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Implant-supported dentures are widely used in patients with defect or loss of dentition
because these have higher chewing efficiency and do not damage the adjacent teeth
compared with fixed or removable denture. An implant-supported denture carries the
risk of failure in some systemic diseases, including osteoporosis, because of a non-
ideal local microenvironment. Clinically common physical and chemical modifications
are used to change the roughness of the implant surface to promote osseointegration,
but they have limitations in promoting osteoinduction and inhibiting bone resorption.
Recently, many researchers have focused on the study of bioactive modification of
implants and have achieved promising results. Herein we have summarized the progress
in bioactive modification strategy to promote osseointegration by regulating the local
osteoporotic microenvironment.
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INTRODUCTION

With innovations in implant design and surgery technology, the applicable conditions of implant
surgery have become more extensive, and the 10-year survival rate of an implant-supported denture
has exceeded 95% (Buser et al., 2017). There is a risk of failure in a number of systemic diseases (Liu
et al., 2020), including osteoporosis, because the severe decrease in bone mass and alteration of
trabecular bone microstructure affect the initial stability and osseointegration of the implants.

Currently, the common sand blasting and acid etching strategy is used to increase the surface
roughness of implants, which enhances adhesion, proliferation, and differentiation of mesenchymal
stem cells (Zhang et al., 2020; Zhao et al., 2020). In addition to the implant design, it is necessary
to promote osteoinduction and inhibit bone resorption locally in osteoporotic patients (Lin et al.,
2013). Systemic administration orally or intravenously provides low bioavailability, which makes
it difficult to maintain an effective concentration around the implants and might cause severe side
effects, such as necrosis of the jaw bone (Eguia et al., 2020). Local administration ensures adequate
drug concentration in the target tissue and reduces toxicity in the non-target areas. Hence, it is
necessary to biologically modify the implants for loading bioactive agents, such as anti-osteoporosis
drugs, bioactive molecules, or bioactive inorganic elements, onto the implant surface. In addition,
to avoid burst release in a short time, it is critical to take optimal approaches to optimize the locally
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controlled release of bioactive agents and maintain an
effective concentration. Herein we briefly summarize the
main progress in this field.

LOADING BIOACTIVE AGENTS TO
PROMOTE OSSEOINTEGRATION

Loading Anti-osteoporosis Drugs
Anti-osteoporosis drugs are categorized according to their
functions and effects and include anti-catabolic drugs, anabolic
drugs, and dual-acting drugs (Figure 1). The commonly used
anti-catabolic agents for loading on the implant surfaces for
local treatment include bisphosphonates, receptor activator of
nuclear factor kB ligand (RANKL) antibodies, and selective
estrogen receptor modulators (SERMs), which inhibit the
activity and recruitment of osteoclasts or promote the apoptosis
of osteoclasts. Bisphosphonates reduce osteoclast activity
by inhibiting farnesyl pyrophosphate synthase and protein
prenylation in the mevalonate pathway, and SERMs have an
agonist effect on the estrogen receptor in osteoclasts, thereby
inducing apoptosis (Apostu et al., 2017). Beck et al. (2019)
immobilized the RANKL antibody denosumab on the implant
surface to inhibit osteoclast differentiation, which could
competitively block the interaction between receptor activator of
nuclear factor kB and RANKL.

Being an anabolic drug, the parathyroid hormone (PTH)
activates the cyclic adenosine monophosphate/protein kinase A
(cAMP/PKA) signaling pathway by acting on the PTH receptors
in osteoblasts to promote osteointegration (Tang et al., 2020).
PTH 1–34 or teriparatide, a fragment of endogenous PTH,
was the main regulator of calcium and phosphate metabolism
in bone and the first anabolic drug proven to increase the
osseointegration of implants. Other anabolic drugs targeting the
Wnt/β-catenin signaling pathway have also been studied, such as
romosozumab and DKK1 antagonists (Gennari et al., 2020).

Strontium ranelate and simvastatin play dual effects of
promoting bone formation and inhibiting bone absorption
through various signaling pathways (Apostu et al., 2017). Loading
simvastatin and strontium ranelate on the implant surface
effectively improves the local bone microenvironment, which is
a promising method to enhance the osseointegration of implants
in osteoporotic patients (Lai et al., 2018).

Loading Bioactive Molecules
The term “bioactive agents” is not limited only to therapeutic
agents used in the clinic. The scope of this term has been
broadened to bioactive molecules, including growth factors,
proteins, and genes (Meng et al., 2016; Souza et al., 2019).
Although the clinical application of these bioactive molecules
is limited because of high production costs and concerns
about biosafety, researchers have conducted a lot of research
in this area. Loading various growth factors and proteins on
the implant surfaces can promote osteogenic differentiation
and the mineralization of bone marrow stem cells. Platelet-
derived growth factor, insulin-like growth factor, fibroblast
growth factor, vascular endothelial growth factor (VEGF), and

bone morphogenetic protein (BMP) have been widely used in
this field (Chen and Zou, 2019; Jurczak et al., 2020). VEGF can
promote angiogenesis and regulate bone regeneration; Zavan
et al. (2017) loaded VEGF on the surface of the implant in vitro,
which effectively enhanced the osteogenic differentiation of stem
cells. The release of BMP from the implant surface facilitated
the proliferation, differentiation, and mineralization of bone cells
in vitro and enhanced bone healing in vivo (Teng et al., 2019).

In addition, the extracellular matrix, such as type I collagen,
showed good biological activity and osteoinductivity, which
could improve adhesion and differentiation and promote bone-
to-implant integration (Wang et al., 2019). Similarly, genes
can be incorporated into the implant surface to transfect local
osteoblasts or osteoclasts around the implants to promote
osteoblastogenesis and inhibit osteoclastogenesis. Takanche et al.
(2018) performed an experiment in which c-myb, a transcription
factor, was delivered from chitosan-gold nanoparticle-coated
titanium surface to the target tissue, where it promoted bone
formation under osteoporotic conditions.

Modification by Bioactive Inorganic
Elements
Some essential elements, including calcium (Ca), strontium (Sr),
magnesium (Mg), zinc (Zn), and silicon (Si), can be also loaded
on implants to stimulate osteogenesis (Lin et al., 2013; Liu
et al., 2020, 2021). Compared with anti-osteoporosis drugs and
bioactive molecules, more efficient strategies can be applied to
construct inorganic element coating on the implant surface,
which costs less (Asri et al., 2017). Ca is one of the essential
micronutrients in bone, and bone structure abnormalities in
osteoporotic patients occur as a result of the loss of Ca.
At present, Ca-phosphate biomimetic coating on the implant
surface is widely used to promote adhesion and differentiation
of osteoblasts because of the chemical similarity between the
synthetic materials and the bone mineral components (Xia et al.,
2018). Sr is often used in the treatment of osteoporosis because
of its dual role in bone regulation. An Sr-incorporated implant
surface obtained by hydrothermal reaction could promote early
osseointegration in osteoporotic rabbits (Lin et al., 2019).
Moreover, Mg-immersed titanium-dioxide (TiO2) coatings on
the implant surface had both osteogenic and antibacterial effects
(Zhao et al., 2019). Zn-modified coating on the implant surface
facilitated the osteogenic differentiation of bone marrow-derived
pericytes through the transforming growth factor-beta/Smad
signaling pathway (Yu et al., 2017).

CONTROLLING THE RELEASE
BEHAVIORS OF BIOACTIVE AGENTS

There are many ways to build bioactive organic or inorganic
coatings on the implant surface, including physical methods
(such as plasma spraying, ion implantation, and physical
vapor deposition), chemical methods (such as acid etching and
alkali-heat treatment), and electrochemical strategies (such as
anodization, micro-arc oxidation, electropolymerization, and
electrophoretic deposition) (Asri et al., 2017; Xue et al., 2020).
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Covalent grafting and layer-by-layer self-assembly technology
have been used to load bioactive proteins and growth factors. The
release of bioactive agents from the implant surface is different
because of the different construction methods of the coatings. In
practical applications, however, we expect that the drugs loaded
on the implants should maintain an effective concentration
locally for a long time because burst release not only fails to
maintain long-term efficacy but also might cause side effects due
to toxicity in local tissues. The controlled release behaviors of the
loaded bioactive agents can be achieved mainly by the following
means: (1) constructing micro-/nano-structures on the implant
surface, (2) introducing a stable immobilization strategy, and (3)
encapsulating the bioactive agents.

Constructing Micro-/Nano-structures on
the Implant Surface
Nano- and micro-topography construction on the implant
surface not only can provide better biological responses but also
may benefit drug adhesion and controlled release (Wang et al.,
2018, 2020; Long et al., 2019). The modification of titanium
dioxide nanotubes (TNTs) on implant surfaces can significantly
increase the surface-to-volume ratio, and this porous surface
provides more substantial space for drug loading with better
biocompatibility (Figure 2A). More importantly, bioactive agents
incorporated on the surface and inside TNTs achieve sustained
steady release (Ion et al., 2020). A study conducted by Liu
et al. (2018) showed that zoledronate adsorbed on the surface
of TNTs can be released steadily for a long time to enhance
implant osseointegration. Moreover, the drug release behaviors
can be regulated by the diameter and length of TNTs by varying
the process conditions of anodic oxidation. Hamlekhan et al.
(2015) found that the diameter, length, aspect ratio, and volume

were related to the prolonged release process. Moreover, the
aspect ratio had the highest correlation with the release rate,
and the release process of TNTs with high aspect ratio was
significantly slow.

Introducing a Stable Immobilization
Strategy
Bioactive agents can be attached to the implant surface by
means of physical adsorption, such as dipping, spray coating,
or drop casting, to promote local osseointegration (Alenezi
et al., 2019). Physical adsorption characterized by Van der
Waals forces or hydrogen bonds, however, leads to burst release
at an early stage. Hence, bioactive agents can be covalently
immobilized on the surface of titanium indirectly through a
separate linker molecule that mediates the binding between
titanium substrates and bioactive agents (Figure 2B), which can
greatly improve the stability of coatings compared with physical
adsorption (Jin et al., 2020). Linker molecules are generally
synthetic linkers, such as silane and polyethylene glycol, or
biologically derived molecules, such as heparin, dopamine, and
chitosan. Linker molecules attach to hydroxyl-functionalized
titanium substrates through condensation reactions, and then the
bioactive agents are covalently immobilized on the functional
group of the linker molecules (Stewart et al., 2019). Covalent
bonding is more complex and time consuming than the other
techniques, however, and the bioactive agents are not easily
released because of the tight covalent bonding (Ma et al., 2020).
The layer-by-layer self-assembly technique is being increasingly
used for drug loading and controlled release, which can formulate
polyelectrolyte multilayers by electrostatic attractions between
components with different electric charges (Figure 2C). The self-
assembly process is simple and mild, which does not affect the

FIGURE 1 | Schematic diagram of anti-osteoporosis drugs acting on osteoblasts and osteoclasts.
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FIGURE 2 | Schematic diagram of titanium dioxide nanotubes (A), covalent immobilization (B), and layer-by-layer self-assembly technique (C).

FIGURE 3 | Sustained raloxifene release from TiO2 nanotubes to enhance osteointegration. (A) Schematic illustration of the fabrication of multilayered coating.
(B) SEM images of each group. (C) Cumulative release curve of each sample. (D) Quantitative analysis of new bone volume and trabecular thickness [reprinted with
permission from Mu et al. (2018); copyright (2018) Elsevier]. “**” Means Statistically significant differences are denoted by symbols, **p < 0.01.
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activity of the components, and sustained-release administration
can be achieved by adjusting the physical and chemical properties
of the materials (Shi et al., 2017).

Encapsulating the Bioactive Agents
Bioactive agents can be encapsulated by biocompatible materials
with appropriate biodegradability, including natural organic
polymers [such as chitosan (CS) and gelatin], synthetic organic
polymers [such as hyaluronic acid (HA) and polycaprolactone
(PCL)], and inorganic materials (such as calcium phosphate).
With continuous degradation of the encapsulation materials,
the bioactive agents are gradually released into the target
area to achieve sustained release (Figure 3). To locally release
microRNA-21, Wang et al. (2015) used CS and HA to encapsulate
miRNA-21 to fabricate the CS/HA/miRNA-21 nanoparticles,
which were then crosslinked with gelatin and loaded onto
the implant surface, ultimately promoting the expression of
the osteogenic gene. PCL and poly(lactic-co-glycolic) acid can
also be used as encapsulation materials of bioactive agents to
achieve local controlled release (Littuma et al., 2020). Biomimetic
coprecipitation is a method of encapsulating bioactive agents
with inorganic materials. With absorption of the hard coating, the
bioactive agents are released gradually.

CONCLUSION AND PERSPECTIVE

Herein we have summarized the bioactive agents available
to improve osseointegration in osteoporotic patients and
the methods of controlled release of bioactive agents. High
bioavailability and low toxicity in tissues outside the target
make biomodification of implants suitable for achieving local
osseointegration. Concerns about biosafety, however, limit the
popularization of bioactive modification of implants, which is
the direction of follow-up research. Implant osseointegration also

must be accompanied by angiogenesis and ingrowth, and it is
an inflammatory regulatory process, which is initially mediated
by M1 phenotype macrophages and subsequently by M2. In
addition, bacterial colonization and formation of plaque biofilms
on the surface of implants may cause peri-implantitis, ultimately
leading to failure of the implant. Therefore, angiogenesis
and ingrowth, regulation of the inflammatory response, and
inhibition of biofilm formation also should be considered
in future studies.
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