5-year survival rate (Rivera,
2015; Manikandan et al., 2016). In 2018, 354,864 new cases of lip and oral cavity cancer were
identified, and 177,384 people died from these types of cancer (Bray et al., 2018). Besides for
the genetic and epigenetic mechanisms for the OSCC, environmental factors mainly including
excessive alcohol intake and tobacco usage have significant roles in the multifactorial disease
and carcinogenesis. In addition, human papillomavirus (HPV) associated with oropharyngeal
squamous cell carcinoma and other factors (e.g., circadian clock disruption) also plays an important
role in the initiation and progression of the OSCC therapy (Heck et al., 2009; Majchrzak et al., 2014;
Nirvani et al., 2018; Adeola et al., 2019). Conventional therapy strategies for oral cancer mainly
include surgery, chemotherapy and radiation therapy alone or in combinations, and have made
important progress in oral cancer treatment, but these modalities possess innegligible issues and
significant side and adverse effects. For instance, chemotherapy can cause nausea, vomiting, hair
loss, infections and diarrhea in patients while radiation therapy can also bring about transient or
permanent damage to healthy tissues, thus severely affecting the well-being and life quality.
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Pathophysiology of oral cancer is important factor that should
be intensively studied, wherein the genomic pathway plays a
role in OSCC, that is, changes in the genome lead to changes
in the expression of proteins, chemical mediators, and enzymes.
Carcinogenesis is a process with multiple steps, which are
characterized by the continuous stimulation of additional genetic
defects and clonal expansion. Because oncogene was activated
and tumor suppressor gene was inactivated, OSCC causes
abnormal cell proliferation and death. Genetic changes mainly
include gene amplification, oncogene overexpression, mutation,
deletion and hypermethylation, leading to the inactivation of
specific genes (e.g., p53 tumor suppressor genes).

In current therapies, anticancer drugs (e.g., 5-fluorouracil,
paclitaxel, cisplatin, and docetaxel) are used alone or in
combination, which have been employed in chrono-
chemotherapy for oral cancer treatment (Catimel et al.,
1994; Baselga et al., 2005; Bonner et al., 2006; Agüeros et al.,
2009; Haddad et al., 2009). However, they are highly toxic to
normal cells as intravenously administered with non-specific
tissue distribution within the bodies, easily causing greater
damages to healthy tissues with severely adverse reactions
(Kruijtzer et al., 2002). In addition, low solubility, permeability,
and poor bioavailability of these anticancer drugs in bodily
fluids are also noted as limitations for oral chemotherapy.
Therefore, development of new therapeutic regimen or
modifications of current approaches are significantly urgent
for improvement of human health and survival against the oral
cancer and tissues.

To overcome the disadvantages of current treatment
techniques, scientific community has turned toward
nanotechnology to develop new and more effective
nanotechnology-based drug carrier systems to optimize oral,
buccal, and intravenous treatment routes. An innovative
approach to improve the efficacy is the targeted drug
delivery system that has great potentials to increase drug
bioavailability and bio-distribution at the site of the primary
tumor, showing promise in overcoming the complications
of conventional anticancer agents and enhancing the
therapeutic efficacy. Especially, naturally derived and synthetic
polymers are exploited as two common candidates for
delivering the chemotherapeutic agents into the tumor
site, and the targeted drug delivery system is capable of
releasing a bioactive molecule at a specific site to improve
individual health outcomes for oral cancer. Thus, it is
promising that targeted drug delivery system has the
ability to reduce the severity/extent of side effects of some
chemotherapeutic drugs, which can be exploited as a novel
therapeutic strategy in oral, head, and neck cancer patients
and beyond.

This review is aimed to summarize the current most relevant
findings related to different drug delivery system for oral cancer
therapy, and provide some potential of anticancer drug delivery
approaches. Future perspectives and therapeutic strategies are
also suggested. We believe this overview can be useful for
promoting novel strategies that can be implemented in clinical
management and applied pre-clinically for oral cancer therapy in
the future.

NANOTECHNOLOGY-BASED CARRIERS
FOR ORAL CANCER THERAPY

To address the issues of conventional chemotherapeutic
agents, molecularly targeted therapies are urgently required for
improving the drug efficiency and reducing the potential toxicity.
Therefore, by means of the novel controlled nanodelivery
systems, the drug-loaded nanoparticles with optimal size can
express the smart manipulation of drug release behaviors once
the microenvironment is slightly changed, which is utilized for
the targeted therapy. Nanotechnology-based drug carriers have
allowed for the selective methodologies for OSCC treatment
(Huang et al., 2011; Calixto et al., 2014). Compared to the
chemotherapeutic agents, targeted drug delivery systems are
widely used for the controlled drug release with advanced
advantages on improved therapeutic effect and reduced side
effects, which can significantly amplify the main properties
of the bioactive agent: absorption, metabolism, distribution
and elimination. Various nanotechnology-based carriers based
on nanoparticles, liposomes, cyclodextrins, nanolipids, and
hydrogels are discussed here with their respective characteristics.
In addition, biomimetic nanoparticles like vitamins, exosomes,
peptides/proteins, and virus-like particles have also been utilized
as potential carriers of chemotherapeutic agents for oral
cancer therapy.

Nanoparticles for Oral Cancer Therapy
On account of the adjustable chemical and physical
characteristics, nanoparticles show an increase in popularity on
targeted drug delivery system with enhanced bioactivity and
effective therapy, thus reducing its systemic toxicity for oral
cancer therapy. These carriers mainly comprising of polymeric
and inorganic nanoparticles can kill cancer cells by loading,
stabilizing, and delivering the chemotherapeutic drugs with
various loading contents and release profiles (Poonia et al.,
2017).

Polymeric Nanoparticles for Oral Cancer Therapy
An ideal drug carrier should possess favorable biocompatibility,
biodegradability and controlled drug release behaviors at
specific sites. Naturally derived and synthetic polymers [e.g.,
polysaccharides, polycaprolactone (PCL), poly(lactic acid)
(PLA), poly(glycolic acid) (PGA), and polyethylene glycol (PEG)]
are series of suitable biomaterials for preparation of polymeric
nanoparticles by many techniques like nanoprecipitation,
emulsifications, and self-assembly (Panyam et al., 2002;
Ravikumara et al., 2013; Du et al., 2014; Wang et al., 2015,
2016, 2018, 2019; Desai, 2018; Yang et al., 2018; Sun et al.,
2019; Li et al., 2020; Zhou et al., 2020). They can be modified
as chemo-preventive agents to be directly delivered into the
affected sites within the oral cavity, so the malignant conversion
is effectively prevented from oral epithelial dysplasia to frank
carcinoma. For example, Endo et al. prepared a kind of
polymeric nanoparticles to reduce the toxicity of cisplatin
and improve OSCC therapy based on a PEG-poly(glutamic
acid) block copolymer (Endo et al., 2013; Madhulaxmi et al.,
2017). These cisplatin-loaded nanoparticles could activate the
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caspase-3 and caspase-7 pathways to induce apoptosis and killed
the oral cancers. Compared to the oral cisplatin in solution,
controlled release of cisplatin from nanoparticles could obviously
decrease the nephrotoxicity and neurotoxicity both in vitro and
in vivo. Zhu et al. developed an effective chemotherapeutic
system for achieving co-delivery of anticancer drug sodium
arsenite (NaAsO2) and MTH1 inhibitor TH287 for the OSCC
therapy (Li et al., 2017). By means of the self-assembly of an
amphiphilic cationic hyperbranched poly(amine-ester) (HPAE),
pH-sensitive HPAE nanoparticles were prepared in solutions
that simultaneously encapsulated the NaAsO2 and TH287.
Under acidic microenvironments within the tumors, both of
NaAsO2 and TH287 were quickly released from nanoparticles,
displaying effective inhibition of tumor proliferation by in vitro
results (Figure 1).

Inorganic Nanoparticles for Oral Cancer Therapy
Inorganic nanoparticles are extensively employed due to their
low toxicity, high tolerance of organic solvents and good
bioavailability, and thus these inorganic nanoparticles (e.g., Au
NPs, Ag NPs) have been applied in diagnostic and therapeutic
fields for tumors with high efficacy, especially for their unique
photo-thermal functions for oral cancer therapy (Subramani
and Ahmed, 2012; Senapati et al., 2018). Sayed et al. described
a design of an anti-epithelial growth factor receptor (EGFR)
antibody-conjugated Au NPs for the therapeutic application of
the OSCC therapy. In vitro experiments displayed that OSCC
cells did not require high energy to produce photothermal
destruction for anti-EGFR/Au conjugates, and clinical results
showed that near-infrared (NIR) laser light could allow for
effective delivery of anti-EGFR/Au conjugates into the malignant
cells with the deep penetration, because Au NPs on the surface
could be easily modified to absorb the NIR, thereby achieving the
maximal therapeutic effects (El-Sayed et al., 2006). Lucky et al.
prepared a kind of biocompatible up-conversion nanoparticles
with encapsulation of PEGylated titanium dioxide (TiO2), which
enhanced tissue penetration using NIR and effectively targeted
the EGFRs on the surface of OSCC cells to inhibit the tumor
proliferation (Lucky et al., 2016; Marcazzan et al., 2018). For
the inorganic nanoparticles systems, this photodynamic therapy
(PDT) strategy was benefited for the oral cancer that required the
deep penetration of antitumor drugs in the clinical practice.

Combinational (Polymeric-Inorganic) Nanoparticles

for Oral Cancer Therapy
Combinational drug treatment is recognized as advanced
therapeutic benefits for the targeted drug delivery system that
allows for the reduced toxicity and improved therapeutic efficacy.
Darwish et al. prepared a combinational chemo-photothermal
therapy with vincristine (VCR) as phytochemical anticancer
and plasmonic gold nanorods (GNRs) as photothermal reagents
for the OSCC therapy (Darwish et al., 2020). Based on the
self-assembly of amphiphilic poly (DL-lactide-co-glycolide)
(PLGA)-PEG polymers, VCR was physically encapsulated
into the polymeric corona through the chem-covalently
assembly around silica coated gold nanorods (GNRs). The
breakage of amide linkages impelled the sustainable VCR

release under acidic intracellular environments, revealing the
prepared combinational therapeutic nanoprobes were identified
as promising candidates for potentially clinical translation
(Figure 2).

Liposomes for Oral Cancer Therapy
Liposomes are a series of single- or multi-layer microscopic
particles with the main component of a membrane-like lipid,
phospholipids and cholesterol (Mezei and Gulasekharam, 1980;
Ribeiro de Souza et al., 2012). Liposomes, as the non-toxic for the
normal tissues or cells, are the most widely used drug delivery
system to increase its accumulation at target sites, which have
gained significant attention for the administration of drug release
and utilization of drug delivery with highly efficient therapy (Lian
and Ho, 2001). For example, Figueiró Longo et al. prepared
a kind of liposomes that could tailor the release of aluminum
phthalocyanine chloride using Swiss mice by the photodynamic
therapy, exhibiting the effective treatment for the oral cancer
(Figueiró Longo et al., 2012). Tedesco et al. proposed a kind
of mixed lipid vesicles (LVs) based on the various ratios of
1,2-distearoyl-sn-glycero-3-phosphocholine and 1,2-dioleoyl-sn-
glycero-3-phosphocholine for targeted drug delivery (Calori and
Tedesco, 2016). These LVs could keep stability in solutions for
more than 50 days. On account of the aluminum-phosphate
specific interactions, LVs bonded with the AlClPc molecules
that could distribute in the cellular organelles and suffer a
disaggregation process after uptake by the OSCC, which could
guide us for future deep study on the intracellular mechanism of
PDT for oral cancer therapy (Figure 3).

Cyclodextrins for Oral Cancer Therapy
Cyclodextrins (CD), a family of cyclic oligosaccharides, are
derived from the enzymatic degradation of starch, which
can complex hydrophobic guest molecules (e.g., anticancer
drugs of docetaxel, cisplatin, methotrexate, and paclitaxel)
via the host-gust inclusion interactions (Rajewski and Stella,
1996). The interior lipophilic cavity prevents the hydrophobic
molecules while the exterior polar surface contributes to
the solubilising effects in aqueous solutions. Thus, these
cyclodextrins and their derivatives are widely utilized as
versatile multifunctional excipients with highly therapeutic
efficiency and pharmacological activity for the targeted drug
delivery system (Szente and Szejtli, 1999; Vyas and Saraf,
2008). Wang et al. reported a kind of soluble supramolecular
complexes via the phospholipid compound technology and
a hydroxypropyl-beta-cyclodextrin (HP-β-CD) inclusion
technique, which obviously improved the solubility and oral
bioavailability of two curcuminoids (Figure 4; Wang H. et al.,
2020). The preparation of these supramolecular complexes
was simple and the gastrointestinal absorption capacity was
enhanced, expressing great potentials in the oral delivery
for cargoes.

Nanolipids for Oral Cancer Therapy
Although nanoparticles are significantly applied for oral cancer,
their potential cytotoxicity and low internalization into the
tumor cells limit the therapeutic efficiency (Hoshyar et al.,
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FIGURE 1 | Schematic fabrication of (NaAsO2+TH287)-loaded HPAE nanoparticles. Reproduced from Li et al. (2017) with permission from Copyright 2017 Royal

Society of Chemistry.

FIGURE 2 | Schematic combination (chemo-photothermal) therapeutic model for oral squamous carcinoma. Reproduced from Darwish et al. (2020) with permission

from Copyright 2020 Elsevier.

2016). Nanolipid-based carriers are well-fabricated and widely
applied to overcome this limitation for oral cancer therapy.
These nanostructured lipid carriers consisting of solid and
liquid lipids within a core matrix can distort their crystalline
structures, provide the sufficient space and accommodate
the local chemopreventive drugs in the amorphous clusters
(Beloqui et al., 2016). Based on these advantages, nanolipids
can improve the bioavailability, solubility and stability of
drug carriers for therapeutic OSCC applications (Liu et al.,
2011; Zhang et al., 2011; Iida et al., 2013; Zlotogorski et al.,
2013).

Hydrogels for Oral Cancer Therapy
Hydrogels have a three-dimensional (3D) porous and
interconnected structures that not only provide a biocompatible
microenvironment for cell attachment and proliferation but also
possess many unique advantages on the targeted drug delivery
systems (Maitra and Kumar Shukla, 2014; Cao et al., 2018;
Ketabat et al., 2018; Bao et al., 2019; Wang X. et al., 2020; Xu
et al., 2020; Yan et al., 2020). Compared to the nanoparticle-
based carriers, hydrogels provide sustained or triggered
administration of both hydrophilic and hydrophobic agents and
other biomolecules. In addition, hydrogel carriers allow for the
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FIGURE 3 | Schematic image of lipid vesicles loading aluminum phthalocyanine chloride. Reproduced from Calori and Tedesco (2016) with permission from Copyright

2016 Elsevier.

FIGURE 4 | Schematic image of HP-β-CD supramolecular complexes for oral delivery of curcuminoids. Reproduced from Wang H. et al. (2020) with permission from

Copyright 2020 Elsevier.

co-administration of multiple drugs for achieving the synergistic
anti-cancer effects with high drug loading content and low drug
resistance (Li and Mooney, 2016; Ketabat et al., 2017; Sepantafar
et al., 2017; Liu B. C. et al., 2020; Liu H. Y. et al., 2020; Tang
et al., 2020; Yang et al., 2021). Another unique advantage is
localized application for the targeted drug delivery systems, by

which various hydrogel formulations can directly be implanted
into the injury lesion location that can avoid the intravenous
injection of small nanoparticles in the blood circulation. In
this case, hydrogel carriers can tailor the drug release periods
for a long time (several months) by controlling the hydrogel
architectures, network pores, and gelation mechanisms (physical
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FIGURE 5 | Schematic illustration of DOX/Cel/MOFs@Gel as a novel injectable hydrogel for local dual drug delivery. Reproduced from Tan et al. (2020) with

permission from Copyright 2020 Elsevier.

and chemical gelation) (Koutsopoulos and Zhang, 2012). For
example, Tan et al. prepared an injectable thermosensitive
hydrogel consisting of metal-organic frameworks (MOFs),
doxorubicin (DOX) and celecoxib for oral cancer therapy (Tan
et al., 2020). The loaded celecoxib possessed antiangiogenetic
property that could improve the oral cancer therapy with the
synergistic effect of DOX. In this system, DOX/Cel/MOFs@Gel
exhibited high drug-loading capacity, pH-responsive release
profile, and excellent tumor inhibition behavior by the in vitro
and in vivo results (Figure 5). These injectable hydrogels had low
toxicity and no apparent injury to the other tissues, possessing

great potentials for fabrication of injectable implant platform for
local oral cancer therapy.

BIOMIMETIC NANOPARTICLES FOR ORAL
CANCER THERAPY

Although natural or synthetic materials have been applied
as targeted drug carriers for the therapeutics, their low
drug payloads, oral bioavailability, and delivery efficiency are
still highly challenging that should be issued. Conclusively,
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FIGURE 6 | Schematic images of the biotinylated liposomes with hypoglycemic effect and enhanced oral bioavailability of insulin for the oral delivery. Reproduced

from Zhang et al. (2014) with permission from Copyright 2014 Elsevier.

biomimetic strategies are here investigated to illustrate the
structure-property of biomimetic carriers to improve the
bioavailability and targeting capability of therapeutic drugs.

Vitamin-Coated Nanoparticles for Oral
Cancer Therapy
Vitamin B12 (VB12), due to the absorption pathway by
receptor-mediated endocytosis, can form a complex with an
intrinsic factor in the stomach, which are easily modified
into the nanoparticles to improve the oral delivery efficiency.
For example, Chalasani et al. found that compared with the
pure nanoparticles, covalent conjugation of VB12 to insulin-
loaded dextran caused a higher pharmacological availability
using streptozotocin-induced diabetic animals. Similarly, VB12-
modified nanoparticles based on trimethyl-chitosan or calcium
phosphate improved the oral absorption of insulin (Chalasani
et al., 2007a,b; Verma et al., 2016). In addition, Vitamin B7 is a
non-endogenous vitamin and absorbed by Na+-dependent and
carrier-mediated endocytic mechanisms.

Wu et al. prepared a targeting biotinylated liposome for
the oral insulin delivery, which effectively improved the drug
bioavailability through the favorable cellular uptake and rapid
gastrointestinal transport (Zhang et al., 2014). Vitamin B9, i.e.,
folic acid (FA), possessed unique abilities of high affinity and
specificity to the folate receptor to increase the cellular uptake
contents (Figure 6). By means of caveolinmediated endocytosis

and modification with amphiphilic copolymers, an oral targeted
delivery nanovehicle was fabricated and applied for the cancer
therapy (Zheng et al., 2009; Liu et al., 2013).

Exosomes for Oral Cancer Therapy
Exosomes secreted by various cells (e.g., dendritic cells,
macrophages, mesenchymal stem cells, endothelial, and epithelial
cells) possess variously nanosized dimensions and natural
formation, and therefore they have attracted great attentions
by many researchers for the biological applications in recent
years. Importantly, exosomes can deliver various biomolecules or
chemotherapeutic agents for the intercellular exchange because
of their effective adhesion abilities onto the cell membrane,
suggestive of their potential roles as a novel vehicle for targeted
drug delivery applications (Batrakova and Kim, 2015; Jiang
and Gao, 2017; Zhao et al., 2020). For example, Tomita et al.
demonstrated the a THP-1 and primary human macrophages
(PHM)-derived exosomes to investigate the effects and sensitivity
of macrophage secreted exosomes using 5 fluorouracil (5 FU) and
cis diamminedichloroplatinum (CDDP) on the OSCC therapy
(Tomita et al., 2020). The results found that these macrophage-
derived exosomes decreased the proliferative inhibitory effects
of 5 FU and CDDP and apoptosis in OSCC cells through
activation of AKT/GSK-3β signaling pathway, playing important
roles in reducing the sensitivity to chemotherapeutic agents in
OSCC cells and improving the chemosensitivity of the tumor
microenvironment in oral cancer. However, the exosomes also
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possess several limitations for the truly clinical applications, such
as the effective separation and rigorous process for the purity,
low loading capacity for the drug delivery and potential adverse
immune for the biosafety (Ha et al., 2016), which should be
addressed for the oral cancer therapy.

Peptides/Proteins for Oral Cancer Therapy
Synthetic peptides are also issued for the oral targeted delivery.
Typically, CSKSSDYQC (CSK) peptide was employed to improve
the hypoglycemic effect because of its goblet cell-targeting
capacity (Sang et al., 2008). The studies found that CSK
peptide-decorated chitosan NPs could effectively increase the
oral bioavailability of other peptides and small agents by
targeting intestinal goblet cells and promoting intestinal cellular
uptake for oral delivery (Chen et al., 2018). Du et al. reported
transferrin receptor specific nanocarriers conjugated with
functional peptide, which increased intracellular uptake, alter
intracellular trafficking, and enhance transcytosis in polarized
cells for targeted oral drug delivery (Du et al., 2013).

Virus-Like Particles (VLPs) for Oral Cancer
Therapy
VLPs are generally obtained by the self-assembly of viral capsids
or viral-derived envelope proteins. On account of the surface
biophysical and chemical properties, VLPs are easily regulated by
altering VLP proteins through genetic and chemical engineering
to provide their multifunction (Yang et al., 2019). Although VLPs
are fully addressed to be effective as oral antigen carriers in
immunization, they remain to be confirmed whether they have
superior delivery characteristics in other oral cancer treatments
(Chien et al., 2018; Ren et al., 2018; Serradell et al., 2019).

FUTURE OUTLOOK AND CONCLUSION

Considerable issues and advances have been developed with
various nanotechnological strategies for oral cancer therapy.
Based on these targeted drug delivery systems with tailored
structures and various physicochemical properties, these carriers
can load anticancer cargoes to target the malignant cells
with high efficiency and less damage to the healthy cells,
presenting a site-specific delivery behavior. Various forms of drug
delivery have been deeply studied in this review as treatment
options for the oral cancer, including polymeric/inorganic
nanoparticles, liposomes, cyclodextrins, nanolipids, hydrogels,
and several biomimetic forms. Taking advantages of their
delicate regulations of structure-property relationship, most of
these carriers expressed great potential alternative to overcome
the limitations associated with oral drugs and conventional

formulations. Nevertheless, for the currently targeted drug
delivery systems, few clinic investigations were intensively
performed thus far, which disclosed that improvement of clinical
efficiency, well-control of drug release and reduction of side
effects are highly challenging.

One of the main hindrances is the relatively complicated
structures for most of drug carrier for the commercializations,
causing severe problems like time-consuming and costly
production. Even though, high-loading drug doses and ideal drug
release profiles from these systems for the oral cancer therapy are
still a major goal due to varied cellular mechanisms in OSCC
scenario. In addition, other nanotechnologies on treatment of
oral cancer should be introduced, such as ultrasounds, PTD,
or PTT. For example, ultrasound-guided drug delivery has
been a promising system to treat tumors since the ultrasound
technology is simple, non-invasive, readily available, and spatial
tailor of cargoes to the targeted sites with the high precision,
which can be fabricated to respond to the thermal, mechanical
effects of ultrasound or a combination of both.

Another important issue that needs to be solved in all
cancer types, including oral cancer, is related to the clinic
trials. Currently, most investigations are still focused on in
vitro or in vivo studies. It is urgent to remind both clinicians
and scientists to develop a full awareness of all the relative
factors involved in the innovative strategy and guide appropriate
clinical trials design, and further studies are needed to turn
the concepts of nanotechnology toward practical applications
in a multidisciplinary environment for oral cancer therapy. For
instance, an advent of personalized medicine will lead to the
advanced therapeutic outcomes, lower costs and high survival
rates that benefit for both oncologists and patients in the
near future.
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