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Food scarcity, population growth, and global climate change have propelled crop yield

growth driven by high-throughput phenotyping into the era of big data. However, access

to large-scale phenotypic data has now become a critical barrier that phenomics urgently

must overcome. Fortunately, the high-throughput plant phenotyping platform (HT3P),

employing advanced sensors and data collection systems, can take full advantage

of non-destructive and high-throughput methods to monitor, quantify, and evaluate

specific phenotypes for large-scale agricultural experiments, and it can effectively

perform phenotypic tasks that traditional phenotyping could not do. In this way, HT3Ps

are novel and powerful tools, for which various commercial, customized, and even

self-developed ones have been recently introduced in rising numbers. Here, we review

these HT3Ps in nearly 7 years from greenhouses and growth chambers to the field,

and from ground-based proximal phenotyping to aerial large-scale remote sensing.

Platform configurations, novelties, operating modes, current developments, as well

the strengths and weaknesses of diverse types of HT3Ps are thoroughly and clearly

described. Then, miscellaneous combinations of HT3Ps for comparative validation and

comprehensive analysis are systematically present, for the first time. Finally, we consider

current phenotypic challenges and provide fresh perspectives on future development

trends of HT3Ps. This review aims to provide ideas, thoughts, and insights for the optimal

selection, exploitation, and utilization of HT3Ps, and thereby pave the way to break

through current phenotyping bottlenecks in botany.
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INTRODUCTION

The growth and development of plants, involving their
photosynthesis, transpiration, flowering, and fruiting processes,
are the basis of life on earth, and support 7.5 billion people
(Pieruschka and Schurr, 2019). Unfortunately, the agriculture
that sustains humanity is now facing three stark challenges at
once: climate change, resource depletion, and population growth
(Kim, 2020). In the next 30 years, the global population is
expected to grow by 25% to 10 billion (Hickey et al., 2019). One
of the greatest challenges in the twenty-first century will be to
quickly expand crop production tomeet this growing demand for
food, clothing, and fuel. Salinization and erosion of agricultural
land around the world, coupled to declining phosphate reserves,
pose a grave threat to growth in the global production of
crops. On April 21, 2020, the World Food Programme (WFP)
announced that as new coronavirus pandemic spreads and
batters the global economy, the number of people facing severe
food crisis in the world could increase to 265 million within the
year. In the past decade, cheaper and faster sequencing methods
have fostered increasing crop yields and generated an enormous
increase in plant genomic data. The costs of sequencing have
fallen dramatically, from $0.52 per Mb of DNA sequence in 2010
to just $0.010 in 2019, while the cost of sequencing a human-
sized genome has decreased from $46 774 to a relatively paltry
$942 (National Human Research Institute). Although high-
throughput genotyping is expanding exponentially, the collection
and processing of plant phenotypes constrain our ability to
analyze the genetics of quantitative traits and limit the use of
breeding for crop yield improvement (Mccouch et al., 2013).

The phenotype arises from interactions between genotype
and environment (Hickey et al., 2019), and the essence is the
temporal expression of the plants’ gene map in characteristic
geographic regions (Zhao, 2019). Phenotyping applies specific
methods and protocols to measure morphological structural
traits, physiological functional traits, and component content
traits of cells, tissues, organs, canopy, whole plants, or even
populations. However, traditional breeders perform artificial
phenotyping based on the appearance, taste, and touch of the
crop, undoubtedly a time-consuming, labor-intensive, and even
destructive method that requires immense human resources
to sample large population of crop plants. The limitation
of phenotyping efficiency is increasingly recognized as a key
constraint of progress in applied genetics, especially the time
interval for acquiring traits in different environments (Guzman
et al., 2015). Further, conventional phenotyping methods also
make it difficult to capture physiological and biochemical
phenotypes at the level of plant basic mechanisms that reveal
patterns of genetics and biology. So, to alleviate this bottleneck,
since 2000 a variety of phenotyping platforms have been
developed which are now common tools in commercial or
research teams (Granier and Vile, 2014).

An image-based, high-throughput phenotyping platform
(HT3P) is defined as a platform that can image at least
hundreds of plants daily (Fahlgren et al., 2015b). Given that
some HT3Ps currently not only rely on images but also are
based on contact (albeit non-destructive), “HT3P” is defined here

as a platform that can collect massive amounts of phenotypic
data from hundreds of plants every day with a high degree of
automation. HT3P is a novel and powerful tool allowing us
to monitor and quantify crop growth and production-related
phenotypic traits in a non-destructive, fast, and high-throughput
manner, and then to achieve genomics-assisted breeding (GAB)
through genomic approaches of quantitative trait loci (QTL)
mapping, marker assisted selection (MAS), genomic selection
(GS), and genome-wide association studies (GWAS), thereby
assisting crop growers to adapt to changing climate conditions
and market demand for yield. When genomics and high-
throughput phenotypic data are robustly linked together, this
fusion will also greatly promote the development of phenotyping.
Furthermore, as Figure 1 shows, various types of HT3Ps
contribute to the phenotyping of plant morphological structure,
physiological function, and fractional content, and they can
further promote the developments of multi-omics and reveal the
regulatory networks and biological patterns of plants’ growth
and development.

Nevertheless, because the large phenotyping platforms mostly
are developed by professional commercial companies, the
underlying hardware and software are protected by patents,
so they cannot be modified to meet specific research needs
(Czedik-Eysenberg et al., 2018). Consequently, a diversified
range of commercial phenotyping platforms, as well as those
either customized or self-developed, are continuously emerging.
In this context, this paper reviews HT3Ps (root phenotyping
not included) under three scenarios: (1) greenhouses and
growth chambers under strictly controlled conditions; (2)
ground-based proximal phenotyping in the field, and; (3)
aerial, large-scale remote sensing, with an emphasis on
platform novelties, sensor configurations, operation modes, and
applications. Then, we innovatively propose ways to combine
HT3Ps for their comparative validation or comprehensive
analysis. Finally, we discuss some prevailing issues in current
high-throughput phenotyping and also highlight the prospects
for future development of HT3P. We hope this review
enables researchers on plant phenotyping to make more
informed choices when employing HT3P, provides fresh ideas
and thoughts for intrepid developers of HT3P, and that
ultimately hastens the next green revolution in crop breeding.

HT3P FOR INDOOR PHENOTYPING
UNDER STRICTLY CONTROLLED
ENVIRONMENTAL CONDITIONS

High-throughput plant phenotyping in the growth chamber
or greenhouse entails the precise control of environmental
factors—temperature, humidity, gas concentration, air volume,
wind speed, light intensity, spectral range, photoperiod, and
nutrient content—and a high-throughput, non-destructive,
highly repeatable, fast, and accurate capture of the plant response
to a specific environment. This can be done using model crops
or representative plants as research objects, and the analysis
of plants’ structure, physiology, and biochemical characteristics
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FIGURE 1 | HT3Ps employed for phenotyping plant phenotypes of genotype, environment, and management (G×E×M) interactions advance phenomics; sequencing

platforms employed for researching genotypes and transcripts assist in genomics and transcriptomics; mass spectrometry platforms employed for researching

proteins, and metabolites promote proteomics and metabolomics; -omics platforms further progress multi-omics in systems biology.
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with assistance of HT3P can reveal adaptive mechanisms related
to environmental signals, with a view to eventually elucidating
their genetic control.

Given the mechanical structure of the platform and
movement mode between the sensors and plants, an indoor
HT3P can be categorized as either a benchtop type or a
conveyor type. Table 1 shows specific examples and details
of these two types of HT3P. No matter which type it is,
the phenotyping platform integrates common cameras,
supplemental light sources, automatic watering, and weighing
devices, to automatically collect plant phenotypic data. Available
cameras include those capable of capturing RGB, infrared
(IR), fluorescence (FLUO), near-infrared (NIR), multispectral,
or hyperspectral images. For example, the FLUO imager
is used to obtain chlorophyll or photosynthesis-related
characteristics (Choudhury et al., 2019). Hyperspectral
imaging in particular provides access to crucial metrics,
such as those for photosynthesis, chlorophyll, and nitrogen
content. See Figure 2 for detailed information on the diverse
sensors now available to monitor, quantify, and evaluate key
agronomic traits.

Compared with field conditions, although indoor experiments
cannot provide the authenticity of soil system and the
complexity of biological and abiotic stress for plants, the
purpose of indoor HT3P experiment is to study qualitatively or
quantitatively the response of representative or interesting plants
to specific environment. Environmental control platform avoids
the unpredictable phenotypic variation caused by the interaction
between genotype and natural environment (G × E). Therefore,
considering uncontrollable factors in the field, HT3P deployed
in greenhouse or growth chamber is widely used to study the
response of plants to specific growth conditions, and accurately
capture the morphological structural, physiological functional or
component content phenotypic indicators.

Conveyor-Type Indoor HT3P
The conveyor-type HT3P operates in the “plant-to-sensor”
mode. Potted plants are transported into an imaging room with
cameras, passing through an automatic door on the conveyor
that is controlled by computer for automatic imaging, after
which plants are returned to their original growth positions.
Cameras are typically installed on the top and side of the

TABLE 1 | Overview of HT3Ps used in greenhouses and growth chambers under environmentally controlled conditions.

Indoor HT3P Model Sensors Throughput

(pots)

Plants Traits Location References

Conveyor

type

LemnaTec

Scanalyzer

3D

RGB, NIR, FLUO 312 Barley Biomass, plant height,

width, compactness,

drought stress

Germany Chen et al., 2014;

Neumann et al., 2015

LemnaTec

Scanalyzer

3D

RGB, NIR, FLUO,

hyperspectral

672 Sorghum,

maize, barley

Biomass, leaf water

content

USA Miao et al., 2020

LemnaTec

Scanalyzer

3D

RGB, NIR, FLUO,

hyperspectral

2,400 Chickpea,

wheat

Nutrient stress, salt

stress, water content,

nitrogen content

Australia Neilson et al., 2015;

Atieno et al., 2017;

Bruning et al., 2019

Bellwether RGB, NIR, FLUO 1,140 Setaria Plant height, biomass,

water-use efficiency,

water content

USA Fahlgren et al., 2015a

– Hyperspectral 100 Maize PLA, NDVI, perimeter,

major axis length, minor

axis length, eccentricity

USA Ma et al., 2019

HRPF RGB, CT 5,472 Rice Drought stress, tiller

number

China Yang et al., 2014; Duan

et al., 2018

Benchtop

type

Phenovator Monochrome 1,440 Arabidopsis

thaliana

PLA, PSII efficiency The

Netherlands

Flood et al., 2016

Phenoscope RGB 735 Arabidopsis

thaliana

Rosette size, expansion

rate, evaporation

France Tisne et al., 2013

– RGB 350 Arabidopsis

thaliana

Radiation dosage

stress, projected area,

convex hull area,

perimeter length

Korea Chang et al., 2020

Phenoarch RGB – Maize Growth rate of ear and

silk

France Brichet et al., 2017

Glyph RGB 120 Soybean Water use efficiency,

drought stress

Argentina Peirone et al., 2018

LemnaTec

Scanalyzer

HTS

RGB, FPUO, NIR – Arabidopsis

thaliana

Water stress USA Acosta-Gamboa et al.,

2017
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FIGURE 2 | Sensors currently available to monitor, quantify, and estimate key morphological structural traits (e.g., plant height, biomass, canopy coverage, lodging),

physiological functional traits (e.g., FAPAR, staygreen/senescence, light-use efficiency, disease/pests), and component content traits (e.g., chlorophyll content,

nitrogen content, water content) of plants.

darkroom to perform this imaging, and/or the plants are
rotated for data acquisition. The automatic door eliminates the
interference of ambient light, and there are halogen lamps to
provide illumination.

Scanalyzer 3D, a typical conveyor-type HT3P developed
by LemnaTec GmbH (Aachen, Germany), has been adopted
by some international organizations, covering the following
versions (Yang et al., 2020). The Plant Accelerator of the
Australian Plant Phenomics Facility (APPF) is a leading
international plant phenotyping research institution. Its
conveyor HT3P can handle 2,400 plants and is equipped
with multiple imaging stations (RGB, NIR, FLUO, and

hyperspectral), and this has been used successfully to study
the nutrient deficiency of crops (Neilson et al., 2015) and
salt tolerance of chickpea (Atieno et al., 2017). The four
imaging chambers are separated and function independently
of each other. Recently, Bruning et al. (2019) used just
two hyperspectral imagers in its hyperspectral imaging
room to evaluate the concentration and spatial distribution
of water content and nitrogen level in wheat. In another
example, the conveyor belt system in the Smarthouse (APPF,
University of Adelaide) was used to study the effects of zinc
(Zn) and an arbuscular mycorrhizal fungus upon tomato
(Brien et al., 2020).
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Similarly, Scanalyzer 3D, in the Greenhouse Innovation
Center of University of Nebraska-Lincoln, allows the
phenotyping of 672 plants with a height of up to 2.5m,
being able to collect RGB, FLUO, IR, NIR, and hyperspectral
images from the top and side view of plants (Choudhury et al.,
2016). Each imaging room is equipped with a rotating elevator
that permits 360 side-views of a given plant (Choudhury et al.,
2018). There are three watering stations with balance, which
can apply watering to meet the target weight of the pot or in
specific volume, for which the amounts of water added are
recorded. Since the imaging chamber is self-contained, this
HT3P unit allows the employed sensors to be adjusted according
to research needs. For example, RGB, NIR, and FLUO cameras
are used to analyze the spatiotemporal biomass accumulation of
barley under drought stress (Neumann et al., 2015). In studying
maize, Ge et al. (2016) used RGB and hyperspectral imaging
rooms to analyze this crop’s growth and water-use dynamics,
in addition to quantifying its leaf water content. To measure
the nutrient concentration and water content of plants, Pandey
et al. (2017) relied solely on the hyperspectral imaging room
of the Scanalyzer 3D, this being the first time hyperspectral
data was used to detect the nutrient content of living plants in
vivo. Furthermore, Miao et al. (2020) segmented the generated
hyperspectral images of sorghum and maize, at the organ level,
to identify genetic associations, which let them measure plant
properties more broadly.

The bellwether phenotyping platform, at the Donald Danforth
Plant Science Center, including a Convion (Winnipeg, Canada)
growth chamber and an imaging station (LemnaTec Scanalyzer)
(Fahlgren et al., 2015a). Plant barcodes on the pots are used for
radiofrequency identification (RFID), to match up image data
with the metadata. The 180-m-long conveyor belt system can
accommodate 1,140 plants, which are transported into FLUO,
VIS, andNIR imaging stations through dark adaptation channels.
Interestingly, this conveyor system is divided into four modules
that can run independently, or as a whole, which increases
the research flexibility and scope of potential experiments. To
sum up, as a widespread conveyor-belt HT3P for large-sized
plants, Scanalyzer 3D is effective in studies of plant biology and
plant breeding.

The purpose of the greenhouse is to provide a uniform,
controlled environment. But since most conveyor HT3Ps often
need to transport plants to the specific imaging room, this
introduced microclimatic heterogeneity likely influences the
plants’ growth and response to environmental changes, rendering
the phenotypic data collected inaccurate. Fortunately, the HT3P
built by Purdue University overcomes this interference of a
differential microclimate (Ma et al., 2019), in that plants are
grown on cyclic conveyor belts throughout their whole growth
cycle, thus exposing them to the same heat and radiation
conditions. Huazhong University of Science and Technology
and Huazhong Agricultural University (Wuhan, China) jointly
developed a high-throughput rice phenotyping facility (HRPF)
with an image analysis pipeline, able to perform color imaging
and X-ray computed tomography (CT); it can monitor 15
agronomic traits of 1,920 rice plants (Yang et al., 2014). This
HRPF was used to quantify the dynamic response of rice to

drought (Duan et al., 2018). However, the investment cost of
conveyor HT3Ps is high, and further improvement is needed to
enhance flexibility.

The CT platform can high-throughput visualize and
quantify external and internal geometric features, which offers
the opportunity to collect morphological and anatomical
characteristics of plants. There are two general types of CT
platforms used in plant sciences: industrial CT scanners and
medical CT. Industrial CT scanners with a higher resolution
than medical CT, also known as micro-CT,µCT, or nano-CT, can
be applied for the subtle phenotypic traits of plants. For example,
Tracy et al. (2017) used µCT scanning to obtain detailed three-
dimensional phenotypes of Arabidopsis thaliana and barley,
which allows the measurement of spike size and further accurate
staging at the flower and anther stages. This rapid and non-
destructive method overcomes the traditional tedious steps in
cytological microscopy, such as fixation, sectioning, staining, and
microanalysis. Compared to µCT, medical CT can faster scan
larger samples and larger numbers of samples, despite its lower
resolution. Gomez et al. (2018) used a medical CT platform to
study the geometric characteristics of sorghum stem, finding that
medical CT estimates were highly predictive of morphological
traits and moderately predictive of anatomical traits.

The conveyor-type HT3P (excluding CT) can carry samples of
large size (e.g., sorghum and corn) and large capacity, but it may
affect those plants with fragile stems due to shaking of the belt.
And since spectral information is not collected in situ, there are
environmental differences between the plants’ growth location
and the imaging room, which may lead to inaccurate phenotypic
data. The CT platform enables the acquisition of meticulous
morphological and anatomical traits of plant, which has great
application prospects. The future conveyor-type HT3P will aim
for high operational stability and environmental homogeneity,
providing smooth plant transportation and accurate climate
control for plant science research, and enabling complete precise
phenotyping of plant traits throughout reproductive period.

Benchtop-Type Indoor HT3P
In measuring phenotypic traits susceptible to environmental
changes (temperature, wind, to name a few), especially for small
species with fragile stems, it is a wise choice to keep plants
still while the sensors are moving about. This is exactly how a
benchtop HT3P works, for which the operation mode is one of
“sensor-to-plant.” The imaging head is integrated with multiple
sensors, driven by a computer-controlled mechanical arm, which
automatically locates the position where a plant is growing and
collects its phenotypic data in situ. In general, the benchtop
HT3P also features a precisely controlled irrigation and weighing
system, with supplemental light sources.

Arabidopsis thaliana is a primemodel plant because of its wide
distribution, fast life cycle, and relatively small genome (Kaul
et al., 2000), making an ideal study species for the benchtop
HT3P. The platform for measuring photosynthetic parameters
(PSII, photosystem II), named Phenovator, can accommodate
1440 A. thaliana plants (Flood et al., 2016). Driven by an
XY camera-movement system, the imaging head carrying the
cameras measures photosynthesis and projected leaf area (PLA)
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at eight wavelengths, via an eight-position filter wheel installed
on the monochrome camera. For the Phenoscope platform, its
imaging system consists of digital camera only (Tisne et al.,
2013), but it can carry 735 individual pots. Its ingenious feature
is that it can continuously rotate each pot, so the sampled
plant experiences the same external conditions, thus minimizing
micro-environmental variation at the individual plant level and
providing high spatial uniformity.

Similarly, the LemnaTec Scanalyzer HTS is equipped with a
robotic arm that houses VIS, FLUO, and NIR cameras to take
top views of small plants. It is has been used to study the time-
dependent effect of water stress on A. thaliana (Acosta-Gamboa
et al., 2017). Although the number of samples it can process is
relatively small, it provides sufficiently rich spectral information.
In mutation breeding, the phenotype discovery of many mutants
is rapidly posing a limitation to molecular plant physiology
research (Fraas and Lüthen, 2015). Recently, Chang et al. (2020)
collected the growth images of 350 A. thaliana and compared the
subtle morphological effects of different radiation dosages during
its growing period, obtaining not only dynamic growth behavior
information (such as the plant growth rate post-radiation) but
also the phenotypic characteristics of dose effects.

Plant silk is normally difficult to detect and quantify because
of its unique features. To overcome this, Phenoarch (INRA,
Montpellier, France) made a breakthrough, when Brichet et al.
(2017) used it to monitor the growth dynamics of corn ears and
silks. That HT3P unit has two imaging cabins. First, the plants
are rotated at a constant speed, and RGB cameras determine the
spatial coordinates of the ears on them. Then the robotic arm
assists in the automatic positioning of the camera at a 30-cm
distance from the ear, to continue collecting of high-resolution
images of silks. In this way, the daily growth of ear and silk of
hundreds of plants can be tracked. Crop 3D, developed by the
Chinese Academy of Sciences (Guo et al., 2016), takes LiDAR
as the core sensor and integrates a high-resolution RGB camera
with a thermal and hyperspectral imager, applying one key trigger
to synchronously acquire multi-source data and extract plant
morphology parameters. Specifically, the sensors adopt a vertical
downward or overhead mode, to mount and shoot, carrying
out single row scanning, multi-row scanning, and fixed-point
positioning scanning.

Although a low-cost and non-commercial platform has a
small sample capacity, it could also generate high-throughput
phenotypic data. Glyph, as a representative, consists of four
bridge-like structures, whose drip irrigation equipment and
digital camera form a gantry that moves on the track between
pair of rows. It has been successfully used for predicting the field
drought tolerance in soybeans (Peirone et al., 2018). The SITIS
platform, which consists of PVC pipes with irrigation points,
was used to evaluate water stress tolerance of cotton cultivars
(Guimarães et al., 2017), and it also enables the evaluation of
plant roots. However, this platform is not an image-based, non-
destructive one to measure plant traits, so it still requires much
manual operation and experimental processing. The human-
like robotic platform is a newer method to measure plant
phenotypic traits instead of doing such manual operations. The
vivo robotic system, consisting of a four degree of freedom

(DOF)manipulator, a time-of-flight (TOF) camera, and a gripper
integrated with an optical fiber cable and thermistor, can be used
for the automatic measurement of maize and sorghum leaf traits
(Atefi et al., 2019). More specifically, the TOF camera acts as
the vision system, and the gripper can measure VIS-NIR spectral
reflectance and temperature; however, its capture speed, as well
as its capture success rate (78% for maize and 48% for sorghum),
need further improvement. The rapid development of such a
robot system can provide reference data and supplementary
support for image-based plant phenotyping.

Strictly benchtop-type HT3Ps tend to focus on model
plants of small size (e.g., A. thaliana) and allow for the
collection of trait data associated with subtle phenotypic
changes, and their situ extraction also ensures homogeneity of
growth environment and undisturbed development. However,
sophisticated commercial HT3Ps tend to be capital-intensive,
while low-cost self-developed platforms have small sample
capacity and low throughput, whose quality, credibility, and
abundance of phenotypic data can be somewhat reduced.
Fortunately, artificially intelligent plant growth chambers, plant
factories, and rapid iterative breeding have opened new avenues
for indoor HT3Ps. The future benchtop-type HT3P may be
able to omnidirectionally monitor, capture, and track subtle
morphological and physiological changes of multi-level traits in
a wide range of model plants, with high-throughput and full-
automation, to reveal functional gene expression and biogenetic
regulation patterns.

HT3P FOR FIELD PHENOTYPING IN
NOTORIOUSLY HETEROGENEOUS
CONDITIONS AND RELATIVELY
UNCONTROLLABLE ENVIRONMENTAL
FACTORS

Plants that grow naturally in the field are affected by weather
(e.g., rain, frost, snow), biotic and abiotic stresses (e.g., drought,
low-temperature, low-nitrogen, pests), as well as soil properties
(e.g., nutrient gradients, heterogeneity, micro-environment),
all of which are extremely distinct from the environment of
greenhouse and growth room, making the field crop phenotype
an intricate one. Whereas controlled environment, image-
based phenotyping platforms are almost universally popularized
worldwide, the majority of crop breeding appears in the
field with little if any selection in controlled environments
(Furbank et al., 2019). And the indoor environment can only
simulate but not recreate the real field setting. These factors
stimulated the exponential increase of a wide variety of HT3Ps
in fields.

Apparently, field HT3Ps operate in the “sensor-to-plant”
mode. According to their usage scenarios and imaging distance,
field HT3Ps can be categorized into ground-based and aerial
platforms. The relationship between a platform’s characteristics
and field crop traits determines the efficiency of the phenotype
platform to a certain extent (Kuijken et al., 2015). Based on this,
ground-based platforms can be further classified as pole/tower-
based, mobile, gantry-based, and cable-suspended. Likewise,
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aerial platforms could be categorized further, as the unmanned
aerial platform (UAP), manned aerial platform (MAP), and
satellite platform. Figure 3 shows specific scenarios of various
types of applied HT3Ps.

Despite the complex interactions of genotype, environment,
and management (G×E×M), the proliferation of a wide variety
of HT3Ps in recent years has greatly assisted researchers in
understanding the genetic structure of crops, obtaining high-
quality genetic gains, and improving the ability to genetically
analyze crop traits related to yield and stress resistance.
However, the diversity of HT3Ps also brings with considerations
of availability, feasibility, standardization, big data,
and reliability.

Ground-Based Field HT3P
Ground-based HT3P means proximal phenotyping that can
provide higher resolution data than aerial remote sensing. It is
convenient to collect phenotypic data of time series and analyze
the dynamic response and time dependence of phenotypes.
However, the ground-based HT3P is not suitable for large-scale
phenotyping tasks. Table 2 shows specific examples and details of
these four types.

Pole/Tower-Based Field HT3P
The pole/tower-based HT3P is formed when sensors are
mounted directly atop a pole or tower made of aluminum,
steel, or plastic fibers, which can be of stationary or mobile

FIGURE 3 | The various types of HT3Ps mentioned in this review (partial display) including HT3Ps in the greenhouse/growth chamber (i.e., benchtop-type and

conveyor-type), field ground-based HT3Ps (i.e., pole/tower-based, mobile, gantry-based, and cable-suspended) and aerial HT3Ps (i.e., UAP, MAP, and satellite).
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TABLE 2 | Overview of ground-based HT3Ps used in the field under real uncontrolled environmental conditions.

Field HT3P Designation Sensors Feature Plants Traits Country References

Pole/tower-based – Terrestrial

laser scanner

Maximum load of

50 kg, 3.8m high,

covers 120m

Maize,

soybean,

wheat

Canopy height Switzerland Friedli et al., 2016

CropQuant RGB, NIR Combined with IoT Crop Crop growth rate UK Zhou et al., 2017

PhenoCam RGB Large phenotyping

network

Ecosystem Canopy greenness USA Richardson et al., 2018

– Hemispherical

video camera

Automatic camera

track system

Wheat, oat,

barley

Crop lodging USA Susko et al., 2018

– Laser-

Induced

Fluorescence

Transient

(LIFT)

Covers 50m Barley, Sugar

Beet

Photosynthesis Germany Raesch et al., 2014

– RGB, NIR Consists of two

8-m high towers

Rice Shoot biomass, panicle

number, grain weight

Colombia Naito et al., 2017

Mobile – LiDAR, RGB,

thermal IR, IR

thermometer,

hyperspectral

Speed of 1 m/s Wheat Canopy height, leaf

angular distribution,

leaf area, leaf volume,

spike number, VIs,

canopy transpiration

Australia Deery et al., 2014

– Ultrasonic,

NDVI, thermal

IR,

spectrometers,

RGB

A “stop-measure-

go”

model

Soybean,

wheat

Canopy height, NDVI,

canopy temperature

USA Bai et al., 2016

Phenomobile Lite LiDAR, RGB,

NDVI

Three-wheeled

buggy

Wheat Plant height, biomass,

ground cover

Australia Jimenez-Berni et al.,

2018

GPhenoVision RGB-D,

thermal,

hyperspectral

Modularity,

customizability

Cotton Canopy height, width,

growth rate, projected

leaf area, volume, yield

USA Jiang et al., 2018

– LiDAR Group observation

on parcel, “stop-

measure-go”

model

Maize Plant height China Qiu et al., 2019

– Ultrasonic,

spectrometer,

RGB, IR

radiometer

Emergency stop

and inspection

Soybean Canopy height, canopy

coverage, NDVI

USA Murman, 2019

Gantry-based LeasyScan Planteye Continuous

phenotyping

Peanut,

cowpea, pearl

millet, maize

Canopy transpiration,

plant height, 3D leaf

area, water use

efficiency

India Vadez et al., 2015;

Sunil et al., 2018

Phénofieldr RGB,

VIS-NIR,

LiDAR

Conditions

controlled in the

field

Wheat Water stress

resistance, nitrogen

stress resistance

France Beauchene et al., 2019

Field Scanalyzer RGB, FLUO,

thermal IR,

hyperspectral,

3D laser

scanner

Fully automatic or

remote manual

operation

Wheat Canopy height, spike

number, canopy

closure, canopy

temperature, NDVI,

photosynthesis

UK Virlet et al., 2017

Mini-Plot Hyperspectral Divided into open

field and closed

greenhouse areas

Barley Disease severity Germany Thomas et al., 2018

Cable-suspended NU-Spidercam Multispectral,

thermal IR,

LiDAR,

VIS-NIR

spectrometer

Covered 0.4 ha,

30-kg payload,

maximum speed

of 2 m/s

Soybean,

maize

Plant height, ground

cover, canopy

temperature

USA Bai et al., 2019

(Continued)
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TABLE 2 | Continued

Field HT3P Designation Sensors Feature Plants Traits Country References

FIP Spectrometer,

ultrasonic,

DSLR,

thermal, laser

scanner,

operator

camera

Covers 1 ha, 2 to

5m above the

canopy, 12-kg

payload,

maximum speed

of 2 m/s

Winter wheat,

maize,

soybean

Canopy cover, canopy

height

Switzerland Kirchgessner et al.,

2017

type. Although this platform is simple in structure, similar to a
small weather station, high throughput and complexity are not
necessarily synonymous.

Friedli et al. (2016) applied a pole-based, terrestrial laser-
scanning (TLS) platform, to monitor canopy height growth
in maize, soybean, and wheat. The TLS is done via a laser
scanner mounted upside down on a 3.8-m high aluminum
elevator tripod. Its time and spatial resolution depend on the
crop variety assessed and scanning distance. Combined with
“Internet of Things” (IoT), CropQuant is equipped with RGB
and No Infrared cameras to continuously monitor crop growth
through high-resolution time-lapse photography (Zhou et al.,
2017). It can be powered by batteries and solar panels and
connected to an in-field WIFI network, as a mesh network node,
to form an IoT-mode HT3P that quantifies crop growth and
development. Furthermore, PhenoCam is a large phenotyping
network, consists of a series of widely deployed digital cameras
that automatically capture RGB images (typically, at 30min
intervals) to track biomes’ vegetation phenology (Richardson
et al., 2018). The camera is mounted on a pole, mast, or
building. Although the data source is only visible images, such
massive time series data sets can monitor the dynamic changes of
an ecosystem.

A mobile handheld pole-based, Phenocorn, is integrated
with a GreenSeeker (portable device), an IR thermometer, a
web camera, and a global positioning system (GPS) receiver
(Wei, 2017). This device can simultaneously collect normalized
vegetation index (NDVI) and canopy temperature. Although the
12 kg hand-held Phenocorn can be carried on a person’s back, it
still requires much manual labor. Fortunately, it can modified for
use in a cart that is manually pushed to collect phenotypic traits in
the field (Crain et al., 2016). As is well-known, it is quite difficult
to capture, track, and quantify crop lodging and crop movement.
In tackling this, Susko et al. (2018) developed an automatic
camera-tracking HT3P that consisted of a hemispherical video
camera, a computer, and an industrial curve track system; its
motor-driven camera moves along the track for phenotypic data
acquisition. What makes this breakthrough so novel is that it can
be used for dynamic imaging in video or static frequent imaging,
thus allowing for the study of new plant phenotypes.

The tower-based HT3P is similar to the stationary pole-
based platform, with sensors installed atop the tower, but the
dimensions and height of a tower-based platform are generally
higher and larger than that of pole-based. In a study on
photosynthetic efficiency of barley and sugar beet, laser-induced

fluorescence transient (LIFT) instruments were placed on the
top of a 10-m high scaffold to measure the photosynthetic
performance of agroecosystems (Raesch et al., 2014). However,
the LIFT signal in the target area introduced noise from plant
stems and the soil. In later work, Naito et al. (2017) installed
an improved multispectral single-lens imaging system (i.e., VIS
and NIR cameras), on two 8-m high towers, which could collect
crop images from eight angles to estimate rice yield-related traits.
Their results showed that the system has great potential for yield
estimation during early crop development.

Both pole-based and tower-basedHT3Ps are easy and low-cost
to build and maintain, and are convenient for temporary use and
multi-site deployments to form networks. However, phenotypic
area of coverage and spectral information are extremely limited
for a single unit, and multi-site trials increase the cost for large-
scale field experiments. Looking ahead, being portable, scalable,
rotatable, robust, and easy to install and remove are anticipated
key features of pole/tower-based platforms, and phenotypic
networks of economically-efficient distributed pole/tower-based
HT3Ps will play a prominent role in the future of multi-site
large-scale experiments and the calibration of high-dimensional
phenotypic data.

Mobile HT3P
The mobile HT3P can move through the field and collect crop
phenotypic traits in a semi-automatic or fully automatic manner,
including refitted agricultural machinery (e.g., tractor, sprayer,
or harvester), self-developed mechanical platform (e.g., cart or
buggy), and commercial automatic platform. A mobile HT3P
is generally composed of four subsystems: sensing system, data
acquisition system, mechanical platform, and drive system. The
sensing system covers GPS, environmental sensors (e.g., sunlight,
wind speed), and phenotypic sensors (e.g., RGB, multispectral,
hyperspectral, thermal). The data acquisition system generally
is the data acquisition software on an onboard computer.
Mechanical platform is for load-bearing and mobility, and
the drive system can be classified as electricity, engine, and
manpower. Theoretically, any agricultural mobile platform has
the potential to be converted into a mobile HT3P.

The mobile HT3P converted from a tractor, sprayer, or
harvester makes rational use of precision agricultural machinery
that already exists. In the early stages, a pioneering field-
based mobile was developed in Canberra’s High-Resolution Plant
Physics Facility (Deery et al., 2014). It was equipped with a
height-adjustable sensor array, including LiDAR, RGB, thermal
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IR, and hyperspectral cameras. Driven by the mobile, the sensors
pick up traits’ data along the surveyed plots. A cherry picker
installed a linear scanning bar with spectral cameras has also
been applied as a mobile HT3P (Pinto et al., 2016); its imaging
cameras aim to collect canopy radiation in a linear push broom
mode. The temporal change of canopy photochemical activity
was tracked by generating sun-induced chlorophyll fluorescence
(SIF) map. A multi-sensor system developed by Bai et al. (2016)
consists of five sensor modules, and this platform was used
to measure canopy traits of soybean and wheat. They adopted
the “stop-measure-go” mode, to ensure the sensors precisely
aligned with the plots, collecting plot-level phenotypic data
that were free of blurring. But to control such a HT3P, a
certain number of operators must participate. GPhenoVision
is assembled from a high-clearance tractor, carrying RGB-D,
thermal, and hyperspectral cameras for quantitative assessment
of cotton canopy growth and development (Jiang et al., 2018).
Customizability and modularity are the two key characteristics of
GPhenoVision, which allows researchers to rapidly develop and
upgrade sensing modules with specific phenotyping purposes,
reduces development effort when adding or removing modules,
and prevents malfunction of the entire system. Jimenez-Berni
et al. (2018) installed a LiDAR, an NDVI sensor, and a digital
camera on a low-cost three-wheeled buggy, called Phenomobile
Lite, to evaluate canopy height, ground cover, and aboveground
biomass. However, to change its direction, a “stop” button is need
to be manually pressed, and almost the whole process requires
operator follow-up.

To achieve the automatic measurement of yield-related
traits, Bao et al. (2014) presented a mobile HT3P that could
automatically obtain stereo images of sorghum plants. It was
retrofitted from a garden tractor, equipped with six stereo camera
heads on a vertical pole, which can be triggered synchronously.
Three-dimensional images of two rows of crops can be collected
in a single pass. The drawback is that before each bout of data
collection, the platform must be driven manually through the
field, stopping, and recording each sampling point to generate
paths. Later, an agricultural mobile robot mounted with a
360◦-view LiDAR, developed by Qiu et al. (2019), was used
to efficiently calculate the row spacing and plant height of a
maize field. Compared with in-row and one-by-one phenotyping
methods, the 3D laser scanner sitting atop this robot obtains
group observation of parcels. While it moves in a “stop-and-
go” manner, the phenotypic data of parcel-level plant group
could be simultaneously collected. Unlike the wheeled mobile
platform, Stager et al. (2019) employed a modified crawler robot
to collect sub-canopy traits at low elevation. But branches,
tillers, or roots may hinder the movement of such crawler
robots. Automated robots offer the prospect of unattended field
operations, which likely be a major focus of future research of
agricultural phenotyping platforms.

By letting the phenotyping height of the mobile HT3P vary,
to adapt to different growing stages of crops, Flex-Ro was
developed to identify differences in the emergence and maturity
stages among soybean varieties (Werner, 2016). PhenoBox of
Flex-Ro mainly integrates data acquisition hardware, while its
height-adjustable PhenoBar, located at the front of this mobile

platform, mainly consists of three sensor units, capable of
covering 4.5-m swath (Murman, 2019). An operator controls
the machine through the remote box or a MATLAB application
called FlexRoRun. It is worth mentioning that a 3D smart sensor
is incorporated, for obstacle detection, which successfully detects
pedestrian-sized objects and triggers parking. This will be a
critical security consideration for future robotic HT3Ps. Likewise,
a multi-purpose field robot in combination with various apps
can achieve different functions. For example, Bonirob robotic
platform with the phenotyping app, penetrometer app, and
precision spraying app can monitor plant growth, measure soil
parameters, and apply chemical weeding, respectively (Bangert
et al., 2013). Unlike the mobile HT3P for small-sized or early-
growing crops, Robotanist can navigate autonomously in the
fields of tall crops, such as corn or sorghum (Mueller-Sim et al.,
2017). Interestingly, it has a three DOF manipulator that can
touch and measure the strength of plant stalks, which is a
phenotypic innovation based on contact.

A semi-automatic self-made mobile HT3P can reduce the
development cost and soil compaction (because of lightweight
architecture), but normally requires one or more operators to
follow-up (Bai et al., 2016, 2018; Jimenez-Berni et al., 2018).
Moreover, because of the “stop-measure-go” mode and slow
response speed of low-cost sensors, the efficiency of crop traits’
data acquisition cannot be guaranteed. Concerning the mobile
HT3P based on themodified tractor, sprayer, or harvester, it often
needs special personnel to drive. Its large volume and weight
risk causing soil compaction and mechanical disturbance to the
crops, which precludes the deployment in the field. And the
faster travel speed than self-made cart also may not guarantee the
quality of phenotypic data obtained. But the payload is large, so it
can integrate diverse sensors to collect multi-source information.
Robotic HT3P is capable of automatically navigating through
the field and collecting data on crop traits, as well as doing
continuous phenotyping throughout the day and night, but
its development and maintenance costs are expensive. The
future mobile HT3Ps will likely aim for lightness, automation,
modularization, and customization, and the mechanical arm and
emergency braking mechanism will offer potential applications
that could greatly improve the flexibility, autonomy, and security.

Gantry-Based Field HT3P
As a gantry frame is equipped with a sensor box, andmoves along
the track and collects crop traits along XYZ directions, it becomes
the gantry-based HT3P. When it moves back and forth on the
track, repeated phenotyping done this way avoids the possibility
of soil compaction and damage of crops’ normal development.

LeasyScan, equipped with a set of scanners (PlantEye F300,
Phenospex, Heerlen, the Netherlands), can perform continuous,
synchronous and automated monitoring of plant water use
and leaf canopy development, via linear movement above the
surveyed plants (Vadez et al., 2015). The trigger and stop of
eachmeasurement are controlled by amechanical barcode, which
is also used for distance calibration from the scanner to the
ground. LeasyScan was also utilized in a pre-breeding, genetic
resource identification experiment with hybrid maize (Sunil
et al., 2018), in which it measured plant height, 3D leaf area
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(i.e., total leaf area), and leaf area index (LAI). Similarly, Virlet
et al. (2017) applied Field Scanalyzer (LemnaTec) to monitor
and quantify morphological traits of wheat organs and canopy.
Through the control software in themaster computer, the gantry-
based HT3P can operate in the full-automatic or manual mode.
Unfortunately, though it can sample continuously, 24 h per day,
but no two sensors can collect images simultaneously. Then, Field
Scanalyzer also was used to determine wheat canopy height and
further validate the potential of functional mapping analysis for
detecting persistent quantitative trait loci (QTLs) (Lyra et al.,
2020).

A phenotypic experiment that precise management is
involved in the sufficiently realistic field environment is ideal
for deciphering G×E×M interactions. PhénoFieldR is the first
field-based facility in the European Union, one equipped with
high-throughput phenotyping devices on a gantry, automatic
irrigating mobile rainout shelters on tracks, and environmental
recording sensors. By controlling both irrigation and fertilization,
this gantry-based HT3P was used to investigate water and
nitrogen stress (Beauchene et al., 2019). Likewise, Mini-Plot,
developed by Forschungszentrum Jülich, consists of a closed
greenhouse area and an open-fenced area, containing 90
and 30 Mini-Plots, respectively; it was used to quantify the
disease severity of barley varieties (Thomas et al., 2018). The
measuring head consisting of a hyperspectral sensor, a mirror-
based scanning system, and an automatic positioning system
moves over the plant for imaging. Such gantry-based HT3Ps for
phenotyping, which can integrate genetics, field environmental
factors, and management practices, has greatly enhanced the
understanding of genetic control pattern for breeders and
plant biologist.

However, once the construction and installation of the
gantry-based HT3P is completed, multi-site experiments can be
expensive or even inoperative. High development, operation,
and maintenance costs are also several factors that researchers
should be aware of and bear in mind. Fortunately, gantry-based
HT3Ps with a high degree of automation can collect time-series
phenotypic data of high resolution. Owing to its large payload
and continuous operation ability, which greatly improves
expansibility, this approach does provide an opportunity to better
understand the dynamics of plant circadian rhythms. Extending
phenotypic area, shrinking volume, and reducing cost will imbue
the gantry-based HT3Ps with better application prospects.

Cable-Suspended Field HT3P
A cable-suspended HT3P is mainly composed of sensing system,
data acquisition system, mechanical transmission system, and
drive system. Sensing system and data acquisition system are
generally integrated in a sensor bar. Winches, cables, poles, and
pulleys make up the drive and mechanical transmission system.
Four poles are distributed in four corners of the field and a
winch house for controlling the cables sits at the bottom of
the pole. The sensor array with a GPS unit can be precisely
positioned above the interested region for traits’ data acquisition
through cable-driven.

A typical representative of cable-suspended HT3P is the “FIP,”
located at the ETH research station in Switzerland. Its sensor

heads integrated with a DSLR camera, a laser scanner, and a
thermal camera can collect crop phenotypic data from 2 to
5m above the canopy. The feasibility of FIP in monitoring
canopy coverage and canopy height of winter wheat, maize, and
soybean was verified by Kirchgessner et al. (2017). Furthermore,
the Nu-Spidercam at the University of Nebraska has a multi-
sensor systems, a subsurface drip irrigation (SDI) system and an
automatic weather station (Bai et al., 2019), which is capable of
accurately and flexibly capturing crop traits, such as plant height,
canopy cover, and spectral reflection. Its sensor bar integrates
numerous sensors, so software is designed for selecting available
sensors tomeet particular experimental needs. A drawback is that
it only can operate continuously for 6–8 h when fully charged.

Phenotyping sensors of the cable-suspended HT3P is
performing tasks over the crop canopy by cables during
data collection of agronomic traits, meaning that the cable-
suspended HT3P has lower dependence on soil conditions and
less interference to plants than mobile HT3P. Phenotypic traits
information of time series can still be collected within the
established crop growth-monitoring period. And it can cover
larger phenotypic region but has lower load than do gantry-
based HT3P. In general, field HT3Ps are considerably weather-
dependent and region-limited. Allowing stabilized imaging of
plants clusters and continuous monitoring of crop growth at low
elevation for a longer duration will be a likely future trend for
cable-suspended HT3Ps.

Aerial HT3P Vulnerable to Weather
Constraints and Aviation Regulatory
According to the imaging distance employed, aerial HT3Ps
encompass the Unmanned Aerial Platform (UAP), Manned
Aerial Platform (MAP), and satellite platform. UAP usually
requires an operator at a ground station to remotely control
or execute the flight task, by following a set planned path.
Crop images are automatically acquired by onboard sensors.
Nevertheless, MAP needs a dedicated person to pilot the aircraft
and another passenger to manually capture the crop images while
in flight. UAP and MAP typically carry global navigation satellite
system (GNSS), but often this must be coupled with ground
control points (GCPs) and calibration boards, for accurate
georeferencing of the acquired data and for correcting its spatial
resolution. A satellite platform collects large-scale field images
from space, letting one access and download this satellite data as
needed. Table 3 lists the specific applications and details of the
aerial HT3Ps. When compared with a ground-based platform,
an aerial HT3P can collect broader-scale phenotypic regions in
a shorter period. However, the aerial platform has strong weather
dependence and relatively low spatiotemporal resolution because
of its flight altitude and imaging distance.

Unmanned Aerial Platform (UAP)
In recent years, due to the reduction of Unmanned Aerial
Vehicle (UAV) prices and the relaxation of air traffic regulations,
the application of UAP in agricultural research has increased
exponentially. This so-called UAP is a kind of aerial platform,
for which UAV is the carrier, that integrated onboard sensors,
a GPS unit, an inertial measurement unit (IMU), a battery and
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TABLE 3 | Overview of aerial HT3Ps subject to air regulatory regime and weather constraints.

Aerial

HT3P

Designation Sensors Flight

altitude (m)

Plants Traits References

UAP Phantom 4 RGB 20 Inbred lettuce

lines

Carotenoid content Mascarenhas Maciel

et al., 2019

3DR Solo

quadcopter

Multispectral 45, 50 Maize NDVI, chlorophyll red-edge

index (CHL),

hemispherical-conical

reflectance factors (HCRF)

Fawcett et al., 2020

Customized Hyperspectral 80 Winter barley NDVI, yield Oehlschläger et al.,

2018

Self-developed

octorotor

RGB, multispectral 25 Rice Canopy height, VIs, canopy

coverage

Wan et al., 2020

Matrice 600 Pro RGB, multispectral

camera, infrared

thermal

50 Cotton Yield Feng et al., 2020

Tuffwing Mapper RGB 120 Sorghum Plant height Han et al., 2018

Ebee Multispectral 50 Wheat Yield Hu et al., 2020

Self-developed Multispectral,

thermal

150 Maize Low-nitrogen stress

resistance

Zaman-Allah et al.,

2015

Anaconda RGB, multispectral 120 Sorghum,

maize

Plant height, VIs Shi et al., 2016a

MAP Robinson R44

Raven helicopter

Radiometrically-

calibrated

thermal

60, 90 Wheat Canopy temperature Deery et al., 2016

Air Tractor

AT-402B

RGB 152–3,048 Crop Pest severity Yang and Hoffmann,

2015

– LiDAR 1,500 Maize Biomass Li et al., 2015

Satellite GeoEye-1 Multispectral 684 k Turfgrasses Nitrogen content Caturegli et al., 2015

RapidEye Multispectral 630 k Wheat Nitrogen stress Basso et al., 2016

Sentinel-1 and

RADARSAT-2

Synthetic aperture

radar (SAR)

700, 798 k Wheat Crop height, angle of

inclination

Chauhan et al., 2020

Fluorescence

explorer (FLEX)

Fluorescence

Imaging

Spectrometer

(FLORIS)

814.5 k Terrestrial

vegetation

Photosynthesis Drusch et al., 2017

a crucial gimbal—for correcting the influence of pitch and roll
motion—to collect phenotypic data at the plant canopy scale. To
collect high-precision geographic position of plots, both GCPs
and calibration boards are needed. Its successful phenotyping of
plants depends on the characteristics of UAV and the properties
of the deployed sensors (Sankaran et al., 2015). According to its
most distinguishing feature, UAPs can be classified as multi-rotor
or fixed-wing. UAV’s flight, however, is weather-dependent, and
the ideal conditions are clear, windless, and dry weather, similar
to those required when applying agronomic inputs.

Because of its limited payload and endurance, UAP can only
carry a finite number of phenotypic sensors (generally, no more
than 3). A multi-rotor UAV can be a quadcopter, hexacopter,
or octocopter. Compared with its fixed-wing counterpart, it has
lower flight altitude and slower flight speed, but is capable of
vertical takeoff and landing (i.e., it can hover). With respect to

the multi-rotor UAP, the use of one sensor is most common.
For example, RGB images acquired by multi-rotor UAPs have
been widely used for researching the growth rate of wheat
(Holman et al., 2016), carotenoid levels of inbred lettuce lines
(Mascarenhas Maciel et al., 2019), vegetation index (Buchaillot
et al., 2019), wheat height (Villareal et al., 2020), growth of
different maize inbred lines (Wang et al., 2019), and canopy
extraction of orchard (Wu et al., 2020). Parrot Sequoia (Parrot,
France) and Micasense RedEdge (Micasense, US) are the more
familiar multispectral cameras used with UAP. For example,
Parrot Sequoia was used to evaluate the accuracy and spatial
consistency of hemispherical-conical reflectance factors (HCRF)
(Fawcett et al., 2020). Notably, cameras are fixed (at a 3-
degree angle) to offset the average forward tilt in flight. The
recent declining cost of thermal cameras has made airborne
thermography more widely used. In addition, ICI camera
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was proven to be better than either the FLIR or thermomap
camera for evaluating plants’ physiological and biochemical
characteristics (Sagan et al., 2019a). However, atmospheric
and emissivity calibration are remained challenges to thermal
imaging. Likewise, hyperspectral sensors on the multi-rotor UAP
were used to predict the yield of winter barley (Oehlschläger
et al., 2018). Interestingly, for that, they used a mirror to
guide the ground images into horizontally-positioned sensors.
Compared with mere RGB data, collecting additional spectral
data enables more robust predictions. In such a setting, RGB and
multispectral sensors are integrated into the UAP, as was done
to evaluate the yield of rice (Wan et al., 2020), plant height of
sorghum (Kakeru et al., 2017), ground cover of cotton (Duan
et al., 2017), and senescence rate of wheat (Muhammad et al.,
2018). To obtain multi-source phenotypic data, three sensors are
also employed on the multi-rotor UAP. For instance, an RGB
camera, a multispectral camera, and an thermal IR imager were
used together for cotton yield estimation (Feng et al., 2020).
However, due to the limited payload, two independent flights
of a multi-rotor UAP are occasionally required. For example, in
assessing genotypic differences in durumwheat production, RGB
images were obtained on the first flight and multispectral canopy
information later collected on the second pass (Gracia-Romero
et al., 2019).

Compared to the multi-rotor, a fixed-wing UAP has longer
flight time, higher flight altitude, greater payload, and faster
flight speed. But the fixed-wing UAP lacks hovering capability
and has certain requirements for its takeoff and landing (e.g., a
runway). The flight speed may cause blurred images, a problem
resolved by using imaging sensors with high frame rate and
short exposure time (Shi et al., 2016b). Although the fixed-wing
UAP does have a relatively large payload, it is almost always
relied on a single sensor. For instance, an RGB camera mounted
on Tuffing Mapper (Tuffing LLC, Boerne, USA) was used to
evaluate the plant height of sorghum (Han et al., 2018). The
fixed-wing UAP has a semi-autonomous horizontal takeoff and
landing (HTOL), controlled by the Pixhawk controller. Similarly,
an RGB camera, with an internal infrared filter removed for
color infrared (CIR) detection, was used to assess the height
and crown diameter of olive trees (Díaz-Varela et al., 2015).
The eBee UAV (senseFly, http://www.geosense.gr/en/ebee/) is
becoming a commonly used fixed-wing platform. Amultispectral
camera mounted on eBee was used to evaluate the yield of
early wheat genotypes (Hu et al., 2020) and thermal camera
performance (Sagan et al., 2019a), as well as for identifying,
positioning, and mapping weedy patches of Silybum marianum
(Tamouridou et al., 2017). Research on this platform shows that
using its highest resolution fails to provide the highest accuracy
for weed classification. To assess the spatial variation of maize
under low nitrogen stress, Zaman-Allah et al. (2015) developed
a fixed-wing UAP with a multispectral camera and a thermal
camera, controlled by an automatic navigation system. Fixed-
wing UAPs have enough of a payload to carry three sensors. The
Anaconda (ReadyMadeRC, Lewis Center, Ohio), fixed-wing UAP
equipped with two multispectral cameras and a high-resolution

digital camera, was used to collect phenotype data of corn and
sorghum (Shi et al., 2016a), for which it employed the traditional
configuration of a twin boom thruster. Interestingly, an external
GPS unit was added to the digital camera for accurate positional
information. Although the 3DR Pixhawk autopilot system has
been applied for autonomous takeoff and landing, during its
flight the Anaconda must be controlled manually. Ingeniously,
the unmanned helicopter is an alternative type of UAP. For
example, the Pheno-Copter (gas-powered) with a visible camera,
a NIR camera, and a thermal IR camera was applied to measure
sorghum ground cover, sugarcane canopy temperature, and crop
lodging (Chapman et al., 2014). However, Pheno-Copter’s flight
needs to be controlled from a ground station, and this often
requires specialized training.

If accurate geo-registration accompanies the image
acquisition process of UAP, precise micro-plot extractions
should be greatly improved (Hearst, 2014). To achieve this
goal, he sensor configuration pattern must also undergo
improvement. The data collected by UAP requires a GNSS
and an inertial navigation system (INS) for spatial matching
and georeferencing. To facilitate the calculation of the camera’s
actual geographic location corresponding to a given image
acquisition, a more than 60% overlap of adjacent images is
generally needed (Jin et al., 2017). In this context, the spatial
offset (lever arm) and angle relationship (boresight angles)
between the GNSS/INS unit and sensors are of great significance.
Furthermore, compared with the lever arm, the boresight angle
matters more. In view of this, Habib et al. (2018) recently
employed a UAP, with push-broom hyperspectral sensors, to
establish three boresight angle-calibration methods (around
GCPs, tie points, and approximate means). While spatial
positioning information may be obtained from an airborne
GNSS/INS unit, its resolution is not high enough. Therefore,
in order to carry out high-precision geographical referencing,
establishing a proper layout of ground control points (GCPs)
and calibration boards is necessary (Yu et al., 2016). Further,
multifunctional GCPs were suggested for calibrating geometric
and reflectance, and their usage significantly improved the
phenotyping accuracy and also reduced manpower (Thomasson
et al., 2019). Likewise, Han and Thomasson (2019) developed
an automatic mobile GCP equipped with two RTK-GPS units, a
navigation computer, and an integrated driving controller. It can
reliably recognize and predict the behavior and activities of the
UAP during the flight instead of traditional fixed GCPs, which
explores the potential of improving the accuracy and efficiency
of data collection.

Since the relevant airspace regulations remain strict, the
huge potential of UAP cannot yet be fully exploited. Despite
being susceptible to weather, payload, endurance, and aviation
regulatory constraints, UAPs characterized by large-scale
phenotyping, efficiency, flexible flight plans, and relatively low
cost have gradually shifted the trend in phenotypic missions from
the ground into the air. In recent years, with policy adjustment,
hardware optimization, commercial UAVs’ price reduction,
advances in battery technology, and operation simplicity, UAP
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has come to fully display its outstanding abilities in plant
phenotyping and plant science. Developing strategies for crop
phenotype by remote sensing (Yang et al., 2017), improving
performance such as endurance, payload, and stability, reducing
the cost of sensors, and promoting data processing capabilities
are the future trends of UAP.

Manned Aerial Platform (MAP)
The MAP is converted from a manned helicopter or fixed-wing
aircraft, by mounting to it the phenotype acquisition kit, placed
in a cargo pod or directly installed on the step (via a bracket),
with a passenger(s) evaluating the images and giving feedback
on their quality to the pilot, in real time, via a video monitor
in the cockpit. The phenotypic equipment used for this entail
sensors, GPS unit, gyroscopes and/or inertial measurement units.
Although the MAP is capable of carrying multiple sensors for
complicated phenotypic tasks, this has not been fully exploited,
likely because it would depend on much manual participation.
For example, just one radiometric calibration thermal camera in
the cargo pod of a helicopter was employed for collecting canopy
temperature (Deery et al., 2016)—and a passenger must be
present to perform the image assessment and provide feedback.
For this, an RGB camera can be remotely controlled and
triggered by an operator, to watch the “real situation” through
a video monitor in the cockpit (Yang and Hoffmann, 2015). For
estimating the aboveground biomass (AGB) and underground
biomass (BGB) of maize, LiDAR was also installed on a MAP, to
collect point-cloud data at the nominal height of 1,500m (Li et al.,
2015). High imaging heights and airspeeds certainly make the
acquisition of phenotypic data at a high resolution and accuracy
more challenging.

Similarly, MAP can also make effective use of pre-existing
agricultural machinery, and can overcome challenging weather
conditions to a certain extent because of flight stability.
Nevertheless, conducting phenotypic experiments with MAP
demands a specific amount of manpower and inevitably
involves high costs. For example, MAP requires a trained
pilot with relevant qualifications to operate the helicopter
or plane, and a passenger on board doing the monitoring,
assessing, communicating, and manual imaging. Moreover,
considering the cost and technical issues, the advantages
of MAP have not been fully exploited (i.e., flight altitude,
flight speed, carrying capacity). Perhaps that’s why MAP’s
prominence has dropped sharply in crop phenotyping, precisely
because of UAP’s unparalleled advantages, which enable it to
complete the consistent phenotypic tasks and thus progressively
supplant MAP.

Satellite Platform
Satellites can provide panchromatic imagery, multispectral
imagery, or radio detection and ranging (RADAR) data.
Panchromatic images of a single-band are displayed as gray-scale
images with high resolution but limited spectral information,
whereas multispectral images have a rich spectrum yet with
relatively low resolution. Thus, these obtained panchromatic
and multispectral images are usually merged by panchromatic

sharpening or pan-sharpening, to obtain multispectral raster
data having a high resolution. However, such optical satellite
phenotyping is susceptible to uncooperative weather conditions,
such as cloudy, rain, fog, and haze, and it also suffers from
visible light saturation (Jin et al., 2015). In this case, RADAR
and synthetic aperture radar (SAR) data are able compensate
for this defect extremely well. This is due to the unique
sensitivity of crop structure to microwaves, which effectively
improves the availability of the satellite platform. WorldView
series, RapidEye, GeoEye-1, SPOT series, QuickBird, Ikonos,
Planet Scope, Pleiades series, KOMPSAT series, Satellite for Earth
Observation series, Landsat series, Gaofen series, and SkySat
series are currently the main satellite HT3Ps that can obtain
color and multispectral images (Jin et al., 2020). Those satellite
platforms able to obtain RADAR data are mainly Sentinel-1,
RADARSAT-2, ENVISAT, TerraSAR-X/TanDEM-X, and RISAT-
2 (Zhang et al., 2020).

In recent years, with the rapid development of satellite
HT3Ps, there is increasingly more research on plant phenotyping
done using satellite data. For example, multispectral data of
GeoEye-1 satellite was used to evaluate the nitrogen status and
spatial variability of different species of turfgrass (Caturegli
et al., 2015), leading to an important guiding principle for turf
fertilization management. The RapidEye satellite provides five
bands with a spatial resolution of 5 m: blue, green, red, red-
edge, and near infrared. Its multispectral images were used to
study the variable rate of wheat nitrogen fertilizer effects (Basso
et al., 2016). In evaluating the crop angle of indentation (CAI),
Chauhan et al. (2020) relied on Sentinel-1 and radarsat-2 (multi-
incidence angle) data and went on to evaluate the severity of
crop lodging. An interesting satellite platform, FLuorescence
EXplorer (FLEX), is equipped with a single payload fluorescence
imaging spectrometer (FLORIS) that combines spectral and
spatial resolution to retrieve and interpret the full chlorophyll
fluorescence spectra emitted by terrestrial vegetation (Drusch
et al., 2017). It is scheduled to launch in 2022 and will fly
in the same orbit as Sentinel-3; hence, the availability and
interoperability of auxiliary information.

The ability to process large-scale satellite phenotypic data at
low cost according to international standard protocols is a key
advantage of satellite phenotyping. Some satellites provide free
data to would-be users, but the acquisition of high-precision
commercial satellite data normally has a monetary charge.
Fortunately, the cost of accessing to satellite data is now modest.
Still, both panchromatic and multispectral imaging done by
satellites remains susceptible to interference of atmospheric,
clouds, and fog. In addition, the resolution issue—such as
Pleiades-1a, 0.5m; SPOT 6, 1.5m; Planet Scope 3.0m; Rapid Eye,
5.0m, to name a few—and the data revisit period are also limiting
factors. Fortunately, satellite resolution is making continuous
progress as satellite technology advances. For instance, the
Finnish technology start-up ICEYE has released commercial
spaceborne SAR samples with the highest resolution (0.25m)
currently available worldwide. In the near future, low-orbiting
nanosatellites and microsatellites with high spatiotemporal
resolution may become join the prevailing aeronautical HT3Ps.
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HT3PS’ COMBINATION FOR
COMPARATIVE VALIDATION OR
COMPREHENSIVE ANALYSIS

A typical comprehensive HT3P consists of four components:
sensor, platform, analysis, and visualization. Together, these
should be able to perform high-throughput and non-destructive
acquisition of a substantial amount of data on dynamic
phenotypic traits of cultivated plants and their environmental
characteristics, as well as providing multi-omics analyses,
completing the entire phenotyping process from a holistic
perspective, thereby ultimately facilitating crop improvement
and molecular breeding of plants (as shown in Figure 4).
Since the various types of HT3Ps each have their own unique
merits—Table 4 summaries the advantages and disadvantages of
miscellaneous HT3Ps—with traditional manual measurements
usually needed to take relative real data for comparison and
verification, pursuing combinations of differing HT3Ps offers
a way to break away from traditional phenotyping and obtain
comprehensive high-precision phenotypic data. Several common

and typical combinations of diverse HT3Ps are highlighted in
Table 5.

HT3Ps’ Combination for Comparative
Validation
Some combinations of HT3Ps seek to compare and validate the
phenotypic performance by applying different types of HT3Ps
and thereby bypass traditional manual measurements entirely.
For instance, Andrade-Sanchez et al. (2014) modified a sprayer
to function as a mobile platform, to simultaneously collect
canopy height, reflectance, and temperature in four adjacent rows
in a cotton field; it can carry four sets of sensors, including
sonar sensors, IR radiometers, and multispectral canopy sensors.
Then, to verify the data authenticity of the mobile platform,
a MAP (helicopter) was applied to collect visible-near-infrared
(VNIR) and thermal IR data. In other work, to evaluate the
plant height of wheat, a mobile platform with LiDAR and
a UAP with RGB cameras were jointly used to generate 3D
dense-point clouds (Madec et al., 2017). However, because of
the low resolution of RGB images from UAP and the strong

FIGURE 4 | Typical comprehensive HT3P components: (a) sensor, (b) platform, (c) analysis, (d) visualization; HT3P performs the entire workflow of phenotyping: (1)

cultivation of plants, (2) extraction of phenotypic traits, (3) acquisition of environmental parameters, (4) data processing, (5) multi-omics analysis, and, ultimately, (6)

aiding in crop improvement.
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penetrability of LiDAR of the mobile platform, plant height
measurement based on UAP was underestimated. Similarly,
Khan et al. (2018) combined a mobile platform and a UAP
to collect RGB images, which revealed that canopy height

TABLE 4 | Overview of the comparison of advantages and disadvantages of the

different types of HT3Ps.

HT3P type Advantages Disadvantages

Benchtop-type Strong repeatability;

continuous monitoring;

precision phenotyping;

high resolution

Expensive; for small plants only

Conveyor-type Large sample size; strong

repeatability; high

resolution

Expensive; high operating

costs

Pole/tower-based Low cost; relatively simple

structure; flexible

movement

Small range; increased

distance decreases resolution

Mobile Semi-automatic or fully

automatic; high resolution;

expansive; high flexibility.

Affected by weather, soil

conditions; soil compaction;

mechanical interference;

requires some manpower; long

boom may cause sensor

jittering and blurred images;

safety mechanism needed

Gantry-based Low weather

dependency; continuous

phenotyping all-day

Expensive; fixed limited area;

high maintenance costs

Cable-suspended Low weather dependency Expensive; fixed limited area;

limited endurance

UAP Flexible flight plan;

coverage a wide range of

field plots; relatively low

cost; GPS navigation;

Weather (light, rain, fog, etc.)

dependence; limited payload;

limited endurance; strict

aviation regulation (altitude);

flight training

MAP Flexible payload; rapid

coverage of large areas

Expensive; non-repeatable

flight route; substantial

manpower

Satellite Coverage a wide range of

field plots; relatively low

cost

Low resolution; long return

period; weather restrictions

(except radar)

obtained from the mobile platform is more accurate than UAP,
whereas the plant vigor evaluated from the UAP is more precise.
A multi-rotor UAP, with an RGB camera and a fixed-wing
UAP with a hyperspectral push-broom scanner, was devised by
Habib et al. (2017) to verify the feasibility of using RGB-based
orthophotos to improve the geometric features of hyperspectral
orthophotos. In addition, the combination of a UAP and
four satellites was implemented to compare the phenotypic
capabilities of different resolutions in dry bean (Sankaran et al.,
2019), whose results indicated that using sub-meter resolution
satellites as HT3Ps holds promising application prospects for
field crop phenotyping.

While some combinations of different types HT3Ps
are still based on the time-consuming and laborious
traditional field measurements, these will gradually
disappear with the stabilization and improvement of
the advanced HT3Ps. The combination of various types
of HT3Ps for cross-validation is gradually moving
forward, representing a landmark step in the field of
plant phenotyping.

HT3Ps’ Combination for Comprehensive
Analysis
Some HT3Ps’ performance aspects are combined to realize the
fusion of multi-source data for collaborative and comprehensive
phenotyping. For example, using both a mobile platform and
a tower-based platform for canopy scale and single plant
phenotyping has been proposed by Shafiekhani et al. (2017).
As an autonomous mobile platform, Vinobot, with its stereo
cameras installed on the robotic arm, can autonomously navigate
in the field and collect data on individual plant traits. The tower-
based Vinoculer can inspect a large-area canopy phenotype, and
delegate specific regions to Vinobot for elaborate phenotyping,
which greatly improves the flexibility and purposiveness. A
robotic mobile platform and a UAP collected complementary
multispectral data, which let investigators obtain comprehensive
crop phenotypes (Ingunn et al., 2017). Specifically, that mobile
platform provided detailed traits information of plants and
the UAP obtained calibrated NDVI, and together they further
predicted the heading date and yield. One multi-rotor UAP

TABLE 5 | Overview of typical applications of HT3Ps when used in combination.

Combination

type (a+b)

Sensorsa Sensorsb Plants Traits References

Mobile +

pole/tower-based

Stereo

camera

RGB, infrared Maize,

sorghum

Plant height, leaf area index

(LAI)

Shafiekhani et al., 2017

UAP + mobile RGB LiDAR Wheat Plant height Madec et al., 2017

MAP + mobile Monochromatic,

thermal

Sonar, IR

radiometer,

multispectral

Cotton Canopy height, canopy

temperature

Andrade-Sanchez et al.,

2014

MAP +

pole/tower-based

Thermal IR IR thermometer Wheat Canopy temperature Deery et al., 2019

UAP + UAP RGB Hyperspectral Crop – Habib et al., 2017

UAP + satellite RGB, thermal,

multispectral

Multispectral

(VNIR, SWIR)

Soybean Mean canopy temperature,

water stress resistance, VIs

Sagan et al., 2019b
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with an RGB camera, and another with a multispectral
camera, were combined to monitor tomato crops, so as
to formulate management measures and determine the best
management scheme for specific fields (Marconi et al., 2019).
Likewise, Anderson et al. (2020) employed a rotary-wing
UAP and a fixed-wing UAP to monitor a track of plant
height growth of an recombinant inbred line (RIL) maize
population; hence, they could, for the first time, elucidate
dynamic characteristics of quantitative trait loci (QTL) in
real time under the field conditions. In addition, Deery
et al. (2019) designed a MAP with airborne thermal IR
cameras and a pole-based platform (Arducrop wireless IR
thermometers) and used it to continuously measure crop
CT (canopy temperature). To fill the temporal gap in the
availability of satellite data and improve the usability of UAP,
Sagan et al. (2019b) merged RGB, thermal, and multi-spectral
images from UAP with VNIR and SWIR imagery taken by the
WorldView-3 satellite, applying them to crop monitoring and
early stress detection on a temporal scale, which contributed
to form field-scale coordinated data of UAV and satellite
virtual constellation.

The imaging distance of various HT3Ps will engender a
differing spatial resolution and pixel size. Taking ground coverage
(GC) as an example, the pixel size of an RGB image has a huge
impact on the accuracy of GC’s evaluation (Hu et al., 2019). In
addition, there are significant disparities among different types
of HT3Ps, such as their time resolution, weather dependence,
experimental scale, and financial investment, to name a few. This
means that combinations of HT3Ps ought to steer toward actual
phenotypic requirements and concrete practical issues. Along
with further refinement of plant phenotyping, the future HT3P
portfolio is expected to integrate multi-site distributed platforms,
single-point centralized platforms, and cloud-based platforms,
to deeply mine and dissect multi-source phenotypic data from
dynamic time series at multiple scales, for multiple species, and
under multiple scenarios. Furthermore, to effectively integrate
existing HT3Ps, phenotyping technology, phenotypic methods,
data availability, and resources, to speed up the emergence
of high-quality phenotypic achievements and accelerate crop
breeding, while also reducing duplication of research and
investment, more international and regional organizations, or
initiatives (see Table 6) have come into being.

SIMULATION HT3P

The simulated HT3P aims to model plant growth, phenotypic
expression, and phenotyping at various scales. It does this by
integrating multi-source information in a modeling framework,
such as that of germplasm resources, irrigation, fertilization,
nutritional substance, spatial climate, soil environment, terrain
properties and management records. For example, a digital
plant phenotyping platform (D3P) would use environmental
variables, crop management, and meteorological information
as input, to generate 3D virtual canopy structure. Based on
this, the collection of virtual canopy phenotypic traits can be
performed by RGB, multi-spectral, and LiDAR simulators (Liu

et al., 2019). For whole forests with large cover areas, long-lived
cycles and high heterogeneity, Dungey et al. (2018) provided a
prototype of a landscape-scale HT3P simulator, by consolidating
remote sensing topography, environmental impacts, spatial
abiotic information, management records and genomics into
the modeling framework. It aimed to eliminate some traditional
limitations in tree breeding programs and provide genetic gains
in tree fitness.

By combining genomics, high-throughput phenotyping, and
simulation modeling, we can obtain an adequate but sound
understanding of phenotypic traits and their variation (Varshney
et al., 2018). The application of various complex models to
combine simulations with empirical methods will contribute
markedly to accelerating the process of extracting ideal
phenotypic traits for use in crop improvement.

FUTURE PROSPECTS FOR HT3P

The concept of HT3P is rather grand, such that the development
and innovation of HT3Ps depends on the cross-disciplinary
cooperation of agronomy, robotics, computer, automation,
artificial intelligence, and big data, requiring the participation
of experts—breeders, agronomists, plant scientists, mechanical
engineers—and leadership from interdisciplinary talent of
open innovation teams. Whether HT3P is phenotyping in the
greenhouse or in the field, ground-based proximal phenotyping
or aerial large-scale remote sensing, the future of HT3Ps lies
in improving spatial-temporal resolution, sensor integration,
turnaround time in data analysis, human-machine interaction,
operational stability, throughput, automation, operability,
and accessibility.

It is worth noting that the development, selection, and
utilization of HT3Ps should be orientated by concrete project
requirements, specific phenotypic tasks, and practical application
scenarios, such as the field coverage (Kim, 2020), rather than
assuming that more devices, technologies, and funds with
which the HT3P is equipped, the better; partly because the
collection of a large amount of data does not mean all of
it is useful (Haagsma et al., 2020). Even in some cases, the
experimental effects of applying single and multiple sensors
are identical (Meacham-Hensold et al., 2020), and the data
obtained from multiple devices are redundant. However, the
combinations of various HT3Ps for comparative validation
and comprehensive analysis could provide broad application
prospects for inspection, extraction, and quantification of
complex physiological functional phenotypes. Yet the technical
issues of formulating standards and synchronizing calibrations
for these multiple combinations are daunting tasks. Fortunately,
the involvement of meta-analysis ensures the objectivity of HT3P
development and selection. For example, Young (2019) applied
meta-analysis method to develop an evaluation framework
that can quantitatively and objectively assess the complexity
and utility scores of high-throughput systems. As an effective
analytical method of quantitative, scientific synthesis of research
results (Gurevitch et al., 2018), meta-analysis may prove
especially fruitful in the near future.
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TABLE 6 | Overview of international organizations or regional initiatives contributing to plant phenotyping.

Organization acronym Full name (or description) URL

APPF Australia Plant Phenomics Facility https://www.plantphenomics.org.au/

APPN Austrian Plant Phenotyping Network https://appn.at/

CGIAR Modernize breeding programs targeting the developing

world

http://excellenceinbreeding.org/

CIMMYT International Wheat and Maize Improvement Center https://www.cimmyt.org/

CPPN China Plant Phenotyping Network –

CSISA The Cereal Systems Initiative for South Asia https://csisa.org/

DPPN German Plant Phenotyping Network https://dppn.plant-phenotyping-network.de/

EMPHASIS European Plant Phenotyping Infrastructure https://emphasis.plant-phenotyping.eu/

EPPN2020 European Plant Phenotyping Network (2020) https://eppn2020.plant-phenotyping.eu

ESFRI European Strategy Forum for Research Infrastructure https://www.esfri.eu/

FPPN/PHENOME French Plant Phenomic Network https://www6.dijon.inrae.fr/umragroecologie_eng/Research-

Programs/Investissement-Avenir/PHENOME

LatPPN Latin American Plant Phenomics Network –

LEPSE Laboratory of Plant Ecophysiological Responses to

Environmental Stresses

http://www1.montpellier.inra.fr/ibip/lepse/english/

NAPPN The North American Plant Phenotyping Network http://nappn.plant-phenotyping.org/

NPPN Nordic Plant Phenotyping Network https://nordicphenotyping.org/

NPEC Netherlands Plant Eco-phenotyping Centre https://www.wur.nl/en/product/TheNetherlands-Plant-Eco-

phenotypingCentre-NPEC.htm

G2F The Genomes to Fields Initiative https://www.genomes2fields.org/

GCN Green Crop Network http://www.greencropnetwork.com/

IPPN International Plant Phenotyping Network https://www.plant-phenotyping.org/

JPPC The Jülich Plant Phenotyping Centre http://www.fz-juelich.de/ibg/ibg-2/EN/Research/Phenotyping/

Phenotyping_article.html?nn=548814

MIAPPE Minimum Information About a Plant Phenotyping

Experiment

https://www.miappe.org/

PHEN-ITALY Italian Plant Phenotyping Network http://www.phen-italy.it/index.php

PhenomUK Promotes an integrated, holistic view of the phenotyping

process across the UK

https://www.phenomuk.net/

TERRAREF Terraphenotyping Reference Platform https://www.terraref.org/

Wheat Initiative Endorsed by the G20 Agricultural Ministers, to contribute

to improving world food security

https://www.wheatinitiative.org/our-vision

Specifically, the future conveyor-type HT3P requires
consideration of operational stability and environmental
homogeneity, and allowing phenotypic analysis for multi-
level subtle traits of a wide variety of representative plants
will be a key design factor to the development of the future
benchtop-type HT3P. Scalability, rotatability and multi-site
deployment will be the prospective features of pole/tower-based
HT3Ps, and economically-efficient distributed ones will perform
outstandingly in the calibration of high-dimensional phenotypic
data. Mobile HT3Ps that can be transported to the experimental
site are preferred by phenotypic researchers rather than the
experiment coming to the limited platform (Roitsch et al.,
2019). This means that the development of mobile HT3P needs
to move toward flexibility and portability, and that modular
and customizable design will be welcomed by the phenotyping
community. The reduction of volume and cost is the major
consideration for future gantry-based HT3P designs, and the
new cable-suspended HT3P will have the ability to monitor
continuously and consistently crop growth and development

at low altitudes over long periods of time. As for UAP, the
development of compact lightweight sensor configuration that
is sensitive to plant-specific phenotypic traits will be a breakout
(Xie and Yang, 2020). In addition, advanced battery technology is
in dire need of a stage breakthrough, which can greatly improve
the endurance, payload, and power of the UAV. For satellite
phenotyping, improving image resolution and shortening the
revisit cycle remain the focus of satellite platform development.
Additionally, cost-effective platforms also warrant consideration,
as smart phone, handheld portable instrument, backpack system,
and wearable device are adopted and updated for utilization
in phenotyping.

High-throughput data acquisition, data management, data
interpretation, modeling, integration, and application together
form the core and pillar of plant phenotyping. The main
challenges faced by the new generation of phenotyping are data
handling, images processing, and traits analyzing (Fahlgren et al.,
2015a; Campbell et al., 2018; Hickey et al., 2019). Fortunately,
the introduction of various software, web-based tools, pipelines,
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toolkits, deep learning tools, and online repository solutions
to assist phenotypic researchers in processing phenotypic data
will break through these technical bottlenecks. For example,
a free multi-purpose software—Coverage Tool—can semi-
automatically quantify a wide range of visual plant traits
(Merchuk-Ovnat et al., 2019). Web-based image analysis tools,
such as Field Phenomics (Guzman et al., 2015), are considered
by us to be a hotspot for phenotypic solutions. Kar et al.
(2020) developed an analysis pipeline with outlier detection,
missing value imputation, and spatial adjustment for solving the
problem of inaccurate and missing phenotypic data. Toolkits
tend to be relatively specific, such as Plant 3D (P3D), which
specializes in analyzing 3D point cloud data of plant structures
(Ziamtsov and Navlakha, 2020). With the advancement of HT3P,
their improving high-throughput and efficiency will produce
increasingly big data. For huge datasets, deep learning tools are
needed; however, only when large datasets that capture shared
problems become available can the greatest benefit be gained
from the application of deep learning tools. Online databases,
such as http://www.plant-image-analysis.org, can effectively
bridge the gap between developers and users, but still lack
comprehensive management platforms that cover software, web-
based tools, pipelines, toolkits, deep learning tools, and other
phenotypic solutions, which will be a milestone breakthrough as
well as a considerable challenge.

With the emergence of various HT3Ps, experimental
designs, phenotyping methods, standardized management,
both phenotype acquisition and its data analysis are becoming
extremely prominent. Phenotypic data that costs substantial
capital, labor, time, and energy, however, may 1 day be
abandoned forever (Mir et al., 2019). Presently, a standard
phenotyping agreement or data analysis methodology for
plant phenotyping has yet to be established (Mahlein et al.,
2019). The standardization of data and metadata from the
HT3Ps contributes to an improved data utilization rate and it
ensures the interoperability of data providers and experimental
replication. Otherwise, data that is poor annotated and in a
disorderly format may generate noise or disordered waves.
Fortunately, relevant standard constraints are being proposed.
For example, Krajewski et al. (2015) published a technical
paper offering effective recommendations (at http://cropnet.pl/
phenotypes) and initiatives (such as http://wheatis.org), making
a further step toward establishing internationally practical
solutions. Moreover, originating the relevant standardization of
phenotyping can strengthen the comprehension and explanation
of biological phenomena, contributing to the transformation
of biological knowledge and establishment of a real coherent
semantic network.

CONCLUSIONS

HT3P is a novel and powerful tool for obtaining plant-
deep phenotypes (morphological structure, physiological
function, component content) and dense phenotypes in
complex field setting, which cannot be accomplished by
traditional phenotyping approaches. This paper reviewed the
application of HT3Ps in the growth chamber or greenhouse

with strictly controlled environmental conditions and field
phenotyping with notoriously heterogeneous conditions
and uncontrollable environmental factors. Then, according
to platform configuration and operation mode, further
classifications were performed to provide comprehensive
overview and description and assessment of the various types
of HT3Ps currently available. The unique characteristics,
applications, and strengths and weaknesses of various HT3Ps
were emphasized. Going further, the simulation platform,
various combinations of HT3Ps for comparative validation or
comprehensive analysis, current phenotypic challenges, and the
future development trends of HT3Ps were discussed.

With the assistance of powerful HT3Ps, phenomics has
arguably entered a new stage (Tardieu et al., 2017). At this stage,
the new and pressing challenge of next generation phenotyping
will be to reasonably combine phenotypic experiments, various
HT3Ps, models, data processing and handling scheme, meta-
analysis, and visualization of phenotypic information for
optimizing the allocation of research resources, efficiently
accomplishing complex phenotypic tasks, and transforming
massive multi-source phenotypic data into statistical and
biological knowledge. Robust phenotyping is central to plant
breeding (Hickey et al., 2019), and the development of satisfying
crop varieties with high-yielding and strong stress resistance is
the ultimate goal of crop breeding. High-throughput sequencing
activity underpins the fast development of genomics (Shah et al.,
2018). Likewise, HT3P as a novel and powerful phenotyping tool
will explore a new period of rapid development in phenomics.
Further, combining morphological, physiological, and elemental
phenotyping with multi-omics methods from the perspective of
holistic omics will usher in a new era of botany phenotyping.
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