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We develop here a novel hypothesis that may generate a general research framework
of how autonomous robots may act as a future contingency to counteract the ongoing
ecological mass extinction process. We showcase several research projects that have
undertaken first steps to generate the required prerequisites for such a technology-
based conservation biology approach. Our main idea is to stabilise and support broken
ecosystems by introducing artificial members, robots, that are able to blend into the
ecosystem’s regulatory feedback loops and can modulate natural organisms’ local
densities through participation in those feedback loops. These robots are able to inject
information that can be gathered using technology and to help the system in processing
available information with technology. In order to understand the key principles of
how these robots are capable of modulating the behaviour of large populations of
living organisms based on interacting with just a few individuals, we develop novel
mathematical models that focus on important behavioural feedback loops. These
loops produce relevant group-level effects, allowing for robotic modulation of collective
decision making in social organisms. A general understanding of such systems through
mathematical models is necessary for designing future organism-interacting robots in
an informed and structured way, which maximises the desired output from a minimum
of intervention. Such models also help to unveil the commonalities and specificities
of the individual implementations and allow predicting the outcomes of microscopic
behavioural mechanisms on the ultimate macroscopic-level effects. We found that
very similar models of interaction can be successfully used in multiple very different
organism groups and behaviour types (honeybee aggregation, fish shoaling, and plant
growth). Here we also report experimental data from biohybrid systems of robots
and living organisms. Our mathematical models serve as building blocks for a deep
understanding of these biohybrid systems. Only if the effects of autonomous robots
onto the environment can be sufficiently well predicted can such robotic systems leave
the safe space of the lab and can be applied in the wild to be able to unfold their
ecosystem-stabilising potential.

Keywords: robot–animal interaction, robot–organism interaction, biohybrid systems, biomimicry, organismic
augmentation, ecosystem collapse
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PROBLEM STATEMENT AND
MOTIVATION

Extinction has always been a ubiquitous and important part of
biological evolution shaping the “tree of life” (Haeckel, 1892)
in an ever-ongoing process: species may go extinct, while new
ones emerge by speciation at an equal or higher rate in parallel.
This continuous diversification process has occasionally been
interrupted by global mass extinction events in the past, known
as the “big five” (Twitchett, 2006). During these game-changing
events, significantly more species went extinct than new species
emerged; thus, these mass extinctions significantly pruned the
tree of life, thereby creating a sort of ecological “tabula rasa” for
novel, and often more innovative, life forms to emerge. The last of
these “big five” events is known to many people as the extinction
of the dinosaurs, when some dinosaurs were pushed into evolving
into the ancestors of the modern birds, while all classical forms of
dinosaurs vanished.

In recent centuries, and even more in recent decades, we
have been significantly interfering with this dynamic process of
organismic diversification. Human technology induces changes
in the environment, leading to rapid and massive ecosystem
perturbations and alterations. These effects happen at a speed
at which nature sometimes has problems catching up to
in a compensatory way, as adaptation processes can take
comparatively long timespans. Besides classical conservation
efforts and tackling the problem by global policy changes, we
should also look into the question of how modern technology
can support the protection and repair of damaged ecosystems, to
buy nature the time it needs to adapt naturally and to restabilise.
One possible contingency strategy to support natural adaptation
processes can be the introduction of robotic agents into natural
ecosystems. Such robotic agents could be autonomous bio-
mimetic and bio-inspired robots, which interact with natural
organisms and blend into these ecosystems to be able to monitor
and stabilise them from within, maybe even carrying out some
interventions in case they seem necessary. In this article, we will
define the problem, then expand on our hypothesis and describe
several approaches towards implementing such robotic systems,
as well as mathematical models and first empirical validations of
our hypothesis. The objective of our article is to present a general
research framework of how autonomous robots interacting with
ecosystems may counteract these major issues that ecosystems
are suffering, and in section “Potential Ecological Effects of
Robot–Organism Interactions,” we pose a specific hypothesis
regarding the manner in which robotic actors could achieve such
a function (in short, through interactions with organisms that
result in the stabilisation of ecosystem dynamics). We provide
support towards this hypothesis with specific methodological
elements through the development of predictive models and
empirical illustrations.

Anthropogenic and massive ecosystem perturbations are not
novel developments that are restricted to the industrial age, as
human activities have changed ecosystems significantly much
earlier. Early examples are the massive deforestation of Europe
over the last pre-industrial centuries (Kaplan et al., 2009) or
the transformation of American wildlife after the arrival of

European settlers (Covington et al., 1994). Other events that
are noteworthy due to their rather sudden emergence and high
impact on a global scale are large cities covered in smog (Shi
et al., 2016), deforestation due to acid rain (McCormick, 2013)
and the hole in the ozone layer, all of which have negative
effects on human health, as well as on ecosystems and global
climate. While all these problems have been caused by human
activities and were also a side effect of human advances in
technology, these problems are also partially solved by society
via the means of science and technology. Scientific research
helped us to define these problems, while technology and its
application provided us with solutions: for example, the hole
in the Antarctic ozone layer has been in the midst of a
regeneration process since 2000, after switching from harmful
chemicals to ozone-friendly surrogates has been enforced by the
Montreal Protocol (Solomon et al., 2016), predicted to fully and
permanently close by 2050 (Schrope, 2000). The significance of
these actions and an informative view on the “road not taken” is
given by Prather et al. (1996).

Currently, the world is facing a massive decline in animal
populations, which drives even many “keystone species” towards
the threat of extinction (Barnosky et al., 2011). The numbers are
so severe that scientists are already calling this trend the sixth
mass extinction event (Ceballos et al., 2015, 2017; McCallum,
2015). It started with reports of honeybee collapses (Ellis et al.,
2010) and continued with reports of massive insect biomass losses
(Hallmann et al., 2017) and was recently extended with reports
about massive vertebrate losses, e.g., in birds (Ceballos et al., 2017,
2020). Other vertebrates, e.g., fish, are also in decline through
water pollution, habitat change, and over-harvesting (Hutchings
and Reynolds, 2004; McCauley et al., 2015). In contrast to the
natural causes that triggered the “big five” mentioned in the
beginning, the current sixth massive decline of species is most
likely driven by anthropogenic influences. This massive decline in
diversity is expected to have dramatic consequences on humanity,
as ecosystems are known to become more fragile with decreasing
diversity (Nilsson and Grelsson, 1995). Thus, this decline is
expected to be a self-sustaining or even a self-enhancing process.

Figure 1 shows the major feedback loop that drives ecosystem
decay: with each disappearance of a species from the system,
all stabilising feedback loops in which this species were
previously involved are lost. Even significant population declines
weaken these feedback loops, promoting the chances of later
extinction events. A decreased stability of ecosystems may
then, in consequence, result in larger fluctuations in response
to species loss, occasionally pushing more species towards
extinction, forming a vicious cycle. In a fragile ecosystem,
intrinsic oscillations or external disturbances are more likely to
drive a species towards extinction or diminish its population
size, which in turn will reduce the biomass in the ecosystem
and decrease the intraspecific diversity. With lower population
size, this leads to fewer and also to less diverse intraspecific
interactions (i.e., interactions between individuals of the same
species) and thus reduces the effect of existing feedback loops,
which are mainly stabilising feedback loops in ecosystems that
were previously resilient and robust. As a consequence, the
resilience and stability of the system will be reduced, which
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FIGURE 1 | Causal loop diagram of the self-enhancing feedback loop of structural ecosystem decay, which is the likely cause of the current massive decline of
biodiversity. We indicate—with background colours—the system components that can be influenced positively by autonomous technological artefacts (robots),
ultimately facilitating a technology-based stabilisation of fragile ecosystems. Blue boxes: autonomous robotic probes can measure, observe, and monitor these
significant properties and dynamics after being integrated into organism groups. Orange boxes: autonomous robotic agents can modulate these significant
processes after being integrated into the relevant organism groups. Green boxes: natural variables in ecosystems that are targetted by our proposed contingency
strategy. At the causal link arrows, “+” indicates positively correlated causations between system variables and “–” indicates negative correlated causations.

in turn amplifies future amplitudes of population disturbances
and fluctuations.

POTENTIAL ECOLOGICAL EFFECTS OF
ROBOT–ORGANISM INTERACTIONS

Technology, and in particular robotics, can offer open-loop
solutions to better monitor, and also act on, threatened
ecosystems (Grémillet et al., 2012). The approach we are
proposing to counteract the observed ecosystem decay
proactively is to use autonomous robots to be integrated into
existing organism groups in a threatened ecosystem. This has to
be done in a way that robots can interact as naturally as possible
with their organismic counterparts. Every ecosystem contains

species with a very high number of interspecific interactions
(i.e., interactions with other species); these species are called
“keystone species” (Power et al., 1996). Logically, these species
are the number one candidates to interact with, as modulating
their behaviour will have the maximum effect on the ecosystem
they reside in. Figure 1 shows how autonomous robots can play
a significant role in the vicious cycle of ecosystem decay. The
robots can, on the one hand, proactively monitor the ecosystem
by collecting data from within organism communities in which
they are embedded and can alert human operators (blue boxes in
Figure 1). Robots for proactive intervention, on the other hand,
are designed in a way such that they can additionally interact
with a specific organism group (orange boxes in Figure 1). They
have to be able to perceive stimuli emitted by their organismic
counterparts, to compute a sufficiently complex behavioural

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 May 2021 | Volume 9 | Article 612605

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-09-612605 May 17, 2021 Time: 16:43 # 4

Schmickl et al. Social Robots Mitigating Ecosystem Decay

response and then to execute this response with appropriate
actuators. These stimuli, sent by robotic actuators, are perceived
by the living organisms and those will, in turn, respond to these
stimuli in a desired way, e.g., by showing a desired behaviour
or by modulating an already-performed behaviour. Such agents
can often be bio-mimetic and mirror the living organisms
they interact with; thus, they try to appear as a conspecific
interaction partner by the focal organism. However, they can also
in principle mimic any other organism that has an ecological
relationship to the relevant organism, such as predators, prey,
inter-specific competitors, and parasites or symbionts. We would
like to point out that some approaches that would possibly work
might cause ethical questions, for example, if a robot mimics a
predator in order to have a repellent effect. Consequently, we
exclude such approaches from our further considerations, as
we restrict ourselves to technologies that do not increase the
stress levels of organisms above the level of their regular, natural
life. We also refrain from inducing stress from pain, threats or
other severe negative emotional states of organisms with high
cognitive capabilities.

So what is the most effective way to integrate robots into
natural ecosystems? Population density is a key variable in
ecological relationships, as interaction patterns depend in a
super-linear way on the density of the interacting organism
groups, following the “mass action law.” Uneven dispersal further
affects the dynamics that arise from heterogeneous density
distributions across the habitat. Thus, first monitoring and
then potentially inducing a modulation of local densities can
regulate key aspects of ecosystem dynamics. For example, the
“competitive exclusion principle” (also known as the “Gause
law”) describes processes that are strongly affected by interaction
densities and the altered resource-sharing levels that arise when
animals are unevenly distributed (Hardin, 1960). Ultimately,
these processes are at the heart of explaining biological diversity
(or lack thereof) and the ongoing niche construction and
speciation that it is associated with.

Our key hypothesis: Technological artefacts, e.g.,
autonomous robots, can integrate into organismic
populations and animal societies, in order to modulate
their key processes, such as locomotion in animals and growth
in plants. These modulations can affect the organisms in a
way that alters their local population densities, which then can
have significant ecological and social effects. We hypothesise
that it is possible to design these technological agents in a way
that they do not control the organisms by force, but rather
become a part of the closed-loop control that governs the
collective organismic system, bringing information into the
regulation of the system that can be collected by technological
means and can be useful to the organisms. This way, they
can use very subtle stimuli in the microscopic and proximate
interaction patterns in order to achieve a significant ultimate
effect on the macroscopic ecosystem level.

To provide a detailed illustration of how our hypothesised
application of robotic actors can modulate key processes in

organismic populations, we develop models for three specific bio-
hybrid systems and show how they predict empirically obtained
results. Importantly, the models that we develop share a common
form, revolving around individual and socially mediated
dynamics in each of the systems. As is extremely common in
behavioural sciences, the assays considered here are formulated
as a binary choice for the organisms. This provides clearly
measurable outcomes in the behaviours and additionally enables
the development of models that feature common elements.
Before the detailed presentation of each model in sections
“Honeybee and Robot Experimentation,” “Fish and Robot
Experimentation,” and “Plant and Robot Experimentation,” we
here provide an overview of their commonalities and differences.
In each case, the organisms can choose to adopt one or other
state, and the dynamics involve switching their choice. A switch
can be mediated by a collective social influence, or by individual
preference. The collective result of these two “forces” can lead
to different dynamics such as even distributions or biassed
distributions (including strong symmetry breaking). Even though
the organisms that our robotic devices interact with are dissimilar
(e.g., in motion speed, scale, and typical group size), a similar
modelling approach is able to capture the dynamics in all three
systems. Figure 2 summarises the form of the three models and
also provides the parameters used.

TOWARDS A PROACTIVE
CONTINGENCY: ORGANISMIC
AUGMENTATION

We have devised the concept of “organismic augmentation”
as a leading paradigm in our research. This concept describes
guiding principles for how to create autonomous robots that
can interact with keystone species of high ecological importance.
These robots are designed to blend into these organisms’
communities and to affect them from within the collective
without causing a disturbance of the processes that usually
determine the behaviours of these agents. This can be achieved by
bio-mimicking conspecifics (shown with fish here) or by altering
the local environment of the organisms in a way that will also
happen under favourable environmental conditions (shown with
honeybees and plants here).

Our studies, which we present here, focus on a few examples
of specific keystone species groups, which we think are of high
ecological significance. Their well-being is also highly relevant for
our human society:

(1) Honeybees, as they are the pollinators of plants, and thus
facilitate plant growth and dispersal. Their foraging success
is also a good indicator for a healthy ecosystem concerning
flowering plants.

(2) Fish, as they are keystone aquatic species, and water covers
about 71% of the earth’s surface. Fish are also a major food
source for humanity.

(3) Vascular plants, as they are the trophic basis of ecosystems,
serving as food and as a shelter place for many animals and
also feed humanity.
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FIGURE 2 | Summarising fact sheet of our models of bees, fish, plants and robots. (A) Basic structure and model parameters of the bee and robot model. (B) Basic
structure and model parameters of the fish and robot model. (C) Basic structure and model parameters of the plant and robot model. (D) Overview of the modelled
stimuli, the timing scale (how fast can they be emitted, how fast can they be removed from the system, and how persistent do they stay in the environment?) and the
reaction they trigger. (E) Overview of the used numerical solver method, time step size, and used dimensions of time. (F) Commonalities of the models: overview
showing the basic concept of all three modelling approaches with a social component and an individual component, indicating which parameters and variables
affect which of these processes.

Social organisms already have a natural “interaction interface”
that is provided by their social interaction patterns. Therefore,
we suggest that integrating autonomous robots into social animal
communities may be the most promising approach to achieve
animal–robot interaction. Thus, as an easy approach towards
robot–animal integration, robots should be able to take part
within the social interaction networks of their target organisms.
The fact that many social animals are also keystone species
in their ecosystems increases the significance of this social
interaction approach. For example, honeybees and bumblebees
are major pollinators, together with wasps, which are also major
predators. Ants facilitate the destruction of organic materials, but
also act in seed dispersal and as symbionts of aphids, which in
turn interact as strongly aggregated communities with plants.

Autonomous robots can be designed in three ways to achieve a
“guided locomotion” functionality, as it is suggested by Mondada
et al. (2013) and Halloy et al. (2013); see Figure 3.

First, they can be mobile agents that locomote together
with the organisms, for example, in group motion patterns; see
Figure 3A. The way of locomotion does not necessarily have
to be identical to the locomotion of the organisms, as long as
it does not disturb them in any way. Various approaches along
these lines have been performed with fish robots, either with
magnetic coupling or mounted on a rod (Faria et al., 2010;
Donati et al., 2016; Landgraf et al., 2016; Bonnet et al., 2017b;
Worm et al., 2017; Porfiri et al., 2019; Romano et al., 2019;
Utter and Brown, 2020), with wheeled robots interacting with
cockroach communities (Halloy et al., 2007) or flocks of ducks
(Vaughan et al., 2000) and with a dancing robot with honeybee
foragers (Landgraf et al., 2010). In all these cases, the locomotion

of the robot was achieved differently from the locomotion of the
living animal counterparts, and the robots were of varying bio-
mimetic perfection, some just emitting the key stimuli necessary
for influencing the organisms (Tinbergen, 1951).

Second, the robots may be distributed as an array of sensor–
actuator nodes that can sense and locally act, but do not
themselves locomote; see Figure 3B. We call such sensor–
actuator nodes combined actuator sensor units (CASUs), as they
are described in Schmickl et al. (2013) and Griparić et al. (2017).
Experiments with static arrays of CASUs were performed by
modulating honeybee aggregations (e.g., Stefanec et al., 2017a;
Mariano et al., 2018) and by guiding plant growth (Wahby
et al., 2018). In such a static array, the agents themselves cannot
move, but they can emit stimulus patterns that show spatio-
temporal dynamics, sometimes produced by nearest-neighbour
interactions of adjacent robots in the topology, similar to how
cells do in cellular automata (Wolfram, 1983). It is possible
that the array reconfigures itself slowly over time, similar to
the array/network of under-actuated mobile units described
in Donati et al. (2017) and Thenius et al. (2018), which are
primarily aimed at long-term environmental monitoring but
can act as a CASU with the appropriate organisms as well.
For example, such long-term interactions with organisms are
explored (Heinrich et al., 2019) for the prospect of creating
adaptive and self-healing living architecture.

Third, guided locomotion can be achieved by technically
augmenting single individuals by mounting autonomous devices
onto living organisms in order to influence their behaviours and
ultimately guide the whole social group (Butler et al., 2006; Tsang
et al., 2010); see Figure 3C. This approach can raise ethical
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FIGURE 3 | Augmentation of organismic populations may be implemented in three main forms (Mondada et al., 2013). (A) By introducing mobile devices into the
ecosystem. These agents are able to interact with the natural organisms using specifically designed stimuli. (B) By adding fixed devices in the environment. These
devices exhibit agency and can create environmental conditions that have an impact on the ecosystem and specifically on the organisms that are addressed with the
system. (C) By mounting devices directly on the individuals and impacting their behaviour by an interaction that takes place directly on their body. This way, the
animals become biohybrid agents themselves.

concerns, especially if social higher vertebrates are used; thus, we
are not further considering this approach here. In our approach,
we are not mounting devices on single individuals but integrate
devices into social organism societies to influence the organismic
groups from within (see Figure 3B).

The ways in which autonomous robots can interact with
organisms are manyfold: for example, they may take a leader
role and guide the organisms in their locomotion behaviour,
e.g., with swarming, flocking, herding, shoaling, and schooling
animals (Figure 4A). In case the target organisms are plants,
the robots could guide them in their growth (Figure 4D).
In these cases of “guided locomotion,” the organisms may be
directly led away from unfavourable or even dangerous places
(pollutants, over-harvesting, predation, hot spots of pests, etc.)
and guided towards more favourable places. Besides direct
guidance by the robots, it is also possible for robots to just
give a subtle bias to the organism motion, e.g., by locally
modulating environmental cues (e.g., light and temperature),
and to exploit specific locomotion strategies of organisms
this way (Figure 4B). Such strategies might include Levy
walks/flight (Viswanathan et al., 2008), klinotaxis (Izquierdo
and Lockery, 2010), and coordinated group motion (Herbert-
Read, 2016). Organisms often perform such motion principles in
nature; and even a subtle modulation of specific environmental
factors or of specific interaction patterns can nonetheless
lead to significant changes in the overall long-term motion
of such organisms.

Besides the guided motion, robots could also affect the
dispersion properties of populations, which can range from
strong avoidance (Figure 4C), like in territoriality (low intra-
specific contact rates), over diffusion-like random dispersal
(medium intra-specific contact rates) to aggregation behaviours

(high intra-specific contact rates). Thus, “guided dispersal”
and “guided aggregation” strategies performed by autonomous
robots can significantly affect important ecological variables.
For example, the frequency of intra-specific interactions affects
critical aspects of all life forms that we know:

(a) Intra-specific competition imposes the most important
negative feedback loop that keeps populations in balance
under natural conditions and the main driving force for
natural selection and thus for biological evolution.

(b) For sexually reproducing organisms, mate finding is a
vital aspect for reproduction, as too low a population
density can impair the success rate of finding mates for
reproduction. This was shown to be the final nail in the
coffin of some sexually reproducing species’ populations,
a fact that is known as the “Allee effect” in ecology
(Stephens and Sutherland, 1999).

(c) Effects of high population densities, as they occur in
aggregations, can be “negative” ones for population
dynamics, e.g., parasite pressure and infection rates, but
“positive” effects can also occur, e.g., induced by symbionts,
or information spread in the case of communicating
organisms.

All these important biological aspects can be modulated
by changing the dispersal patterns of organisms in their
environment. Appropriately designed robots can interact with
animals in a way that these motion patterns and their ultimate
dispersal effects can be influenced.

Depending on their design, robots can impact aspects other
than the spatial organisation of members of the society. They
can collaborate with the individuals of the society on specific
tasks, like foraging, waste removal and control of nest conditions.
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FIGURE 4 | Different types of set-up in which robots can be used to interact with living organisms. (A) A mobile robot can lead the organisms by emitting an
attractive stimulus/exhibiting an attractive behaviour. (C) A mobile robot can herd the organisms in a desired direction by emitting a repellent stimulus. (B,D) An array
of sensor–actuator nodes (CASUs) can exhibit patterns (either in time or space or both simultaneously) of repellent and/or attractive stimuli to guide organisms
[animals (B) or plants (D)] to a desired place or in a desired direction.

Thus, such robots can affect ecological aspects or organisms
and, ultimately, can affect the whole ecosystem in which these
organisms participate.

In order to induce behavioural changes, especially for the
“guided dispersal” and “guided aggregation” functionalities,
the autonomous robots need to be able to perform a richer
“vocabulary” than just emitting attractive signals. To be able to
exert control over the organisms’ spatial dispersal patterns, a set
of stimuli has to be found that (a) the robot can emit and (b)
the organism reacts to. For ethical reasons, we restrict ourselves
here to stimuli that are (i) naturally occurring in the organism’s
natural environment at a sufficiently regular rate and (ii) emitted
in a strength that is also in the naturally occurring spectrum, and
(iii) which have no known negative side effects on the organisms.

We identified the following three basic signals or cues that are
required to have sufficient effect and control of the organisms’
dispersal patterns:

(A) Attractive stimulus: This stimulus should be attractive for
the animals and lead to aggregations over time around the
places it is emitted. This can be a direct effect on gradient-
exploiting individuals (tropotaxis) or a modulation of
turning probabilities (e.g., in klinotaxis) or modulation of
social interaction (grouping) behaviours. Basically, it can
be translated into “Come here!”

(B) Repellent stimulus: This stimulus is the inverse of
the aggregating stimulus, operating along the same
mechanisms as mentioned above, however, acting in the
opposite direction. It basically means “Go away!”

(C) Speed modulating stimulus: This stimulus should be able to
modulate the speed of animals, or the growth rate of plants.

In an extreme case, it should be able to stop any motion,
basically meaning “Stay where you are!”

These stimuli can have arbitrary shapes (e.g., binary on/off
signals, continuous cues or even a combination of both) that are
spread around the robots’ local environment. In addition, these
stimuli can be physically similar (vision/light, vibration/sound,
smell/taste, touch, etc.), meaning that the receiving organisms use
the same receptor types to perceive them but still react differently.
In the case of similar stimuli inducing different behaviours in
the organisms, the specific “meanings” of each signal have to be
encoded in its characteristics (e.g., waveform shape, amplitude,
and frequency). This is not something that can be designed
arbitrarily, because it is the organisms who determine which
stimuli they react to; therefore, these control stimuli have to be
identified by sufficiently observing and analysing the animal’s
behaviour and interactions before designing the robots. However,
it might also be that these three stimuli/signals/cues (A, B, and
C) all reside on very different physical channels. This latter
approach has the significant advantage that multiple stimuli
can be emitted in parallel and, if designed correctly, with no,
or negligible, interference. On the downside, stimuli emitted
through different physical channels usually have very different
timescales on which they can be changed in the environment;
e.g., a light signal propagates quickly in contrast to a temperature
change that propagates and decays much more slowly. In our
framework, we call an autonomously and free moving agent
a “robot” (Figure 5A) and groups of such agents a “robot(ic)
swarm” (Figure 5B). In contrast to that, we call technological
artefacts that cannot move a CASU (Figures 5D,F) and to a
spatially distributed collection of these agents as a “CASU array”
(Figures 5C,E).
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FIGURE 5 | Examples of mobile robots (red frame) and immobile artefacts (blue frame) that can interact with animals or plants by emitting various stimuli.
(A) Free-moving fish robot with an active (tail-beating) lure that was developed in the project ASSISI_bf for interacting with zebrafish. (B) Close-up of a mixed swarm
of fish robots (only coupled lures visible) and zebrafish. (C) Horizontal array of combined actuator sensor units (CASUs) that was developed in the project ASSISI_bf
for interacting with honeybees. (D) Close-up of one CASU surrounded by honeybees. (E) Vertical array of CASUs, developed in the project flora robotica to guide
plant growth; inset frame shows a plant tip approaching the top-most robot (Figure “Main result; predefined-pattern experiment”: from Wahby et al., 2018, licenced
under CC BY 4.0; colours modified). (F) Close-up of a CASU to guide plant growth, surrounded by plants.

In order to be efficient and effective, but also ethically correct,
one has to understand the organism system first before designing
the robots to be introduced into the specific community. It is
also important to understand the collective biohybrid system
that is created by introducing the robots. Therefore, we here
focus on presenting mathematical models and simulations of
animal–robot and plant–robot systems that were created under
lab conditions. While some work on the robotic and experimental
side of these systems has been published, there is a lack of a
general understanding of these systems, of their commonalities
and of their specific elements. Such a more general understanding
of the system not only can inform future engineers of similar
or other biohybrid systems but also can allow us to understand
the physically established system in a more general way, which
is an important step to leave the lab behind and to employ these
understandings into technical artefacts that unfold their potential
with living organisms in the wild.

Many robot–organism interaction systems are still in a “lab
only” phase, for example, when magnetic coupling through a
fish tank’s glass wall or rods from above are used to drive fish-
mimicking robots. While these set-ups can be very valuable
for basic research of individual and collective behaviours per
se, there is no way to implement such robots in the wild.
For application in the field (pond, lake, river, and ocean), the
locomotion methods would need to be changed, for example,
into an undulating robot fish (Kruusmaa et al., 2014). Other
technologies, like the approach to put non-mobile robots such
as a CASU array into the environment, are already closer to

being implemented outside of the lab. Thus, in section “The Next
Step: Leaving the Lab and Bringing the Robots Into the Wild,”
we will showcase how the understanding of the honeybee-and-
robot system in the lab experiments was converted into simpler
devices that can affect full honeybee colonies in the natural
environment, where they act as important pollinators and thus
such systems could be utilised as a distributed long-term and
wide-range stabiliser and supporter of ecosystems in which these
bees play an important role.

Honeybee and Robot Experimentation
To investigate the capability of immobile robots to interact
with honeybees, we performed a set of experiments in which
the robots altered the local environment by exhibiting various
stimuli. The aim was to measure the influence of the different
“communication channels” of the robots on the animals’
aggregation behaviour (i.e., spatial distribution). The robotic
nodes, called CASUs, used in these experiments were developed
specifically to integrate themselves in groups of young honeybees
by (i) being able to sense nearby bees and (ii) having the
ability to exhibit the appropriate signals (as defined in section
“Towards A Proactive Contingency: Organismic Augmentation”)
to effectively affect young bees, namely, (a) temperature as an
attractive stimulus, (b) vibration as a speed-modulating stimulus,
and (c) airflow as a repellent stimulus (see Figure 6).

All these stimuli are ubiquitous in a normal honeybee hive
(e.g., thermoregulation of the brood nest, various vibrational
communication signals, and wing fanning to produce air
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FIGURE 6 | Combined actuator sensor unit (CASU) for bees developed in the project ASSISI_bf and experimental set-ups. (A) CASUs with surrounding honeybees:
above the arena floor, which is covered with beeswax sheets, is the cylindrical top part that houses the six infrared sensors for bee detection (sensing radius
approximately 2 cm) and the airflow nozzles. Below the arena floor is the bottom part of the CASU with the heat-exchange and vibration devices and the air pipes
(single-board computers connected to the CASUs not shown). (B) Experimental set-up for testing (B1) the natural symmetry breaking in collective decision making of
bees in constant temperature fields, (B2) symmetry breaking in collective decision making induced by vibration, (B3) collective decision making modulated by
airflows, and (B4) the effect of robot-induced feedbacks on the symmetry breaking in collective decision making. Solid white line represents the evaluation area for
counting the bees, divided by the dashed line (left side and right side).

circulation); and the stimulus intensity that the robots could
apply was within the range naturally occurring in the beehive; i.e.,
no abnormal stimulus was applied to guide the animals during
interaction with the robotic nodes.

We identified the aggregation behaviour of freshly emerged
bees as a suitable test case to study organismic augmentation
in honeybees because (i) the group behaviour is influenced by
local environmental conditions (e.g., temperature) and (ii) simple
cues could be identified to govern the aggregation behaviour (e.g.,
bees’ stopping times after contact with a conspecific) (Szopek
et al., 2013), both of which can be exploited by the CASUs to affect
the bees’ behaviour.

Animals
All experiments with honeybees (Apis mellifera L.) were
performed at the Department of Biology at the Karl-Franzens-
University Graz, with young bees, aged from 1 to 24 h. At
this age, the bees are not yet able to endothermically produce
heat with their wing muscles (Stabentheiner et al., 2010), nor
are they yet able to fly or sting. To collect the bees, sealed
brood combs were removed from full colonies and incubated
at 35◦C and 60% relative humidity. After hatching, the freshly
emerged bees were brushed off the combs and housed in a
ventilated box on a heating plate at 35◦C and fed honey
ad libitum before and after the experiments. Each bee was only
tested once, and all bees were introduced into full colonies at
the end of the day.

Robotic Combined Actuator Sensor Unit Array Arena
The experimental set-up consisted of a horizontal surface
equipped with an array of robotic nodes that were specifically
developed to integrate into groups of young honeybees (see
Figures 5C,D, 6). Each robotic node was equipped with six
infrared sensors to detect the surrounding bees, and temperature
sensors and actuators to generate stimuli that bees are reacting
to, including temperature, vibration, and airflow. The robots
were controlled by Beaglebone single-board computers, which
also executed the user-level controller, facilitated communication
with other robots and the host PC, and provided data logging.

For the specific experiments discussed here, only a subset of
robotic nodes was used with either two or three CASUs that were
enclosed by a stadium-shaped Plexiglas arena to keep the bees
within a certain area around them (see Figure 6B).

Above the top part of the robot, the arena floor was covered
in beeswax sheets that were replaced after each repetition to get
rid of any possible odour remnants that could interfere with the
bees’ behaviour. All experiments were performed in IR lighting
conditions with wavelengths above the bees’ sensitivity to exclude
any visual stimuli and captured with a camera sensitive to IR
light (Basler ac2040-25gmNIR) mounted above the arena. For a
detailed description of the system, see Griparić et al. (2017).

The Model of Robots and Bees
The minimal model arena is composed of two sides, each
containing a CASU. The dynamics of the CASUs controlling the
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local temperatures of each side of the arena and the number of
bees on each side are modelled. In the following, the temperatures
of the arena’s right and left sides are represented by TR(t)
and TL(t), respectively. These temperatures are modulated by
the CASUs located on the two sides, which either set the local
environment to a fixed temperature or set the temperature
according to the locally sensed numbers of bees.

The number of bees on the right and left sides are represented
by BR(t) and BL(t), respectively, whereby BR(t) + BL(t) =
Btotal. Initially, they are assumed to be symmetrically split up
between the two sides; thus, BR(0) = BL(0) = 0.5 · Btotal each.
In our model, we assume that all bees move randomly and
stop at bee–bee encounters and that the duration of the resting
of bees after such collisions depends on the local temperature
(Szopek et al., 2013), while the average speed of the bees can be
affected by ground vibrations (Mariano et al., 2018). In addition,
we show here that a subtle airflow can also affect the bees’
behaviour by reducing their resting time after social interactions.
Therefore, these three stimuli affect the rates of change of
honeybee aggregations that form around stimuli-emitting robots.
Bees that leave one cluster run randomly and eventually re-
join the same cluster or join a cluster around another robotic
CASU. Our model is based on depicting the dynamics of bee
aggregations resulting from the robot-induced modulations of
these rates of change.

The overall changes in the number of bees on each side are
computed by two ordinary differential equations (ODEs) (Eqs B-
1a,b) that describe the changes of bees on the left and right arena
sides, by balancing the flows of bees modelled in Eqs B-2a,b and
B-3a,b, as

dBR

dt
= switchindiv

R (t)− switchindiv
L (t)

+ switchsocial
R (t)− switchsocial

L (t) , (B-1a)

dBL

dt
= switchindiv

L (t)− switchindiv
R (t)

+ switchsocial
L (t)− switchsocial

R (t) . (B-1b)

Those bees that are not resting on each side may move to
the other side due to their random movement in a diffusion-
like process, which can be nicely modelled with a mean-field
approach, e.g., by systems of ODEs. A cluster of bees around one
robot may grow in two different ways:

Individual side switching: On the one hand, a cluster on the
ipsilateral side can grow from bees joining after having left
the contralateral CASU area and, after traversing the arena,
spontaneously stop without any social interaction. Consequently,
this process does not depend (scale) on the number of bees
that are already present at the ipsilateral side, but it will change
in proportion to the bees leaving the contralateral side. The
stopping probability at which this happens is expressed by the
constant αbees, which regulates the rate at which this individual
spontaneous stopping happens, while the variables τR(t) and
τL(t) represent the resting times that bees exhibit on either side
depending on the local temperature they encounter there. The

individual stopping flows can thus be modelled as

switchindiv
R (t) = αbees · Xindiv

R (t) ·
BL (t)
τL (t)

, (B-2a)

switchindiv
L (t) = αbees · Xindiv

L (t) ·
BR (t)
τR (t)

, (B-2b)

where Xindiv
R (t) ∼ U (1 − σbees, 1+ σbees) and Xindiv

L (t) ∼
U (1− σbees, 1+ σbees) are the scaled noise functions; the
parameter σbees ∈ [0, 1] scales the noise. Equation B-2a expresses
that in each time step t, a number BR (t) / τR (t) of bees will
leave the cluster on the right side and with a probability of αbees
they will stop and thus join the cluster on the left side of the arena
(and similarly for bees leaving the left side in Eq. B-2b). Thus,
the number of moving bees that can stop on one (ipsilateral) side
is the inverse of the waiting time of the bees on the other side(

1
τL(t) and 1

τR(t)

)
.

Socially induced side switching: On the other hand, bees may
also leave their cluster on the contralateral side and accidentally
meet with bees on the ipsilateral side in their random walk and,
consequently, join the ipsilateral cluster as a socially induced
event. Again, this switching is inversely related to the bees’
waiting time at their place of origin, which in this case is
from the contralateral arena side. It is additionally proportional
to the number of bees already present at the ipsilateral side,
following the concept of mass action law, which is often used in
modelling biological interactions, e.g., in predation, competition,
or infection models. A parameter βbees is used here to model the
rate of the social contacts, which are a consequence of the random
walk behaviour that bees often exhibit.

switchsocial
R (t) = βbees · Xsocial

R (t) · BR (t) ·
BL (t)
τL (t)

, (B-3a)

switchsocial
L (t) = βbees · Xsocial

L (t) · BL (t) ·
BR (t)
τR (t)

, (B-3b)

where Xsocial
R (t) ∼ U (1 − σbees, 1+ σbees) and Xsocial

L (t) ∼
U (1− σbees, 1+ σbees) are the scaled noise functions, the
parameter σbees ∈ [0, 1] scales the noise, and the parameter
βbees is a coefficient modulating the strength of the social
interaction process that leads to cluster formation. By adjusting
the ratio αbees

βbees
, the specific contribution of individual and social

stopping behaviours to the cluster formation process can be
adjusted in this system.

The model is driven by the diffusion of bees in the arena
and by the modulated durations of the resting time, after they
stopped either individually or socially. These resting times can
be modulated by three types of stimuli that can be emitted by
the robots, and which affect the bees in different ways, as is
incorporated in the model in the remainder of this section.

As the most prominent behaviour-modulating stimulus is
temperature, we model the effect of temperature on the bees’
behaviours to a larger extent than the other stimuli. This
is also necessary because the thermal stimulus influences the
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environment for longer periods than the other types of used
stimuli and thus requires a specific submodel. It was found
that young honeybees move mostly randomly when they walk
in temperature fields that are similar to the thermal conditions
in a beehive and stay for some time at the place after they
“bumped” into other bees (Kernbach et al., 2009; Szopek et al.,
2013). The mean resting time duration after such bee-to-bee
contacts was found to follow a sigmoid-shaped function of the
local temperature at the place of the encounter. As both robotic
CASUs modulate the local temperature in their vicinity, we
model the bees’ waiting times separately for each side by using
a hill function, taking the local temperatures (TL(t) for the local
temperature in the left half of the arena and TR(t) for the right
side) as their only input.

τR (t) =
(

1+
τ1

T1
· (TR (t)− Tmin) · (1− ϕR(t))

)
·(

1+ψR (t)
)

, (B-4a)

τL (t) =
(

1+
τ1

T1
· (TL (t)− Tmin) · (1− ϕL(t))

)
·(

1+ψL (t)
)

, (B-4b)

where τR (t) and τL(t) are the resting time periods of the bees
at the right and left sides of the arena, respectively, using a
linear function of the local temperature that approximates the
sigmoid previously used to fit empirical data: The waiting time
is 1.0 s for a temperature of 28.0◦C (our minimum ambient
temperature) and scales linearly for a range τ1 = 24.0 s over a
span of T1 = 8.0◦C of temperature increase, as we observed a
waiting period of 25 s with bees at 36◦C (which is the highest
temperature used in our experiments) in Mills et al. (2015).
The honeybees’ resting behaviour is also influenced by vibration
and airflows, factors that are also considered in Eqs 4a,b. The
variables ϕL(t), ϕR(t) ∈ [0, 1] represent the effect of a subtle
airflow emitted by the left or right CASU, acting as a repellent
stimulus and inducing a shortening of the bees’ resting periods
around these robots. In contrast, the variables ψL(t), ψR(t) ∈
[0, 1] represent the effect of ground-carried vibration, emitted
by the left or right CASU, acting as a speed-reducing or even
stopping stimulus, thus inducing an increase of the bees’ resting
periods around these robots.

The robotic CASUs in our system have their own agency,
which needs to be part of the model that should depict the
overall biohybrid system. Our honeybee CASUs have sensors to
detect the bees in their vicinity. The CASU actively regulates the
temperature based on the number of locally detected bees, if this
regulation is enabled. We assume that the CASUs detect the bees
in an imperfect way, as there are several “blind spots” and also
a limited sensor range around these robots. We modelled the
honeybee detection as follows.

For each CASU, there is a given target temperature towards
which it is actively controlling its local environment: Ttarget

L (t)

for the left CASU and Ttarget
R (t) for the right CASU. These

target temperatures can (a) be preset to constant values, or (b)
follow pre-programmed time patterns or (c) be set dynamically
by the CASU’s control program in response to sensing bees
with its IR sensors in its vicinity. In cases (b) and (c), a
fixed-step incremental controller is used to model the heating
and cooling that drive the actual temperature around CASUs
towards the given target temperatures. If the actual temperature
is further below the target temperatures than a given threshold
εtemp, then the CASU will heat with a fixed rate λheating
towards the target. Similarly, if the actual temperature is further
above the target temperature than εtemp, the CASU will cool
with a fixed rate λcooling towards the target. Finally, passive
diffusion is modelled as proportional to the difference between
each CASU and the ambient temperature Tambient = 28◦C, with
coefficient λpassive. These factors together yield the following
equations:

dTR

dt
= −λpassive−cooling · (TR (t)− Tambient)

+

 λactive−heating · · · if
(

Ttarget
R (t) − TR (t)

)
> εtemp

−λactive−cooling · · · if
(

TR (t) − Ttarget
R (t)

)
> εtemp

,

(B-5a)
dTL

dt
= −λpassive−cooling · (TL (t)− Tambient)

+

λactive−heating · · · if
(

Ttarget
L (t) − TL (t)

)
> εtemp

−λactive−cooling · · · if
(

TL (t) − Ttarget
L (t)

)
> εtemp

,

(B-5b)

where dTR (t) /dt and dTR (t) /dt define the two ODEs
that model the temperature changes around the left
and right CASU areas, which feed into the waiting time
curves of the bees that are defined in Eqs B-4a,b. Thus,
in those cases that the target temperatures of CASUs
are affected by the local number of bees, the system
exhibits a closed-loop control between robotic CASUs
and the honeybees.

For specific experiments with bees, specific settings, time
patterns or control programs were used for the variables ψR (t),
ψL (t), ϕR(t), ϕL(t), Ttarget

R (t), and Ttarget
L (t). These specific

actuation regimes of heating, cooling, vibration, and airflow are
described in the sections below, together with the corresponding
experiments. Otherwise, the default values given in Figure 2A
were used for these variables.

Experiments With Robots and Bees
In this section, we will detail the methodology for the
four experimental sets that were performed with CASUs and
honeybees. First, we establish a baseline of the natural collective
behaviour of honeybees without active robotic agents. Second,
we investigate how local vibration influences collective decision-
making processes. Third, we investigate how robotic agents affect
bees with a subtle airflow. Fourth, we investigate how honeybee
decision making can be influenced by robots integrated in a
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FIGURE 7 | Honeybee group decision making in fixed environments, from empirical study and ordinary differential equation (ODE) model as described in the text.
Two scenarios are considered: (1) a homogeneous environment, where the two choices are equal at 28◦C, with N = 14 repetitions; (2) a heterogeneous
environment, with one global optimum of 36◦C and one local optimum of 32◦C, with N = 12 repetitions. We measured the number of bees on the side with the
majority for the period of 8–13 min. Since the group size differed between the two experimental settings, we report in fraction of the total group. We also display the
distributions of fractions on the minority side. In setting (2), each bee group makes substantially stronger decisions than in setting (1), where there is no environmental
difference to select on. Despite this, their social preference means that in setting (1), we still observe bees forming aggregations on one or another side to some
degree. In both settings, the model generates a lower variance but otherwise predicts the aggregation effect corresponding to the empirical data.

closed loop producing warmth around them in reaction to higher
bee densities. These empirical experiments validate our model
of the biohybrid system, solved with Runge–Kutta fourth-order
method with 1t = 1.0 s.

Experiment B1: Assessing the natural symmetry breaking in
collective decision making of aggregating honeybees under
non-time-varying temperature fields
To investigate the natural clustering behaviour of the bees in
constant thermal environments, we performed experiments with
groups of bees in a stadium-shaped arena with two CASUs set to
fixed temperatures. We performed experiments in two settings:
(1) Runs with 28◦C on both arena sides were made with N = 14
repetitions for 20 min, containing groups of Btotal = 12 bees that
were released in the centre of the arena; and (2) runs with 32◦C on
one side of the arena and 36◦C on the other side. This setting was
tested N = 12 times for 13 min with Btotal = 15 bees each. The
target temperatures remained fixed throughout the runs, with no
influence from the bees or the other CASUs.

In our analysis, we counted the bees on each side of the arena
in 30-s intervals from video recordings, which were conducted
under red-light conditions, to emulate the darkness of a beehive.
For comparison, and to allow the bees an initial time to settle their
collective decision making, we analysed the bees’ aggregations on
both sides from minute 8 to minute 13 (Figure 7).

Experiment B2: Symmetry breaking in collective decision
making induced by vibration
In this experiment (Mariano et al., 2018), a set of three CASUs
aligned in a row were used, in contrast to the experiments
described above, which used only two CASUs, in order to
isolate the two arena sides better from ground-carried vibrations
arriving from the other side. During the first 3 min, the bees
could freely distribute themselves in the arena, as no vibration
was produced by the CASUs; thus, ψactive (t) = ψpassive (t) = 0.0,
for t ∈ [0, 180]. Afterwards, the leftmost CASU started to emit
a vibration pattern for another 3 min. The empirical study we
validate our model against reports a set of vibration signals
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that were shaped by evolutionary computation algorithms to
effectively slow down or even stop the bees. For t ∈ [181, 360], we
set ψactive (t) = 0.1 to model the effects of the vibration pattern
spreading through the arena floor locally around this CASU on
the bee behaviour. In contrast, the other CASU stayed passive, i.e.,
ψpassive (t) = 0, for t ∈ [181, 360]. The parameter value ψactive
was chosen to fit empirical data.

We studied groups of Btotal = 12 young (1 day old)
honeybees in each arena in this experiment. In order to
compare the reported empirical data in this setting in our
mathematical model, we again consider the two sides of the
arena—attributing the bees around the leftmost CASU area
fully to the left side in the model in BL(t) and the bees
around the rightmost CASU area to the right side of the
model in BR(t)—and split the population of bees around the
middle CASU 50:50 amongst the two model variables BL(t)
and BR (t).

As Figure 8A demonstrates, the emission of a vibration
stimulus leads to an aggregation of bees around the vibrating
CASU, compared with the other CASU and compared with the
control period. The model predicts this effect in a way very well
corresponding to the empirical data. More details are given in
Figure 8.

Experiment B3: Collective decision making modulated by
airflows
In this experiment, two CASUs in a stadium-shaped arena were
used. We heated the CASUs for 5 min to different temperature
levels: one CASU was heated to Ttarget

R (t) = 36◦C, ∀t, further
referred to as the global optimum, since young bees prefer to
locate at this temperature, as seen already in experiment B1. The
other CASU was heated to Ttarget

L (t) = 32◦C, ∀t, providing a local
optimum for the bees.

We observed groups of Btotal = 15 young (1 day old)
honeybees, which were initially released at the centre of
the arena. After the bees had stably aggregated at the
global optimum after 13–15 min of experimental runtime
(tairflow), an airflow stimulus was emitted by the CASU at
the global optimum, ϕR (t ≥ tairflow) = 0.6, until the end
of the experiment whose total runtime was 20 min. The
control experiments used the same settings, but without
turning on the airflow stimulus during the whole runtime. To
evaluate the effect of the airflow on the honeybee collective,
we counted the bees in the two sides of the arena from
video recordings.

As shown in Figure 8B, bees cluster mainly around the
warmer CASU before the airflow stimulus is set. After the airflow
stimulus has initialised, the initial decision making is reversed,
and the bees start to cluster around the cooler CASU. Our model’s
predictions compare well with the empirical data. Additional
details are given in Figure 8.

Experiment B4: The effect of robot-induced feedback on the
symmetry breaking in collective decision making
This experiment used a pair of CASUs enclosed by a stadium-
shaped arena. In contrast to experiment B1, which showed
how bees interact without active robot influence, here, the

robots were programmed in a way that they create an
additional feedback loop in the system that can enhance or
suppress the natural symmetry-breaking capabilities of the
bees (Stefanec et al., 2017a). To achieve this, each CASU
used its local IR sensors to estimate the local bee density
around it and regulated its local temperature in a positive or
negative correlation with this estimate (detailed below). The
estimated numbers of bees around the left and right CASUs
(Bobs

L (t) , Bobs
R (t)) are modelled assuming that the robots’ IR

sensors underestimate the true number of bees (e.g., due to
occlusion and blind spots); thus, we model the noise-affected
sensor values as

Bobs
R (t) = BR (t) ·

(
1− σbeeCASU · Xobs

R (t)
)

, (B-6a)

Bobs
L (t) = BL (t) ·

(
1− σbeeCASU · Xobs

L (t)
)

, (B-6b)

where σbeeCASU is the scaling factor for the observation noise
Xobs

R (t), Xobs
R (t) ∼ U (0, 1), Xobs

L (t) Xobs
L (t) ∼ U (0, 1), assumed

to be uniformly distributed. The noise can only lead to
underestimation of the number of bees (no false positives in the
observation). The CASUs use a gliding average (throughout 30 s),
B̄obs

R (t) and B̄obs
L (t), of the noise-affected sensor values, as can be

seen in the following Eqs B7a,b and B8a,b.
Positive feedback experiments: A positive feedback means

that the CASUs will act to enhance the natural symmetry-
breaking behaviour of the bees. To create such a CASU
control algorithm, the gliding average number of bees around
the ipsilateral CASU was subtracted from the gliding average
number of bees around the contralateral CASU to yield the
net observed difference. The ipsilateral target temperature
had a step increase (decrease) applied when the observed
net difference was positive (negative); see Eqs B-7a,b. This
led to the effect that the more bees a CASU sensed, the
warmer its vicinity got, while at the same time the other
CASU became colder (i.e., they exhibited a reciprocal cross-
inhibition).

Ttarget
R (t) = min

(
36.0, max

(
28.0, TR (t)

+

{
1temp · · · if B̄obs

R (t) > B̄obs
L (t)

−1temp · · · else

))
, (B-7a)

Ttarget
L (t) = min

(
36.0, max

(
28.0, TL (t)

+

{
1temp · · · if B̄obs

R (t) < B̄obs
L (t)

−1temp · · · else

))
, (B-7b)

Negative feedback experiments: A negative feedback means that
the CASUs will act in a way that reduces or even suppresses
the natural symmetry breaking behaviour of the bees. To
create such a CASU control algorithm, the same observed net
difference was calculated but used inversely. Specifically, the
ipsilateral target temperature had a step decrease (increase)
applied when the observed net difference was positive (negative);
see Eqs B-8a,b. Accordingly, the more bees a CASU sensed,
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FIGURE 8 | Effects of vibration, airflow stimulation and temperature on honeybee groups in empirical experiments and in our mathematical model. (A) Vibrational
patterns were used to guide aggregation by moving the bees from an even distribution around the robots to an uneven distribution (N = 17 independent repetitions).
The duration of the active vibration is indicated in the diagrams by the grey background: [ψactive (t) = 0.1 for t ∈ (181, 360)]. In the first half of the experiment
[ψactive (t) = 0 for t ∈ (0, 180)], the bees move around freely and do not show any preference for one side of the arena. After the activation of the vibration (at time
t = 181), there are more bees on the vibrating side in both the empirical experiments and the mathematical model. (B) In this experiment, an airflow stimulus was
used to reverse initial decision making of honeybees in a temperature field containing a global optimum temperature (36◦C at the “activated side” of the arena) and a
local optimum (32◦C, “passive side” of the arena), with N = 12 repetitions. The airflow was switched on at the robot on the warmer side to guide dispersal, which
happened in the empirical experiments at different times between minute 13 and minute 15 as indicated by the grey background. This airflow stimulus remained
active for the rest of the experiment. In the first phase of the experiment, more bees clustered around the warmer robot, while after activation of the airflow stimulus
at this robot, bees increasingly dispersed and then aggregated around the other, cooler robot without airflow stimulus. These dynamics are replicated in the model
results (lower sub-panel). (C) Honeybee group decisions in modelling a robot-mediated thermal environment with closed-loop control and how this agrees with
empirical data (empirical experiments, reported in Stefanec et al., 2017a), and how the modelling results agree with empirical trends. N = 14 independent repetitions
in each setting. Since the binary choice offered to the bee groups is not a priori biassed for one side or the other, we report the number of bees on the majority and
minority sides within each repetition; the analysis covers the last 5 min. Three variants of the robot controller, as described in the text, lead to qualitatively different
collective decisions by the honeybee group. Specifically, positive feedback linking the local temperature to the local bee density causes strong decision making;
negative feedback between bee density and temperature prevents aggregations from building up; the control runs with constant 28◦C temperatures throughout are
in between and with more variable distributions. The main differences in how strong decision making occurs are reproduced by the model, although once again we
see that the variance of distributions from the model, is substantially reduced in comparison with the empirical results.
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the colder its vicinity got, while simultaneously the other
CASU became warmer.

Ttarget
R (t) = min

(
36.0, max

(
28.0, TR (t)

+

{
1temp · · · if B̄obs

R (t) < B̄obs
L (t)

−1temp · · · else

))
, (B-8a)

Ttarget
L (t) = min

(
36.0, max

(
28.0, TL(t)

+

{
1temp · · · if B̄obs

R (t) > B̄obs
L (t)

−1temp · · · else

))
, (B-8b)

Control experiments: For comparison, experiments
without any reinforcement were conducted; the CASU target
temperatures were set to a fixed value of Ttarget

R (t) = Ttarget
L (t) =

28◦C on each side, with no influence, neither from bees nor
from other CASUs.

All experiments were performed with groups of Btotal = 12
bees each, which were released at the centre of the arena. Each
run lasted for 20 min, and we made N = 14 repetitions. In our
analysis, we counted the bees on each side of the arena in 30-
s intervals from video recordings, which were conducted under
red-light conditions, to emulate the darkness of a beehive.

Figure 8C compares a modelled closed loop with empirical
data. In both cases, a robot-mediated feedback loop enhanced
(positive feedback) or weakened (negative feedback) the
natural symmetry breaking of honeybees as compared
with the control experiments. Our model’s predictions
correspond well to observed empirical data concerning the
centrality metric (median); however, the variances within
and between model prediction runs are rather small as
compared with empirical observations, likely due to the
simplicity of the model, having many factors abstracted
away from the system. Further details are described in
Figure 8.

Fish and Robot Experimentation
To investigate the capability of mobile robots to interact with
zebrafish, we performed experiments in which bio-mimetic
robots used their motion patterns to exert an influence on the
group dynamics of the natural fish. The fish robot consists of two
parts: a miniature wheeled robot below the tank that steers a lure
residing inside the tank (Figure 9A). The two parts are coupled
by magnets, and the partitioning enables continuous power and
dry operating conditions for the electro-mechanical devices.

Zebrafish is a social species of fish that exhibit collective
behaviours such as shoaling (Spence et al., 2008). The zebrafish
was selected as it is a very common model of vertebrates, used
in various research fields, in particular in behavioural biology
(Norton and Bally-Cuif, 2010). Since visual stimuli are very
important in zebrafish interactions, certain aspects of the robot
are crucial for the natural fish to interact with the robots and
accept them in their decision making. These include the shape
and size ratio of the lure, as well as the speed and acceleration

of the robot (Bonnet et al., 2018). These robot-generated stimuli
were all within the natural ranges of the fish.

Our experiments aimed to verify that a fish robot could
influence the group dynamics in two distinct modes: to exert
an influence in the swimming direction of the group, (1) where
the robot choice decided exogenously (e.g., fixed direction,
predetermined pattern, or the experimenter) and (2) in a closed
loop where the fish robot direction was chosen to reinforce the
current fish group decision.

We selected the fish group size to exhibit some shoaling
but also allow for synthetic influence when introducing a small
number of robotic agents; the experiments here used a total of 6
agents (6 fish, 3 fish+ 3 robots or 5 fish+ 1 robot).

The zebrafish used in the studies here was approved by the
state ethical board for animal experiments under authorisation
number 2778 from the DCVA of Canton de Vaud, Switzerland.
As described in Bonnet et al. (2019), we used 100 wild-type, short-
fin zebrafish (Danio rerio Hamilton 1822) with average length of
4 cm, sourced from Qualipet (Crissier, Switzerland). Each fish
could be used in a maximum of one experiment per day, and
all fish used were returned to their main tank at the end of the
day, meaning that the same individuals could appear in multiple
replicates of the studies presented here.

The Model of Robots and Fish
The basic principle of the fish and robot model is similar to the
concept of the honeybee and robot model. We have a certain
number of fish Ftotal, which can swim in the arena ring in either
the clockwise direction FCW(t) or counter-clockwise direction
FCCW(t). Initially, they are assumed to be symmetrically split
up; thus, FCW(0) = FCCW(0)1. Our model, like in the honeybee
case, obeys conservation of mass; thus, FCW(t)+ FCCW(t) =
F total.

The fish have a natural behaviour that determines when
they switch their locomotion direction, which can either happen
as an individual spontaneous event or be triggered by social
interaction, within which the fish robot can also participate and
exert thus some control over the group of fish. The change
between the two groups of fish aligned in each direction is
expressed as

dFCW

dt
= switchindiv

CW (t)− switchindiv
CCW (t)

+ switchsocial
CW (t)− switchsocial

CCW (t) , (F-1a)

dFCCW

dt
= switchindiv

CCW (t)− switchindiv
CW (t)

+ switchsocial
CCW (t)− switchsocial

CW (t) , (F-1b)

where switchindiv
CW (t) represents the number of fish individually

switching from the CCW to CW direction, and switchindiv
CCW (t)

1In a mean-field model, like this ODE model, the model expresses the mean
time budgets of fish swimming in either direction, so fractional quantities are not
unrealistic.
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FIGURE 9 | Experimental set-up created to study the interactions in mixed groups composed of fish and one or multiple robots. (A) (a) Experimental arena
composed of two circular walls forming a circular corridor to condition the behaviour of the agents (see also B). (b) Zebrafish moving inside the corridor. (c) The fish
robot is composed of a miniature mobile robot (FishBot) and a lure, which is magnetically coupled with the FishBot. (d) Support in which the FishBots are moving,
which provides the powering of the system for long-duration experiments. (e) Top camera, which captures the images that are used to determine the position of the
agents in real time. (f) Bottom camera, which captures the images to determine the position of the FishBot. (g) Computer running the CATS software for tracking and
closed-loop control of the robots in real time. (B,C) The arena is composed of two circular walls of 19- and 29-cm radius, which forms a circular corridor of 10-cm
width in which the zebrafish (h,j) can move with the robot (i,k). With this configuration, the zebrafish shoal in either the CW or CCW direction, and we can use one or
several bio-mimetic robots to blend in with the shoal and influence the swimming direction. (B) The top view from the top camera that is used to process the
positions of the agents.

models the individual process of switching into the opposite
direction. The variables switchsocial

CW (t) express fish that
switch to the CW direction triggered by a social interaction,
while switchsocial

CCW (t) expresses the opposite socially induced
switching of direction.

Individual direction switching: On the one hand, the direction-
changing process can happen spontaneously without any
triggering event. We assume that this happens with a certain
rate αfish whenever a fish is alone in the tank and, thus, has no
other fish (or fish robot) in sight that can socially influence it.
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The fraction of the fish population that is predicted to be alone is
modelled as

palone = 1− pgroup, (F-2a)

pgroup = min
(

1.0,
Ftotal · Asight

Aarena

)
, (F-2b)

where Aarena represents the area of the ring-shaped arena and
Asight represents the area of the cone of sight of a single fish in
this arena shape. Geometrical considerations show that the field
of perception of a fish covers roughly between 1

3 (if the fish is close
to the outer arena wall) and 1

7 (if the fish is close to the inner wall)
of Aarena; thus, we assume an average coverage of approximately
1
5 of this area for Asight. We further assume, in our mean-field
model, that at a given number of fish in the arena, no fish will ever
be alone. With a given probability of αfish, a fish that is alone will
switch to swimming in the opposite direction, as is expressed by

switchindiv
CW (t) = αfish · palone · FCCW (t) , (F-3a)

switchindiv
CCW (t) = αfish · palone · FCW (t) . (F-3b)

Socially induced direction switching: On the other hand, fish
can also switch to the opposite direction because they see
other fish and want to align with their motion direction. This
is modelled, similar to the previous honeybee model, with a
mass-action-law-like equation, modulated by a coefficient βfish,
which determines the strength of this socially induced direction
switching (Eqs F-6a,b).

We assume that each fish has an imperfect perception of the
direction of the other fish it sees; thus, it only has an erroneous
estimation of the number of fish swimming aligned with it or
in the opposite direction. For a fish that is currently swimming
CW, the estimated number of other fish also swimming CW is
modelled by FobsCW

CW (t), and the estimation for swimming CCW
is modelled by FobsCW

CCW (t). These variables are computed as

FobsCW
CW (t) = FCW(t)+ EobsCW

CW (t)− EobsCW
CCW (t), (F-4a)

FobsCW
CCW (t) = FCCW (t)− EobsCW

CW (t)+ EobsCW
CCW (t), (F-4b)

where EobsCW
CCW (t) is the number of fish swimming in the same

direction (CW) but erroneously perceived by the CW swimming
fish as being swimming in the CCW direction. EobsCW

CW (t) is
the number of fish swimming in the opposite direction (CCW)
but erroneously perceived by the CW-swimming fish as being
aligned with them (CW). These errors in the fish observation are
modelled as

EobsCW
CCW (t) = σfish · (FCW(t)− 1) · XCW(t), (F-5a)

EobsCW
CW (t) = σfish · FCCW(t) · XCCW(t), (F-5b)

where XCW(t) ∼ U(0, 1) and XCCW(t) ∼ U(0, 1) are the noise
parameters and σfish is a scaling coefficient for the perception
error. A similar computation holds for the variables FobsCCW

CW (t)

and FobsCCW
CCW (t) as the erroneous observations made by the fish

swimming CCW concerning the other fish they see, as

FobsCCW
CW (t) = FCW (t)+ EobsCCW

CW (t)− EobsCCW
CCW (t), (F-4c)

FobsCCW
CCW (t) = FCCW (t)− EobsCCW

CW (t)+ EobsCCW
CCW (t), (F-4d)

EobsCCW
CCW (t) = σfish · FCW(t) · XCW(t), (F-5c)

EobsCCW
CW (t) = σfish · (FCCW(t)− 1) · XCCW(t) (F-5d)

where the noise variables are modelled as XCW(t) ∼ U(0, 1) and
XCCW(t) ∼ U(0, 1).

For the fish switching direction due to social effects, our
model assumes the following social alignment behaviour for each
focal fish: If a large proportion of others swim aligned with
it, the tendency for switching is low. If a large proportion is
swimming in the opposite direction, the fish tends to switch its
own direction. This behaviour is again modelled following the
mass action law, as was also the case in the honeybee model. The
number of fish in CCW switching to CW depends on the number
of fish in CCW and a function of their erroneous observations
they make concerning other fish they meet (FobsCCW

CW (t) and
FobsCCW

CCW (t)). Thus, the social switching functions are directly
correlated with their estimated number for CW swimming fish,
FobsCCW

CW (t), and inversely correlated with their estimated number
for CCW swimming fish, FobsCCW

CCW (t)+ 1. The +1 term in the
equation refers to each focal fish. The following equations show
the model for switching to CW and CCW, respectively:

switchsocial
CW (t) = βfish · pgroup · FCCW (t) ·

FobsCCW
CW (t)

FobsCCW
CCW (t)+ 1

, (F-6a)

switchsocial
CCW (t) = βfish · pgroup · FCW (t) ·

FobsCW
CCW (t)

FobsCW
CW (t)+ 1

. (F-6b)

In our experiments, we also introduced one or more fish
robots that mimicked real fish. We assume that the living fish
perceived the fish robot as conspecific, but perhaps not to the
full extent. Thus, we define a coefficient γfish ∈ [0, 1] expressing
how often (in all instances of encounters) the fish robot was
interpreted by the living fish as a conspecific. This presence of
a robotic fish surrogate needs to be considered in the model,
requiring a reformulation of Eqs F-2a,b into

palone = 1− pgroup, (F-2c)

pgroup = min
(

1.0,
(Ftotal + γfish) · Asight

Aarena

)
(F-2d)

which will have a small effect on the spontaneous direction
switching behaviour expressed in Eqs F-3a,b and also
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on the socially induced direction switching behaviour, as
expressed by Eqs F-4a,b.

Further beyond the mere presence of another fish-like agent,
its direction can have profound effects on the socially induced
direction switching behaviour of the fish. Thus, we express
the fish robot as a variable RCW (t) ∈ [0, 1] expressing how
much of the time budget the fish robots swam in the CW
direction. Consequently, RCCW(t) = 1 − RCW(t) and RCW(t)+
RCCW(t) = 1. This requires the alteration of Eqs F-4a–d to also
consider the social effect of the fish robot, as

FobsCW
CW (t) = FCW (t)+ γfish · RCW (t)

+EobsCW
CW (t)− EobsCW

CCW (t), (F-4e)

FobsCW
CCW (t) = FCCW (t)+ γfish · RCCW (t)

−EobsCW
CW (t)+ EobsCW

CCW (t), (F-4f)

FobsCCW
CW (t) = FCW (t)+ γfish · RCW (t)

+EobsCCW
CW (t)− EobsCCW

CCW (t), (F-4g)

FobsCCW
CCW (t) = FCCW (t)+ γfish · RCCW (t)

−EobsCCW
CW (t)+ EobsCCW

CCW (t). (F-4h)

In addition, the erroneous perception of fish, as described in
Eqs F-5a–d, has to be adapted to model also the effect of the fish
robot, which can also be erroneously perceived, as

EobsCW
CCW (t) = σfish · (FCW(t)+ γfish·

RCW(t)− 1) · XobsCW
CW (t), (F-5e)

EobsCW
CW (t) = σfish · (FCCW(t)+ γfish·

RCCW(t)) · XobsCW
CCW (t), (F-5f)

EobsCCW
CCW (t) = σfish · (FCW(t)+ γfish·

RCW(t)) · XobsCCW
CW (t), (F-5g)

EobsCCW
CW (t) = σfish · (FCCW(t)+ γfish·

RCCW(t)− 1) · XobsCCW
CCW (t), (F-5h)

where XobsCW
CW (t), XobsCW

CCW (t), XobsCCW
CW (t), XobsCCW

CCW (t) ∼ U(0, 1).
Ultimately, these components all affect the social behaviour of

the fish, thus requiring the adaptation of Eqs F-6a,b to

switchsocial
CW (t) = βfish · pgroup · (FCCW(t)+ γfish · RCCW(t)) ·

FobsCCW
CW (t)

FobsCCW
CCW (t)+ 1

, (F-6c)

switchsocial
CCW (t) = βfish · pgroup · (FCW(t)+ γfish · RCW(t)) ·

FobsCW
CCW (t)

FobsCW
CW (t)+ 1

. (F-6d)

In the following, we describe three distinct experiments,
in which the fish robots were performing different types of
behaviour. In the first two experiments, the robots acted
independently, without being affected by the fish, allowing us to
study the fish reaction to this external visual stimulus. In the third
experiment, the fish robot was trying to socially integrate into the
fish group by aligning with the fish, thus closing the behavioural
feedback loop between the fish and the fish robot. The default
parameters for the model are defined in Figure 2B.

Experiments With Robots and Fish
Inside a 100× 100× 25 cm aquarium covered with white Teflon
sheets, the experimental set-up used a circular corridor for the
fish and robot-controlled lure to move in Figures 9B,C. The
water was filled to a level of 6 cm and maintained at 26◦C. The
arena was lit by three 110-W fluorescent lamps and continuously
observed by an overhead camera at 15 Hz. The video stream
fed an online blob detector that continuously determined the
position of each fish and robot, thereby providing the sensory
information used to determine the robot motion (Bonnet et al.,
2017a). Post hoc analysis of the videos used idTracker (Pérez-
Escudero et al., 2014) and provided individual tracking as well
as lower-error position information. For a detailed description
of the set-up and robot controller, please refer to Bonnet et al.
(2018).

Experiment F1: Fish group behaviour in pure groups and
mixed groups with constant robotic influence
To investigate the natural grouping behaviour of the fish without
robotic influence, we tested groups of six zebrafish in the arena
(Bonnet et al., 2018). As a first comparison, we tested mixed
groups of three fish and three fish robots, where the fish robots
swam in the same direction for each of the N = 8 experiments that
lasted for 30 min. Figure 10A shows empirical results and how
the model reproduces the key dynamics in both cases. It shows
that fish were influenced to swim with the robots when the robots
swam constantly in one direction, in contrast to the unbiassed
swimming direction with pure fish groups. The empirical result
is well captured by our model.

Experiment F2: Mixed fish and robot groups, with
independent fish robot motion
In this experiment, we constructed mixed groups of five fish
and one robot (Bonnet et al., 2019). In contrast to experiment
F1, the robot exhibited various direction changes, which
were specified independently from the swimming direction
of the fish group (changing direction with a frequency of
0.014 ± 0.006 per time step). The experiments lasted 30 min,
and we conducted N = 24 repetitions. To govern the fish robot
direction in the model, we used a simple two-state machine
that switched direction with probability 0.014 in each time
step. Figure 10B shows the relationship between the fish group
choice and the robot swimming direction, which is positively
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FIGURE 10 | Results of model and empirical data from experiments with robots and fish groups, experiments F1–F3. (A) Comparing group-level direction choices
between six fish (left) and a mixed group of three fish with three robots that constantly swam in the same direction (the right shows the whole group, and the middle
shows data for the three fish in the context of robots). Trends in the empirical data, from N = 8 repetitions (Bonnet et al., 2018) are reflected in the model output.
(B) Experiments with five fish and one fish robot that had an exogenously defined motion, switching direction in 1.4% of the time steps, reveals a correlation between
the swimming direction of the fish group and the robot (empirical data from Bonnet et al., 2019 with N = 24 repetitions). (D) Experiments with five fish and one fish
robot that acted to reinforce the swimming direction of the fish group (empirical data from Bonnet et al., 2019, with N = 22 repetitions). The relationship between the
fish robot direction and fish group decision is tighter in this closed-loop setting than in the open-loop setting above. (C,E) Equivalent output from our model for
experiments F2 and F3, showing the same trends as the empirical results.
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correlated with a wide distribution. The model reproduces these
dynamics (Figure 10C).

Experiment F3: Fish Robot in “social integration” mode, a
closed-loop setting with the fish group behaviour
In a manner similar to that of experiment B4, the robots in
this experiment form a closed loop with the animal behaviour,
aiming to reinforce the current decision of the animal group. We
used five fish and one robot that swam in the majority direction
of the fish group. We conducted N = 22 repetitions of 30-min
long experiments. The fish are modelled as per the previous
experiments, responding to their environmental cues including
the robot. However, here, the model must also consider how the
robot responds to the fish locomotion, as elaborated below.

To decide on the swimming direction of the robotic fish, the
robot controller computes the proportion of the fish observed in
each direction for 15 frames in every second. It then averages
these values and decides on its future direction based on this
calculated time budget. Since we use a time step of 1t = 1 s in
our model, the modelled controller computes a single proportion
in every second.

The robot’s decision is modelled as

RCW (t) =
{

1
−1
· · · if F obsR

CW (t) > 0.5
· · · if F obsR

CW (t) < 0.5
, (F-7a)

RCCW (t) = 1 − RCW (t) , (F-7b)

where FobsR
CW (t) and FobsR

CCW(t) are the gliding averages in the CW
and CCW directions correspondingly. If there is a tie between
the two possible directions, a random direction is chosen by the
robotic fish CASU.

In order to compute the proportions to make the gliding
averages, the number of fish in each direction observed by
the detection software is divided by the total number of fish.
The online fish detection software (CATS, Bonnet et al., 2017a)
that informs the controller of the robotic fish is imperfect in
detecting directions. The erroneous observed proportions of the
number of fish are modelled as the true number of fish in each
direction [FCW(t), FCCW(t)], plus the error [Rerror

CW (t), Rerror
CCW(t)],

divided by the total number of fish, in order to normalise for the
given fish size.

FobsR
CW (t) =

FCW(t)+ Rerror
CW (t)

Ftotal
, (F-8a)

FobsR
CCW(t) =

FCCW(t)+ Rerror
CCW(t)

Ftotal
, (F-8b)

where Rerror
CW (t) is the error in the observed number of fish

swimming in the CW direction and Rerror
CCW (t) is the error in

the observed number of fish in the CCW direction made by the
software that observes the real fish to drive the robot. This error
is modelled as

Rerror
CW (t) = σfishRobot · XCCW(t) · FCCW(t)

−σfishRobotx · XCW(t) · FCW(t), (F-9a)

Rerror
CCW(t) = −Rerror

CW (t), (F-9b)

where the random noise variables were modelled as XCW(t) ∼
U(0, 1) and XCCW(t) ∼ U(0, 1) with uniform distribution, and
σfishRobot is the scaling factor for the observation noise. In this
model, the number of fish swimming in the CW direction
but mistakenly counted as the CCW direction is modelled as
σfishRobot · XCW(t) · FCW(t); and the number of fish swimming in
CCW but mistakenly counted as the CW direction is σfishRobot ·

XCCW(t) · FCCW(t).
Figures 10D,E show the dynamics of this closed-loop system,

exhibiting a high correlation between the robot and fish group
choices in this closed-loop system (cf. especially Figures 10B,C).

Plant and Robot Experimentation
We focus here on the capability of robots to interact with growing
plant shoots (here, the common bean, Phaseolus vulgaris L.).
CASU nodes (i) detected the presence of plants and (ii) altered
the local environment by providing light stimuli. The young
bean shoots bend and favour their growth towards the strongest
incident light in a process called phototropism (see e.g., Christie
and Murphy, 2013). This allows for feedback loops between the
CASUs’ and plants’ behaviours to be constructed.

Two general approaches were followed, different in scale (in
space and time) and precision. (1) A system consisting of a single
board computer with a camera and control over two light sources
together with a single freshly sprouted bean plant was used to
guide the growing shoots to multiple targets in space using image
detection and machine learning (detailed in Hofstadler et al.,
2017). In these experiments, it typically took the bean shoot
2–3 days to grow out of the space monitored by the camera,
corresponding to∼50 cm of bean shoot. We showcase the model
laid out below by simulating such a system. (2) A decentralised
group of plant CASUs was attached to a scaffold that allowed the
plants to climb vertically (Figure 5E). These CASUs can detect
plants that are still below them via IR-distance sensors, and they
can attract these plant shoots to grow towards them with a set
of strong LEDs. In this setting, many individual plants climb up
the scaffold across multiple layers of robots during the course of
∼2 months. A detailed account is given in Wahby et al. (2018).

The Model of Robots and Plants
Plant shoots grow upwards by producing new cells at the tip
(Wang et al., 2018). Below the tip, cells elongate and mature.
This upper zone of a growing stem (roughly the top 10 cm
in beans) is flexible and rotates around the central stem-axis
autonomously, a process called “circumnutation” (Stolarz, 2009;
Mugnai et al., 2015). The plant co-opts and overrides this basic
behaviour to quickly react to environmental cues. If, for example,
light suddenly comes from a different angle, the flexible zone will
quickly bend towards it (by elongating cells on the far side). On a
whole-plant level, multiple growing tips generated via branching
(Barbier et al., 2019) strongly influence each other’s growth
capacity (see e.g., Bennett et al., 2016; Zahadat and Hofstadler,
2019). But here the focus lies solely on the growth and motion of
a single plant tip under the influence of light stimuli.

The presented model describes the dynamics of the flexible
part of a single bean stem Pflex (t) growing through the system
(the biomass of the mature, stiff stem is not considered). Like
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in the honeybee model shown before, space is divided in the
left and right regions that may contain flexible plant mass.
In the following, the subscripts “L” and “R” refer to the left
and right sides, respectively; e.g., Pflex

L (t) indicates the flexible
plant mass on the left side at time t. In contrast to the bee
model, space here has an additional implicit vertical component:
Flexible plant mass enters the system via growth through a central
stock Pstem(t), from where it is divided between Pflex

L (t) and
Pflex

R (t). From there on, flexible plant mass may switch sides
or leave the system. Switching sides in the model corresponds
to bending of the plant stem. An equal distribution of mass
between the left and right means that the plant has grown a
perfectly upright stem.

Combined actuator sensor units above each lateral
compartment detect plants below themselves and adjust
light emissions accordingly, thereby influencing the lateral
movements of the plant tips. These CASUs are not explicitly
modelled; instead, the variable 3(t) models the ratio between
the two light intensities. The outgrowth terms correspond to the
amounts of plant biomass that grows out of our model’s reference
frame over time. Consequently, the plant biomass changes in the
three modelled state variables are given by balancing the flows
between them in a system of three difference equations2, as is
expressed by

1Pstem

1t
= ingrowth (t)− growthR (t)− growthL (t) , (P-1a)

1Pflex
R

1t = growthR (t)+ switchindiv
R (t)+ switchsocial

R (t)
−switchindiv

L (t)− switchsocial
L (t)− outgrowthR (t) ,

(P-1b)

1Pflex
L

1t = growthL (t)+ switchindiv
L (t)+ switchsocial

L (t)
−switchindiv

R (t)− switchsocial
R (t)− outgrowthL (t) .

(P-1c)

The individual flows of Eqs P-1a–c are detailed in the following
equations. Plant mass enters the system exclusively via a constant
growth rate adding to the system variable Pstem(t):

ingrowth (t) = ρin, (P-2)

where ρin is the growth rate determining the influx into the
system. Next, the already-existing plant biomass in Pstem(t) grows
further upwards and is split into additions to the system variables
that model plant biomass on the left and right sides:

growthR (t) = Pstem(t) / 2, (P-3a)

growthL (t) = Pstem(t) / 2. (P-3b)

2We used the forward Euler integration method instead of the Runge–Kutta
method to solve Eqs P-1a–c; thus, for the plant model, we use difference equation
notation, instead of the differential equation notation that was used for the bee
and fish model. Runge–Kutta integration was precluded by the non-differentiable
binary switching of the lights.

Plant mass can switch between these two sides via two basic
mechanisms: with and without interactions with plant mass on
the contralateral side. The individual phototropic movement
towards the light is modelled as

switchindiv
R (t) = αplant · Xindiv

R (t) · Pflex
L (t) ·3(t) (P-4a)

and

switchindiv
L (t) = αplant · Xindiv

L (t) · Pflex
R (t) · (1−3(t)),

(P-4b)

where αplant is a constant parameter controlling the rate (limited
by the bean kinetics of circumnutation and phototropism)
and two independent, normally distributed noise functions
Xindiv(t) ∼ N(µ = 1, σ = σplant) with the deviation σplant ∈

[0, 1]. The variable 3(t) ∈ [0, 1] models the ratio between the
light intensities on the left and right sides, with the value 0.0
corresponding to all light on the left side. More specifically, the
definition of 3 (t) depends on the capabilities of the used CASUs
and the algorithm running on them (see Eqs P-7–9).

Several studies and models (see e.g., Mugnai et al., 2015)
attribute the observable circumnutation to the fact that within
the growing shoot, cells on opposing sides interact via physical
(mechanical) forces. Cells on one side of the elongation zone
sometimes grow stronger than those on the opposing side. This
asymmetrical growth bends the tip towards the opposing side.
However, bending is limited to some extent by the mechanical
integrity of the plant: It is expected to be easier for the plant
to go from a relaxed (balanced) state to a bent state than to
bend even more when already bent. In consequence, we model
circumnutation as the social part (which involves interactions of
biomass from both sides) of the flows between the sides as

switchsocial
R (t) = βplant · Xsocial

R (t) · Pflex
L (t) · Pflex

R (t), (P-5a)

switchsocial
L (t) = βplant · Xsocial

L (t) · Pflex
L (t) · Pflex

R (t). (P-5b)

Circumnutation is expressed by a normally distributed noise
term Xsocial(t) ∼ N(µ = 1, σ = σplant), which scales a mass-
action-law term [Pflex

L (t) · Pflex
R (t)] to consider the interaction

between groups of cells on opposing sides of the plant. This
scales the noise amplitude in a way that more change is
assumed to arise under balanced conditions and less in already
unbalanced configurations. The constant βplant scales this process
in proportion to the light-following process, which is weighted
by the coefficient αplant (in Eqs P-4a,b). Finally, plant biomass
leaves the system by growing out at the top on each side, which is
modelled as

outgrowthR (t) = ρout · Pflex
R (t), (P-6a)

outgrowthL (t) = ρout · Pflex
L (t), (P-6b)

with ρout expressing a constant growth rate coefficient.
The light ratio variable 3 (t) ∈ [0, 1] models the combined

light output of the two robots in a single dimensionless variable
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that states where light is focused on the horizontal axis of the
system. Physical quantities of light are not explicitly modelled:
When both robots output the same amount of light (even none),
3(t) = 0.5. Values smaller (larger) than 0.5 model indicate shifts
to the left (right). The function generating this value defines
the CASU’s capabilities and how they are employed to enable
feedback loops in the system.

We define a plant inhomogeneity metric ϒ (t) to express the
imbalance between plant biomass on both sides

ϒ(t) = 0.5 ·

(
Pflex

R (t) − Pflex
L (t)

Pflex
R (t) + Pflex

L (t) + 1
+ 1

)
. (P-7)

This inhomogeneity has similar properties as the light
ratio 3(t), i.e., ϒ(t) ∈ (0,1), with 0.5 corresponding to an
equal distribution of plant mass between the two sides.
The division term computes the relative difference between
plants on both sides. However, because of the “+1” in the
denominator, the extreme values 0.0 and 1.0 will never be
produced, hence the open interval. Very small amounts of
total plant mass in the system will produce values close to
the centre, analogous to freshly germinated shoots, which are
physically unable to move away far from the centre due to
their short stem. Increasing plant mass allows for a greater
reach of the tip.

We can also interpret the metric ϒ(t) as a result of the
combined plant detection of the two CASUs, allowing us to
model simple CASU behaviours that impose positive or negative
feedback loops onto the biohybrid system. For example, to model
CASUs that emit more light when they detect more plants, a
positive feedback function for the light ratio 3posFB(t) can be
defined:

3posFB(t) = ϒ(t) + Xdetect(t), (P-8)

with a normally distributed noise function Xdetect(t) ∼
N(µ = 0, σ = σplantCASU) that accounts for imperfect plant
detection by the CASUs. Systems with a light ratio computed this
way will only fluctuate shortly (due to the random noise in plant
mass movements and plant detection), before concentrating all
plant mass on one side. Similarly, the negative feedback function
3negFB(t) can be modelled by simply mirroring the plant ratio
ϒ(t):

3negFB(t) = 1− ϒ(t) + Xdetect(t), (P-9)

Here, detected plant mass decreases the light output
of a robot. This leads to systems where plant mass is
equally distributed between both sides in the long run, with
deviations from a perfectly adequate light ratio only due to
the detection noise Xdetect(t). Noise in plant motion (Xsocial (t)
and Xindiv(t)) causes additional fluctuations around an equal
distribution of plant mass.

A value of 3 (t) other than 0.0, 0.5, or 1.0 does not
necessarily mean that the CASUs need to be able to modify
the intensity of the light they emit but can also be understood
as the ratio between the relative times that each CASU
was switched on within the time window corresponding

to a single time step in our model. Conversely, binary
functions (that return either zero or one) for a given
time step can be defined just as well. Such a binary
function is utilised in the experiment described in the next
section (Eq. P-10).

Experiments With Robots and Plants
We showcase the model mimicking the behaviour of the closed-
loop bean tip controllers artificially evolved in Hofstadler et al.
(2017; Figure 11). The task is to guide a single growing and
nutating tip through specific targets on the 2D plane of the
camera projection during its (growth-)journey through the
image. The two light sources in the system are both binary
(either on or off) and mutually exclusive (one and only one
is on at any given time). The plant tip is detected continually
by image processing, and its position—along with the current
target position—is passed to an artificial neural network that
decides which side to light up. The light-emitting behaviour
of the CASU control software that was retrieved by artificial
evolution is simple: if the plant tip below is detected left of the
current target, then turn on the right light and vice versa. Here,
we directly implement this rule in the definition of the light
ratio 3(t).

To scale the model to the dimensions of the experiment, we
first interpret the time axis as an approximation of the vertical
position of the bean tip (assuming a constant growth rate and
ignoring geometrical constraints caused by bean stems curved in
3D space). Second, we treat the inhomogeneity metric of flexible
plant mass ϒ(t), as defined in Eq. P-7, as the current horizontal
position of the tip.

The target’s horizontal position 0(t) is defined in the scale of
the plant inhomogeneity metric ϒ(t) ∈ (0, 1) and then mapped
to the time axis (in minutes) such that 0(t) = 0.85 while 0 ≤
t ≤ 640, 0 (t) = 0.2 while 641 ≤ t ≤ 880, and 0(t) = 0.5 while
881 ≤ t ≤ 1,200. To mimic the behaviour of the artificially
evolved tip-guiding controller, we define the light ratio function
3(t) as

3(t) =
{

1
0
· · · if ϒ (t) < 0(t)
· · · else

. (P-10)

If the plant tip (ϒ(t)) is left of the target’s horizontal position
0(t), switch on the right light and vice versa. We do not include a
term for the detection error Xdetect(t), because in the experiments
modelled here, the tip detection via image processing worked
almost perfectly.

The simulation starts with all system variables empty [i.e.,
Pstem(0) = Pflex

L (0) = Pflex
R (0) = 0.0] and runs until time step t =

1,200.
An exemplary run of the simulation (with the parameters

given in Figure 2C) is shown in Figure 11 next to the
recorded history of a bean plant controlled by a neural
network artificially evolved in Hofstadler et al. (2017). The
model successfully produces trajectories closely resembling
those of real plants in the showcased scenario, with larger
variations in horizontal tip position, when the target is
located centrally.
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FIGURE 11 | Plant experiment and simulation of binary light control guiding a plant tip to hit three targets (shown with red crosses) during growth. (A) The image is
compiled from five different time steps of an experiment reported in Hofstadler et al. (2017). For each time step shown, the bean is mapped to a different colour; the
tip’s trajectory through the 2D projection plane of the images throughout the experiment is overlaid (in yellow when the light comes from the left, and blue otherwise).
The emerging seedling is shown in yellow (bottom centre). In magenta, we see the bean when the plant tip was first detected. This marks the beginning of phase I,
where light mainly comes from the right side in order to keep the bean below the first target (at a height of 9 and 4 cm to the right) until it is reached (red bean). In
phase II, the bean is guided to the second target (height = 12 cm, 3.5 cm to the left) on the left. Note the fast reaction (∼15 min) indicated by the yellow curve of the
trajectory from the first target towards the left side, when the light regime changes. Thereafter, phase II is again characterised by the typical oscillations (due to
circumnutation) below the target until it is reached (blue bean). In phase III, the target is located centrally (height = 17 cm), leading to frequent light switching and
larger horizontal movements of the tip. The bean drawn in green has reached this final target. (B) A simulation run of the plant model (with parameters according to
Figure 2C). The vertical axis represents time (at 1-min resolution), instead of the actual position projected onto the image plane. The targets have been placed
according to the simplification of a linear conversion of time into height (ignoring geometrical constraints and assuming a constant growth rate). This implies that no
downward motion of the tip is to be expected, since time progresses linearly in our model. Our model aims to describe a plant tip’s behaviour from germination
onwards, while in the experiments with real plants, tip detection only kicked in at a height of ∼3.5 cm. There is thus no basis for a comparison for these early time
steps. Furthermore, the model’s parameters are not tuned to accurately represent this very early phase of growth. During phases I–III, behaviours very similar
(qualitatively) to those of the real plants can be observed. Keeping the tip below targets far from the central axis requires light from the according direction most of
the time. The final and central target allows for larger horizontal motion and requires frequent shifts in light direction to keep the tip in position, as observed in the real
plants in (A).

The Next Step: Leaving the Lab and
Bringing the Robots Into the Wild
To achieve our goal of stabilising ecosystems, the robots will
have to leave the controlled laboratory conditions and interact
with ecological keystone species in natural environments. The
stimuli that were tested under laboratory conditions can serve
as a starting point to allow the robots to interact with the
animals. However, we assume that these stimulus patterns will
then need to be further optimised to work in this out-of-the-
lab context. Here, we show that influencing the decision making
of an entire colony of honeybees is also possible outside of
laboratory conditions. We take advantage of the dual nature
of managed honeybee colonies: on the one hand, the western
honeybee is a farm animal, bred for economic purposes, and
cannot be considered a completely wild animal. Thus, many
aspects of the colonies’ lives are already highly controlled by

humans (e.g., hive location, hive volume and materials of
the beehive); on the other hand, the animals live very self-
sufficiently compared with other farm animals and organise
and control themselves to a large extent autonomously (e.g.,
foraging location, foraging plant, and internal hive organisation).
Therefore, we work with animals outside of laboratory conditions
that have access to a natural habitat and interact with wild plants
and animals, but still under relatively controlled conditions. The
experiments described in this section show how subtle physical
cues generated by technical means can alter the hive-internal
behaviour, while maintaining the free access of the colony to
a natural environment and foraging in the wild. Influencing
certain hive-internal behaviours can directly modulate the
colony’s interaction with the ecosystem. For example, foraging
side information transfer by dance communication can be
inhibited by introducing artificial dance recordings, reducing the
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recruitment of new foraging bees (Kirchner, 1993), or honeybee
flight activity can be suppressed all together by introducing
artificial substrate vibrations (Spangler, 1969).

These experiments pose new challenges: the autonomous
technical artefacts not only have to deliver precise stimuli to
the animals, but they must also evaluate the behaviour of
the animals under difficult conditions and, moreover, must
be integrated into the environment in such a way that the
regular organismic processes are not disturbed. For actively
intervening in a honeybee colony, a more integrated form of
“robot” is required. These robots have to be so pervasive in
the colony that the whole honeycomb becomes a bio-hybrid
robot. In order to achieve such a biohybrid system, we placed
sensors and actuators in-between the areas accessible for bees
(the comb surface). The airflow (900–950 cm3/s) is generated
outside the hive and is introduced into the colony through a
pipe (diameter = 4 mm); the used vibration stimulus patterns
(sine wave, frequency = 1,000 Hz) are generated by thin piezo
elements embedded in the wax comb and temperature stimuli
(energy input = 2 W/comb, power density = 0.0053 W/cm2)
are achieved by flat thermal elements in combination with
small temperature sensors also embedded in the comb. More
detailed diagrams of the experimental set-ups and additional
information are given in Figures 12A–D. Figures 13A–I show the
observed effects of these three stimulus types on an augmented
honeycomb in a full honeybee colony. The airflow stimulus is
shown to temporarily displace bees from certain locations on
the honeycomb; the vibration stimulus is shown to influence
the honeybees’ movement activity; and artificial energy input
at certain positions of the comb is shown to influence the
brood nest position. This system could allow to interrupt
the dancing behaviour (by airflow or vibration stimuli) and
thus alter the transfer of various sources of environmental
information from outside the hive to the colony. Inhibiting
certain behaviours could also lead to the increase of forager
recruitment, in turn increasing pollination flights. The queen
can also be prevented from laying eggs in the short term or
at a specific location (either by airflow or vibration stimuli), or
egg laying can be influenced in the long term by influencing
in-hive temperatures. This in turn can modulate the growth
of the bee colony.

These experiments show that, as a first step towards ecosystem
stabilisation, in a full honeybee colony and outside of laboratory
conditions, artificial stimuli can be used to influence certain
behaviours of individual bees (through airflow or vibration
stimuli) and of the colony as a whole (through artificial
energy input). These honeybee behaviours that are responsive to
robotic influence are related to the honeybee interactions with
their ecosystem.

DISCUSSION

Human well-being crucially depends on strong, healthy and
diverse ecosystems. The services that ecosystems offer us
range from providing food from primary producers and from
higher trophic layers to protecting our soils and cleaning our

waters. They provide us with pharmaceuticals, energy, waste
decomposition, climate regulation, and pest and disease control.
And, last but not the least, they give us joy and inspiration,
which we get from experiencing them all around us, inspiring
us to arts and even science itself. For a sophisticated overview
of dependencies between human society and ecosystem services,
see Corvalan et al. (2005).

In this article, we described the severe problem of today’s
ecosystem decay, and we identified central processes that are
coupled in a vicious-cycle-type feedback loop that likely makes
this problem auto-catalysing (Figure 1) as our key motivation
to develop the hypothesis that autonomous robots could play
an active role in slowing down or even reversing this decay
in the future. In order to act in such a role, these robots
will need to interact with living organisms in a way that
allows them to influence the behaviour of groups or even
populations of their living counterparts in a desired way. Thus,
in some sense, these robots need to exert control over their
organismic counterparts. We identified that social interaction
might be one of the key factors here, as social systems tend
to be self-organising systems where modest modulation of a
few actors (Halloy et al., 2007; Bonnet et al., 2018) or of some
small-scale local environment (Bonnet et al., 2019) can already
change the collective local densities, which is known to be
a fundamental factor in ecological interactions: It is a long-
established fact that systems like predator–prey systems (Lotka,
1925; Volterra, 1926), host–parasite systems (Anderson and May,
1978), epidemic spread dynamics (Kermack and McKendrick,
1927), intra-specific competition (Verhulst, 1845), and inter-
specific competition (Smale, 1976) are strongly driven by local
population densities, not only affecting population dynamics
but also relevant for their future configuration through natural
selection (Hardin, 1960). In short, there is no ecologically relevant
interaction amongst organisms that is not affected by the local
density distributions of organisms. Recently, the field of robot–
animal interaction studies has bloomed, also highlighting that
robots are capable of affecting especially this factor, either by
modulating aggregations or dispersal, or by directly influencing
an organism’s motion behaviour.

Importantly, this characterisation highlights interesting
pivotal points for novel types of intervention. We outlined how
technological systems (autonomous robots and CASU arrays)
interacting with biological collectives (swarms, societies, and
communities) are able to influence specific natural processes
(coordination, aggregation, growth, and activity levels), which
ultimately affect ecosystem dynamics and stability. Thus,
these technological artefacts may act upon the causal loop of
ecosystem stability or decay. We outlined general approaches
for bio-hybrid systems’ design, as well as the state of the art
in the relevant scientific and technological progress. While
we have not shown robots that actually repair ecosystems in
the field in this study, we have been investigating the main
prerequisites here to support our key hypothesis of possible
robotic ecosystem stabilisation.

We demonstrated that robotic agents can modulate key
organismic behaviours in a way that our family of models
can predict concerning the collective dynamics across several
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FIGURE 12 | Set-up diagrams of three stimulus types used to influence the decision making of honeybees in a full colony. (A) Set-up for guided dispersal through
airflow: (a) camera, (b) observation hive with airflow inlet, and (c) compressor. (B) Set-up for activity modulation by vibration signals: (a) camera, (d) observation hive
equipped with piezo transducer, (e) stimulus generator, and (f) amplifier. (C) Set-up for influencing clustering behaviour through temperature signals: (a) camera, (g)
observation hive equipped with heating elements, and (h) laboratory power supply. (D) Idealised stimulus time plot of (i) airflow, (j) vibration, and (k) energy input;
actuation duration for airflow and vibration was 10 s, for heating 6 months.

empirical studies involving diverse species. Importantly, all
three models share the same core structure to describe
changes in decision making, comprising individual, and social
processes. This commonality amongst the models indicates the
feasibility of a more general application of such an organismic
augmentation of natural societies with robotic agents in as-yet
unexamined species, provided that analogous social dynamics
and generatable signals can be identified. Additionally, the
preliminary work towards modulating “wilder”3 systems lends
support to the technical feasibility of short- or long-term animal–
robot interaction outside of laboratory environments, which
could also be used as a bridge to exchange information
between various ecosystems (Bonnet et al., 2019). Together,
these prerequisites begin to form the foundations of a
technology to allow us to test our key hypothesis: autonomous
robotic agents can take a vital role in the preservation
and stabilisation and maybe even in the repair of our
precious ecosystems.

The first logical step towards rescuing ecosystems is not,
of course, to just throw some robots at the problem. Instead,

3We discriminate between “in the lab” experiments, which we analysed and
modelled here, and “in the wild” applications, which we target in our current
research tracks, based on the results that the previously conducted laboratory
experiments yielded.

as many studies suggest, the first contingency policy must
be altering human behaviour and collecting insights into
the relevant ecosystems, and also into the relevant socio-
economic systems that affect these ecosystems (Corvalan et al.,
2005). For both, mathematical modelling, simulation and
complexity science are important fields to understand these
systems. Using automatic robotic probes for environmental
monitoring (Schofield et al., 2010; Whitehead et al., 2014;
Thenius et al., 2018) and population estimation (Le Maho et al.,
2014; Vas et al., 2015) can be the first line of a robotics-
based defence.

Robotic technologies have already been applied in ecological
concerns, ranging from application of commercial drones
(e.g., Vas et al., 2015) to special-purpose robot swarms
(e.g., Thenius et al., 2018). In the latter, a swarm of (100+)
autonomous robots was developed as a novel tool to observe
large lagoon areas, even urban ones like the Venice lagoon.
In this system, each robot is capable of reacting to its past
measurements and potentially repositioning the swarm towards
more interesting locations. These robots interact with microbial
life forms in order to generate the required energy and, thus, are
self-sustained for long operational times in an environmentally
friendly way (Donati et al., 2017; Thenius et al., 2018). Using
mud as an energy source enabled autonomous operation for
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FIGURE 13 | Effects of three stimulus types, which were first investigated on honeybees under laboratory conditions, now employed in the context of a full beehive
in the wild. Subfigures show the effect of these stimuli in a “before/after” type comparison. (A–C) The guided dispersal through airflow: (A) the distribution of bees
before the stimulus, (B) how the bees react to the stimulus (the arrow shows the location of the airflow), and (C) the bee redistribution after the stimulus has ended.
(D,E) The activity modulation by vibration signals, visualising the movement on the honeycomb over three points in time (with a difference of approximately 2 s). Each
colour channel (red, green, and blue) represents the bee positions at one point in time. A lot of movement results in a colourful picture; few movement results in a
dark picture. (D) Normal movement on the honeycomb over a timespan of 4 s, no artificial vibrational signal. (E) A 1,000-Hz vibration signal that leads to significantly
less movement over 4 s. (F,G) Influencing behaviour through temperature signals: (F) shows the bee distribution on a comb without active heat supply (day 0), bees
are distributed over the entire honeycomb, (G) the distribution of the brood nest area, bright spots indicate capped brood cells containing larvae, distributed over the
entire honeycomb (day 150). (H) The bee distribution on a comb with active heat supply on the left side (marked red, day 150); bees are mainly on the left
honeycomb side. (I) The distribution of the brood nest area after active heat supply on the left side; bright spots indicate capped brood cells, predominantly on the
left side of the comb (day 60). (G,I) Cells were made visible by background extraction of a stack of comb photos.

several months (Kumar et al., 2018), a very interesting and
eco-friendly power supply method for robots in the context
we discuss here.

However, just monitoring and analysing might not be enough.
At some point, intervention might be a necessary step in the
contingency. There are alternatives to using autonomous robots;
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FIGURE 14 | Summary of the work process that we suggest for developing ecologically relevant autonomous robotics. (A) Observing the interaction patterns of
organisms. (B) Studying their reactions to stimuli emitted by robots and also the robot’s sensing capabilities for relevant environmental configurations. (C) Describing
these interactions in small-scale specific models to identify relevant core principles that can be used for larger-scale pattern formation. (D) Scaling these models up
to larger, thus more relevant, sizes. (E) Testing scaled-up pattern formation in specific hardware equipment under laboratory conditions in order to test the validity of
the scaled models. Finally applying the behavioural modulation on the targeted size- and time-range (in our case a full honeybee comb over weeks or months) to
employ specific stimulus patterns to be used to interact with the target organism population, e.g., comb vibration (F) or temperature distributions (G).

however, the ones most often discussed are not unproblematic:
Genetic alteration of existing species is one contingency often
discussed but also often criticised due to the dangers that come
with it (Marvier, 2001; Devlin et al., 2015). Sometimes, ecosystem
restructuring is discussed (and partially already done) by bringing
specific species from other habitats in order to achieve desired
effects, for example, in “biological pest control” (Hajek and
Eilenberg, 2018). However, as we have learned from a rich
history of problems that occurred with invasive species, also this
contingency strategy is a dangerous path to go (Simberloff and
Stiling, 1996; Henneman and Memmott, 2001). One imminent
threat is that in both of these cases the “ecological agents” are
capable of reproducing and adapting, and thus they are capable of
spreading in an uncontrolled manner and, in parallel, of altering
their original properties in the novel environment over time.
This is a risk that does not exist in robotics, as the production
of these devices can be centralised in contrast to decentralised

self-reproduction of organisms, and updates can be deployed
rapidly in the field via GSM or other technology, eliminating
mal-adaptations as soon as they are detected. However, it will
require solving other problems: The first relates to long-term
robotics in the field (Yang et al., 2018), such as material recycling,
self-repair (Kriegman et al., 2019), and self-healing (Terryn
et al., 2017), which aim to maintain functionality even if failures
occur or reduce the risks of failure while deployed, sources
and storage of energy (Kumar et al., 2018), and in principle a
more environmentally friendly and sustainable set of materials
and technology. In this last respect, advances in manufacturing
and materials sciences such as the use of organic substrates
in semiconductors (Torsi et al., 2013) and computing elements
(van de Burgt et al., 2018), and recent techniques combining
3D printing of ceramics and moulding of more biocompatible
materials (Puppi and Chiellini, 2020) are all promising directions.
The second relates to biocompatibility, which is essential for
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the robotic agents to successfully intervene in an ecosystem
(Baumgartner et al., 2020). Third, focussing on one keystone
species, as we have argued, is the natural place to start, but more
complex networks of biology and technology are likely necessary.

Even though a robotic ecological agent does not suffer from
the same issues as the biological interventions discussed above,
the use of technology in ecology raises several ethical concerns.
It is thus essential to be clear about the methods to be used.
Measuring stress levels and welfare in animals is a non-trivial
task (Dawkins, 2003), and although it is certainly on the mind
of some designers of bio-interacting robots (e.g., Le Maho et al.,
2014; Vas et al., 2015), systemic ethical treatments are rare,
as they are still in their infancy (Donhauser et al., 2020). We
have argued above for robots to only emit stimulus types and
intensities that occur in the organism’s natural environment and
that have no known negative side effects on the organisms.
This limitation is based not only on ethical considerations
but also on ecological ones. Using stimuli that are outside
this natural range would potentially be incompatible with the
perception and response capabilities of the individual and could
potentially bring the society into a state that is unknown
and not coherent with its ecosystem, which is exactly what
we try to avoid.

As soon as the plan is to leave the controlled environment, e.g.,
the lab, and to take the robots out into the wild, more ethical
considerations must be made. There are questions regarding
who is responsible in the case of a system failure (Grémillet
et al., 2012) or for maintaining technology that supports an
ecosystem (Donhauser et al., 2020). Moreover, the potential
disturbance caused by robotic devices during their operation
(Le Maho et al., 2014) and after a system failure (Borrelle and
Fletcher, 2017) are important concerns, which may be partially
addressed through biocompatible design and biodegradable
material choices, as noted above. There are some valuable
lessons from the retrieval of bio-sensors after deployment (see
e.g., Fossette et al., 2016). More generally, self-monitoring and
identification of system degradation could be used to trigger
a retrieval of the robot before failures result in unrecoverable
devices polluting the environment intended to be supported.
Although a robot’s ability to integrate into biological societies
is usually emphasised (e.g., Papaspyros et al., 2019), a mode in
which the reverse is emphasised, i.e., a non-influencing mode,
could be employed to depart an animal collective with minimal
disruption. Even more fundamental questions have to be asked
and answered in future research: Do we understand enough
about the effects that populations, modulated by robots, will
have in the environment? Can we observe what is going on,
in order to monitor the efficiency of the new biohybrid system
and to detect potential side effects? Can the system be restored
to full self-sufficiency, and if so, what is the exit strategy? Else,
how can we avoid the development—and possibly evolution—
of a deepening dependency of the natural system on the robots?
Is there a sufficient benefit to justify robotic intervention in
the ecosystem, compared with the risks mentioned above that
this intervention could induce on the ecosystem? For answering
these questions, a profound knowledge of the modulated species
and their ecological interaction partners is crucial, demanding

sophisticated basic research on the physiology and ecology of
these species and their interaction partners.

Social interaction offers an easy entry point for robots that
they can exploit to engage with natural organisms. By modulating
these social interactions, ecological key variables can very easily
be affected, most prominently population densities, which in
turn affect competition rates, mate-finding rates, and also the
spreadi of parasites or infectious diseases. Each of these issues has
received attention, but much is left to be done. Thus, modelling
the modulation of social interactions by autonomous robotic
systems is a key aspect to understand and predict such biohybrid
interaction systems.

All three models that we have developed for predicting the
dynamics emerging in the investigated biohybrid systems of
robots associated with bees, fish, and plants have significant
similarities amongst them, suggesting a sort of “common core”
mechanism across this very diverse spectrum of organisms.
Abstract ODE models of such systems have been used only
rarely in the past, e.g., for describing a bio-hybrid set-up of
cockroaches and robots (Halloy et al., 2007); however, our models
presented here are significantly simpler given their level of
non-linearity and the number of parameters to describe the
animals’ behaviours, mainly describing a sort of homeostasis-
like regulated system of diffusion of organisms. Despite some
organism-specific differences, the striking similarity between all
three models suggests that we have encapsulated a core principle
of organismic population density control that can be used to allow
robots to manipulate local organism densities.

Simplicity and Wide Application: Besides being all systems of
ODEs that are numerically solved (see Figure 2E) that describe
collective binary decision making (bees left vs. bees right, fish CW
vs. fish CCW, and plants left vs. plants right; see Figures 2A–
C,F), our three models all ensure conservation of mass within
the reference frame they describe. The bee model and the fish
model are both totally closed systems; and the plant model
has one defined entry (source) and two defined exit points
(sinks), and full mass conservation between these processes.
When applied to larger populations on the long term, there will
surely be a need to extend these models to allow additional
biomass influx (reproduction) and outflux (death) with respect
to the modelled systems. The basic model structure (Figure 2F)
allows for separating specific ecologically relevant behavioural
processes within the natural organism populations. For example,
by adjusting the ratio of α : β, the specific contribution of
individual (α) and social behaviour (β) can be adjusted in the
systems in all modelled species. These parameters govern the
weight of terms that are modelling natural processes that are
affected by noise and the relevant stimuli (see Figures 2D,F).
In each of the social interaction equations of the different
organism groups (Eqs B-3, F-6, P-5), there are two constant
parameters that define the ratio of exploitative (β) and explorative
behavioural components (σ). Adjusting the ratios of β : σ allows
the model to capture the exploitation–exploration trade-off of
specific organism groups or species. In consequence, by varying
the ratio of all three parameters together, α : β : σ, the model
can predict the ultimate macroscopic effects of a rich set of
microscopic behavioural repertoires in a rather simple system
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of ODEs, including the modelling of the effect of robotic actors
within the system. These striking similarities between all three
models suggest that we have encapsulated a core principle of
organismic population density control that can be used to allow
robots to manipulate local organism densities. The simplicity
of the modelling approach is also valuable because it can guide
what factors robots should modulate and in which direction. For
example, a mechanism for guided aggregation will adjust the
social switching parameter, while guided locomotion could affect
the β : σ ratio.

Downsides of Simplicity: The simple approach to modelling
naturally yields some limitations in how much of the dynamics
can be captured. As is the case with most ODE models, no
population structure is modelled; i.e., it is considered as freely
mixed, for example, concerning age, sex, health, and other
physiological states. The broad trends are well captured, but the
variability that typifies organismic behaviour is not present in the
model results presented above. We consider this to be one of the
main reasons why our model predicts a significant lower variance
in local population dynamics than observed in the empirical
experiments. Typical for ODE models, agents are modelled as
infinitesimally small; thus, effects like traffic jams cannot occur if
not explicitly modelled into the equations. Also typical for ODE
models, interaction and sensing of the modelled entities are not
limited per se to a limited range, again allowing more coherent
action and thus lower variations.

Elsewhere, we have employed individual-based modelling for
some of these bio-hybrid systems that shows more variability
(e.g., Mills et al., 2015; Stefanec et al., 2017a), but at the
cost of generality.

The lack of observable variance predicted in converged
situations of the described systems can also be due to the
simplicity of our model approach. On the one hand, the
model might exhibit a larger variance if it contained a
third stock variable representing the undecided, thus more
diffusing organisms, like it was modelled in Schmickl et al.
(2009a,b) and Kernbach et al. (2009). On the other hand,
even such an extended model can still exhibit a low variance
in its predictions, due to the implicit base assumptions of
ODE models in principle, such as the assumption of optimal
mixing and distribution of the modelled agents in space
within the areas modelled by each system variable. In this
case, a step to spatially explicit individual-based models and
spatially more heterogeneous models, like cellular automata
(Szopek et al., 2017) or multi-agent models (Stefanec et al.,
2017b), might be more suitable to capture the effects of higher
variances that are often observed in natural, and thus physically
manifested, systems.

Actionability: We went beyond the usual benefits of mere
modelling and beyond the three specific biohybrid systems
that we touched in this article. In our methodological
approach, mathematical models of biohybrid systems serve
a significantly deeper purpose: the predictions and analyses
of such mathematical models allowed us to identify which
natural reactions of the organism are the best to be utilised as
“social interaction hooks,” most likely allowing the robots to
blend into the natural organismic system. Thus, these models

suggest promising robot design directives by indicating how the
principles of guided aggregation and guided locomotion can be
implemented as a set of microscopic mechanisms of the robots
in order to exert the desired control of specific macroscopic key
variables of the collective system, e.g., local density or group
motility. These variables are known to have significant effects
on many important ecological processes, such as competition,
reproduction, parasitism, and mutual reciprocity (symbiosis). We
found that the type of mathematical models that we present
here, which are rather simple and thus abstract, already proves
quite helpful, as they sufficiently predict the macroscopic group-
level dynamics emerging from individual microscopic actions
that are executed in parallel and in a distributed manner. Thus,
even such simple models already inform us which variables to
adjust in the individual robots’ behaviours in order to exploit the
appropriate set of cues in the system to ultimately achieve the
desired group-level dynamics and system properties.

Scalability: In our article, we have first described small-scale
experiments that were conducted in the form of binary decisions.
This is the smallest relevant system, as its state space can be
compressed into 1 bit of information in order to sufficiently
describe it. These small-scale experimental models allowed us to
generate small-scale mathematical models that were sufficiently
accurate in predicting the systems’ final state and the time
dynamics of state changes. These building blocks can then be
used to find out which physical properties have relevant effects
that will potentially also operate on the larger scale. This scaling-
up prediction can be derived from using our simple systems
of ODEs to construct larger systems of ODEs. Such a model
would take a “system of systems” perspective of a larger space.
For example, the model could arrange the ODE-based building
blocks into a lattice where each node in the lattice is one small-
scale ODE system that is interacting with its local neighbour
systems via diffusion flows. These flows can represent the motion
(taxis or tropisms) of the modelled organisms. After appropriate
robotic regimes for the desired pattern formation induced within
the organismic population were found, these principles can be
tested under laboratory conditions by larger robot swarms or
arrays to see if they also work as expected in a larger-scale
physical implementation. Finally, such systems can be applied
with organisms that interact with other organisms “in the wild,”
as we demonstrated with honeybees as a proof of principle in
section “The Next Step: Leaving the Lab and Bringing the Robots
Into the Wild.” Figure 14 gives an overview of a 10+ years’
research track that we started with simple honeybee experiments
with young baby bees in laboratory conditions with two fixed
heat lamp spots or with two simple vibration motors taken from
cell phones (Figure 14A, diverse other set-ups not shown here;
see for example, Scheiner et al., 2013), via a robot that can
emit such stimuli autonomously and can exhibit its own agency
(Figure 14B), to a model of two such robots (Figure 14C), to
a scaled-up model depicting the dynamics across larger areas
(Figure 14D), to a full array of 64 autonomously acting robots
(Figure 14E), to finally be implemented on combs of a full-
fledged honeybee colony that successfully forages for pollen and
nectar in the environment being affected via a comb-embedded
system of such stimuli—emitters and sensors (Figures 14F,G).
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Having such autonomous robots weaving additional and
controllable interaction threads into the fabric of natural
ecosystems might, in the future, allow the stabilisation of
endangered ecosystems that lost their intrinsic resilience due
to anthropogenic influences like global warming, industrial
pollution, over-harvesting, or massive farming. To get such
biohybrid systems operational and exhibiting the desired
ecological effect without a human in the loop curating the system
will be an extremely challenging task. It will require important
progress in robotic biocompatibility, autonomy, flexibility, and
energetic efficiency, as well as towards robotic robustness and
resilience. In contrast to almost all technical artefacts that we
know of today, natural organisms can heal, reproduce, and
adapt. All these features help them to survive in the wild
and are thus crucial for spreading and covering large habitats.
The state of the art in autonomous robotics in these domains
is far from a level of sophistication that would allow us to
spread robots without human intervention and curation on a
comparable long-term and large scale. Ultimately, the creation
of such ecosystem-stabilising robotic systems is a far-reaching
goal, which we all hope not to be needed in the end, as we
hopefully manage to stabilise and repair our earth’s ecosystems
with more conventional methods. However, if we will need
such a technology to save or support our ecosystems, the
relevant research is just in its early stages, and producing
effective robots might take decades of research. To operate such
systems safely for humans and for nature, we think that much
research on organisms, robots, and algorithms is still required.
In our opinion, research in these topics must expand now, in
the context of allowing robots to operate in natural habitats,
for us to be ready to employ them in case we might need
them in the future.
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