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Biology has changed radically in the past two decades, growing from a purely descriptive

science into also a design science. The availability of tools that enable the precise

modification of cells, as well as the ability to collect large amounts of multimodal data,

open the possibility of sophisticated bioengineering to produce fuels, specialty and

commodity chemicals, materials, and other renewable bioproducts. However, despite

new tools and exponentially increasing data volumes, synthetic biology cannot yet fulfill

its true potential due to our inability to predict the behavior of biological systems.

Here, we showcase a set of computational tools that, combined, provide the ability to

store, visualize, and leverage multiomics data to predict the outcome of bioengineering

efforts. We show how to upload, visualize, and output multiomics data, as well as

strain information, into online repositories for several isoprenol-producing strain designs.

We then use these data to train machine learning algorithms that recommend new

strain designs that are correctly predicted to improve isoprenol production by 23%.

This demonstration is done by using synthetic data, as provided by a novel library, that

can produce credible multiomics data for testing algorithms and computational tools. In

short, this paper provides a step-by-step tutorial to leverage these computational tools

to improve production in bioengineered strains.
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INTRODUCTION

Synthetic biology represents another step in the development of biology as an engineering
discipline. The application of engineering principles such as standardized genetic parts (Canton
et al., 2008; Müller and Arndt, 2012) or the application of Design-Build-Test-Learn (DBTL)
cycles (Petzold et al., 2015; Nielsen and Keasling, 2016) has transformed genetic and metabolic
engineering in significant ways. Armed with this new engineering framework, synthetic biology
is creating products to tackle societal problems in ways that only biology can enable. Synthetic
biology, for example, is being leveraged to produce renewable biofuels to combat climate change
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(Peralta-Yahya et al., 2012; Beller et al., 2015; Chubukov et al.,
2016), improve crop yields (Roell and Zurbriggen, 2020), combat
the spread of diseases (Kyrou et al., 2018), synthesize medical
drugs (Ajikumar et al., 2010; Paddon and Keasling, 2014),
biomaterials (Bryksin et al., 2014), and plant-based foods (Meat-
free outsells beef, 2019).

However, the development of synthetic biology is hindered
by our inability to predict the results of engineering outcomes.
DNA synthesis and CRISPR-based genetic editing (Ma et al.,
2012; Doudna and Charpentier, 2014) allow us to produce and
change DNA (the working code of the cell) with unparalleled
ease, but we can rarely predict how that modified DNA will
impact cell behavior (Gardner, 2013). As a consequence, it is not
possible to design a cell to fit a desired specification: e.g., have
the cell produce X grams of a specified biofuel or an anticancer
agent. Hence, metabolic engineering is often mired in trial-and-
error approaches that result in very long development times
(Hodgman and Jewett, 2012). In this context, machine learning
has recently appeared as a powerful tool that can provide the
predictive power that bioengineering needs to be effective and
impactful (Carbonell et al., 2019; Radivojević et al., 2020; Zhang
et al., 2020).

Furthermore, although there is a growing abundance of
phenotyping data, the tools to systematically leverage these
data to improve predictive power are lacking. For example,
transcriptomics data has a doubling time of 7 months (Stephens
et al., 2015), and high-throughput techniques for proteomics
(Chen et al., 2019) and metabolomics (Fuhrer and Zamboni,
2015) are becoming increasingly available. Often, metabolic
engineers struggle to synthesize this data deluge into precise
actionable items (e.g., down regulate this gene and knock out this
transcription factor) to obtain their desired goal (e.g., increase
productivity to commercially viable levels).

Here, we showcase how to combine the following existing
tools to leverage omics data and suggest next steps (Figure 1): the
Inventory of Composable Elements (ICE), the Experiment Data
Depot (EDD), the Automated Recommendation Tool (ART), and
Jupyter Notebooks. ICE (Ham et al., 2012) is an open source
repository platform for managing information about DNA parts
and plasmids, proteins, microbial host strains, and plant seeds.
EDD (Morrell et al., 2017) is an open source online repository of
experimental data and metadata. ART (Radivojević et al., 2020;
Zhang et al., 2020) is a library that leverages machine learning
for synthetic biology purposes, providing predictive models
and recommendations for the next set of experiments. Jupyter
notebooks are interactive documents that contain live code,
equations, visualizations, and explanatory text (Project Jupyter |
Home1; IOS Press Ebooks - Jupyter Notebooks) (Kluyver et al.,
2016). When combined, this set of tools can effectively store,
visualize, and leverage synthetic biology data to enable predictive
bioengineering and effective actionable items for the next DBTL
cycle. We will demonstrate this with an example in which we
leverage multiomics data to improve the production of isoprenol,
a potential biofuel (Kang et al., 2019). This multiomics data set

1Project Jupyter | Home. Available online at: https://jupyter.org/ (accessed

September 4, 2020).

FIGURE 1 | Combining several tools to guide metabolic engineering. The

combination of ICE, EDD, and ART provides the ability to store, visualize and

leverage multiomics data to guide bioengineering. Here, we showcase how to

use this collection of tools to improve the production of isoprenol in E. coli for a

simulated data set.

is a synthetic data set (i.e., simulated computationally without
experimental work) generated through the new Omics Mock
Generator (OMG) library. Synthetic data provide the advantage
of easily producing large amounts of multimodal data that would
be prohibitively expensive to produce experimentally. In this
way, we can concentrate this manuscript on the demonstration
of computational tools rather than the details and vagaries of
data collection. The OMG library provides an easily accessible
source of biologically believable data that can be used to test
algorithms and tools systematically. Validation for these tools
with experimental data has already been provided elsewhere (e.g.,
Radivojević et al., 2020; Zhang et al., 2020).

METHODS

Synthetic Data Generator Library (OMG)
The Omics Mock Generator (OMG) library is used to provide
the synthetic multiomics data needed to test the computational
tools described here (Figure 2). Since experimental multiomics
data are expensive and non-trivial to produce, OMG provides
a quick and easy way to produce large amounts of multiomics
data that are based on plausible metabolic assumptions. OMG
creates fluxes based on Flux Balance Analysis (FBA) and growth
rate maximization (Orth et al., 2010), leveraging COBRApy
(Ebrahim et al., 2013). OMG can use any genome-scale model,
but in this case we have used the iJO1366 E. coli genome
scale model, augmented with an isoprenol pathway obtained
from the iMM904 S. cerevisiae model (Notebook A). In order
to obtain proteomics data, we assume that the corresponding
protein expression and gene transcription are linearly related to
the fluxes. We also assume the concentration of metabolites to
be loosely related to the fluxes of the reactions that consume
or produce them (no fluxes → no metabolite): the amount of
metabolite present is assumed to be proportional to the sum of
absolute fluxes coming in and out of the metabolite. Therefore,
although the data provided by OMG is not real, it is more realistic
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FIGURE 2 | Demonstrating ICE, EDD, and ART using synthetic data. For the purposes of the demonstration of how ICE, EDD, and ART work together, we use a

synthetic data set of multiomics data (transcriptomics, proteomics, metabolomics, fluxomics) for several time points created by the Omics Mock Generator (OMG)

library (see Methods section). We start with a base strain (wild type, or WT) that is bioengineered according to several designs (i.e., knockout malate dehydrogenase,

overexpress citrate synthase) suggested by ART. The results are 95 bioengineered strains (BE1, BE2… etc.) for which experimental data (isoprenol production levels)

are simulated through OMG and stored in EDD and ICE. These data are then leveraged by ART to recommend, using machine learning, new designs that are

expected to improve isoprenol production (REC1, REC2, …). These recommendations and production predictions are compared with the ground truth provided by

OMG. Each of these steps (in orange) is demonstrated through screencasts and Jupyter notebooks (Table 1).

than randomly generated data, providing a useful resource to test
the scaling of algorithms and computational tools.

The data generated by OMG was used in this manuscript to
test EDD input, output, and visualization, and to provide training
data for ART (Figure 2). This tool can be a very useful resource
for the rapid prototyping of new tools and algorithms.

Generating Flux Time Series Data
Fluxes describe the rates of metabolic reactions in a given
organism, and can be easily generated through FBA. FBA
assumes that the organism is under selective pressure to increase
its growth rate (Orth et al., 2010; Lewis et al., 2012), hence
searching for the fluxes that optimize it. FBA relies on genome-
scale models, which provide a comprehensive description of
all known genetically encoded metabolic reactions (Thiele and
Palsson, 2010). FBA produces fluxes by solving through Linear
Programming (LP) the following optimization problem:

MaximizeVbiomasssubject to :

6jSijVj = 0

lbj ≤ Vj ≤ ubj (1)

where S is the stoichiometry matrix of size m∗n (number of
metabolites∗number of reactions in the model), Vj is the flux for
reaction jwithin themodel (j= 1,...,n). The lower bound (lbj) and
upper bound (ubj) provide the minimum and maximum for each

reaction. For example, if the input carbon source is glucose and
we know that the input in a given time lapse is−15 mmol/gdw/h,
the upper bound and lower bound for the exchange reaction
corresponding to glucose are set to this value: −15 < VEX_glc

< −15. The solution to this optimization problem provides the
fluxes that maximize growth rate, and that will be used later on
to obtain transcriptomics, proteomics and metabolomics data.
However, one must be aware that this optimization problem is
underdetermined, and there are multiple solutions that satisfy
exchange flux constraints.

We create time series of fluxes by doing a batch simulation
based on FBA (see OMG library and Notebook A). We assume a
given concentration for extracellular metabolites (e.g., 22mM of
glucose, or 18mM of ammonium) and, for each time point, we
run FBA for the model and update the extracellular metabolite
concentration based on the exchange fluxes coming from the
simulation (see Notebook A). For example, if an exchange flux
of V_EX_glc_D = −15 mmol/gdw/hr is obtained for the model,
the corresponding glucose concentration is adjusted as follows:

[glc_D]new = [glc_D]old − 15mmol/gdw/hr · 1t · [cell]

Where [glc_D]old is the old glucose concentration, [glc_D]new
is the updated concentration, 1t is the time change and [cell]
is the cell concentration. In practice, we assume that the cell
density increase is better described by an exponential than a
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linear relationship, and 1t ·
[

cell
]

is substituted by 1[cell]/µ,
where µ is the growth rate: µ = 1/[cell] · 1[cell]/1t. The
simulation proceeds until the carbon source (e.g., glucose) is
exhausted. The result of the simulation is a set of fluxes, cell
concentration and extracellular metabolite concentration for
each time point (see Figure 3). The fluxes will be the base for
calculating transcriptomics, proteomics, and metabolomics data,
as shown below.

Generating Proteomics Data
The flux values obtained from FBA are subsequently used to
generate proteomics data, which describe the concentration
of the protein catalyzing a given reaction within the
host organism. The protein concentration for each time
point is derived from the corresponding fluxes through a
linear relationship:

Pj = Vj/k + β (2)

which is loosely inspired in the Michaelis-Menten equation
(Heinrich and Schuster, 1996), where Vj is the flux of reaction
j, Pj is the concentration of the protein catalyzing the reaction j,
and k is a linear constant arbitrarily set to 0.1. The symbol β is an
added random noise which is set to 5% of the signal.

Generating Transcriptomics Data
The aforementioned proteomics values are subsequently used
to generate transcriptomics data, which describe the abundance
of RNA transcripts linked to a given protein within the host
organism. For simplicity, the transcript data is assumed to have a
linear relationship with the proteomics data:

Tj = Pj/q+ γ (3)

where Tj is the abundance of RNA transcripts linked to the
reaction j, and q is a linear constant arbitrarily set to 0.833. As
above, γ is a random noise addition set to 5% of the signal data.
This calculation is performed for each time point.

Generating Metabolomics Data
The flux values obtained from the FBA are also used to generate
the metabolomics data, which describe the concentration of a
given metabolite within the host organism. While finding the
metabolite concentrations compatible with a given metabolic
flux, protein concentrations, and transcript levels is a non-trivial
endeavor, here we attempt to produce metabolite profiles that are
not obviously unreasonable. Hence, we want concentrations of
zero for metabolites that are connected to fluxes that are null,
and non-zero in any other case. The easiest way to achieve this
is by averaging the absolute value of all the fluxes producing or
consuming the desired metabolite:

Mi = 6j|SijVj| /n (4)

where Mi is the concentration of the metabolite i, j is a reaction
that involves metabolite i, and n is the total number of reactions

in which metabolite i participates. This calculation is performed
for each time point.

Generating Training Data for Machine
Learning and Testing Predictions
We leverage the OMG library to create training data to showcase
the use of ART to guide bioengineering (Figure 2). We will first
create multiomics (transcriptomics, proteomics, metabolomics),
cell concentration, and extracellular metabolite concentration
data for the wild type E. coli strain (WT). Then we will use
ART to suggest initial WT modifications (designs) so as to create
enough data to train ART to be predictive. Those initial designs
will be used by OMG to simulate isoprenol production data
for bioengineered strains that include the genetic modifications
indicated by the initial designs. ART will be trained on these data,
and then used to suggest strain modifications that are predicted
to increase isoprenol production. We will then compare ART
predictions for isoprenol production with the “observed” results
produced by using those designs to simulate bioengineered
strains through OMG. In sum, OMG results are used as ground
truth to be leveraged in testing ART’s performance.

This process involves the following phases:

1. Choosing input and response variables. Since the objective
is to improve production of isoprenol, we use isoprenol
concentration as the response variable. By inspecting the E.
coli network we choose the following fluxes connected to
acetyl-CoA, which is the source for the isoprenol pathway:
ACCOAC, MDH, PTAr, CS, ACACT1r, PPC, PPCK, PFL.
These fluxes then form the set of input variables for ART
(Radivojević et al., 2020).

2. Representation of different strain designs (i.e., genetic

modifications). We will consider only two types of
modifications for each flux: knock-out (KO) and doubling
the flux (UP). This choice results in three categories for each
of the fluxes, which additionally include no modification
(NoMod). We denote these categories by 0, 1, and 2 for KO,
NoMod, and UP, respectively. Considering eight fluxes and
three options for design of each, the total number of possible
designs is 38 = 6,561.

3. Choose training data size. We choose the initial training
data to consist of 96 nonequivalent designs (instances),
including theWT strain. This choice mimics one 96-well plate
run. Different designs (instances) here represent different
engineered strains. These 96 designs represent about 1.46% of
all design space.

4. Generate initial designs. Initial designs are generated using
ART’s feature for generating recommendations for the initial
cycle, by setting its input parameter initial_cycle to
True. This ART functionality relies on the Latin Hypercube
method (McKay et al., 1979), which spaces out draws in a way
that ensures the set of samples represents the variability of
the full design space. Another parameter needed for ART is
num_recommendations, which we set to 95 (see point 3
above). See the ART publication (Radivojević et al., 2020) for
a list of other optional parameters. As the current version of
ART deals only with continuous variables for the initial cycle,
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FIGURE 3 | Visualizing data in EDD. EDD provides data visualization in the form of bar and line charts. The lower menu provides filtering options to facilitate

comparison of lines. More sophisticated visualization can be achieved by pulling the data from EDD through the REST API.

FIGURE 4 | Generating multiomics time series data. For each time point, we

generate fluxes by solving an FBA problem, until glucose is fully consumed.

MOMA is used in conjunction with the design (e.g., increase MDH flux 2-fold,

knock CS out, maintain PTAr) to predict fluxes for the strain bioengineered

according to the design.

ART’s recommendations will be drawn from interval [0, 1],
which is the default interval if no specific upper and lower
bounds are provided in a separate file.We then transform each
of those values into one of the defined categories {0, 1, 2} by

applying the function f(x) = 3∗floor(x). Finally, we add a WT
strain design {1,1,. . . ,1}. See Jupyter Notebook B for the details.

5. Generate production data for the initial designs. The initial
designs from ART are used as input to the OMG library,
generating our “ground truth” for the isoprenol production
levels for each of the initial designs. This represents the
strain construction and the corresponding phenotyping
experiments, which are simulated throughOMG’smechanistic
modeling. In order to simulate how production is affected
by the genetic changes suggested in the designs (e.g., knock
out MDH, upregulate PFL and do not change CS), we used
MOMA (Segrè et al., 2002) for each of the time points in the
flux series (Figure 4). Details can be found in Notebook C.

6. Training ART with initial production data. ART uses the
initial designs and their corresponding productions from
phases 4 and 5 to train, enabling it to predict isoprenol
production for designs it has not seen. Details can be found
in Jupyter Notebook D.

7. Generate next-cycle design recommendations using ART.
Once trained, ART generates 10 recommendations that
are expected to improve isoprenol production. Predictions
are generated for each recommendation in the form of
probability distributions (Figure 5). Details can be found in
Notebook D.

8. Compare ART predictions to ground truth. Finally,
we take ART’s design recommendations from phase 7
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FIGURE 5 | Using machine learning to predict production and recommend new designs. The ART library takes a DataFrame containing input designs (i.e., which

fluxes to overexpress, 2, keep the same, 1, or knock out, 0) and isoprenol production (response). The trained model recommends new designs that have the highest

production. The recommendations come with predictions of production in a probabilistic fashion: i.e., the probability of production of 10, 15, 25, 40 mMol, etc.

FIGURE 6 | ART recommendations display production levels production very similar to predictions. Left panel compares cross-validated predictions for isoprenol

production from ART versus the values obtained through the OMG library for the training data set. Cross-validation keeps a part of the data set hidden from the

training to compare against predictions, providing a good idea of the quality of predictions for new data sets. The right panel compares the predicted production for

the recommended strain (#97) vs the actual production as generated through the OMG library. The comparison indicates a very good agreement between the

prediction and observation.

and use OMG to simulate the corresponding ground
truth isoprenol productions, similarly as in phase 5.
We compare these isoprenol productions (observed

production) vs. the machine learning recommendations
from ART (Figure 6). Details can be found in Jupyter
Notebook E.
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Data Formats for Generic Input Files
The data formats for the generic input files in EDD involve
five columns. The first column specifies the line (e.g., WT). The
second one is the measurement type identifier, which involves a
standardized choice: Pubchem IDs for metabolites, UniProt IDs
for proteins, and Genbank gene IDs for transcripts (e.g., CID:
715, acetate). The third column is the time point (e.g., 0 h). The
fourth column is a value for the corresponding identifier (e.g.,
2.4). The final column is the unit corresponding to this value:
FPKM for transcriptomics data, proteins/cell for proteomics
data, and mg/L or mM for metabolomics data. Optical Density
(OD) has no units.

RESULTS AND DISCUSSION

In the following sections, we will provide a step-by-step example
of how to use this suite of tools (ICE, EDD, ART, OMG, and
Jupyter notebooks) to guide metabolic engineering efforts and
increase isoprenol production in E. coli for a synthetic data set
(Figure 2, and “Methods” section). Using synthetic (simulated)
data allows for a more effective demonstration, since there is
no obstacle to creating time series multiomics data involving
transcriptomics, proteomics, metabolomics, and fluxomics. For
the purposes of this demonstration, creating such a data set using
real experiments would be prohibitively expensive and limiting.

Storing Strain Information in ICE
Our first step involves storing the initial strain information in the
Agile BioFoundry (ABF) instance of ICE: https://public-registry.
agilebiofoundry.org/ (see Screencast 1 in Tables 1, 2). Storing
strain information in ICE provides a standard way to document
the design phase andmake this information available for later use.
ICE provides access controls so that the strains can be created
as the experiment progresses, and then made public later (e.g.,
at publication time). We will initially store the information for
the base strain (or wild type, WT). After creating an account and
logging in, we click on “Create Entry” and choose “Strain.” We
then fill the relevant strain information (e.g., “Name,” “Biosafety
Level,” “Description,” “Sequence,” etc.). Finally, we will click on
“Submit” to create the strain entry. The strain is now available
on the ICE instance and is assigned a part number that will be
used to enter experimental data into EDD as the next step. Strain
information can also be easily downloaded from ICE through the
GUI (Screencast 5).

Importing Data Into EDD
Importing the multiomics data set into EDD allows for
standardized data storage and retrieval. The use of the
Experiment Data Depot (EDD) allows for the seamless
integration of data generated from different analytical methods
(e.g., mass spectroscopy, sequencing, HP-LC). EDD focuses on
storing the biologically interpretable data: i.e., data that can
be immediately interpreted by a biologist without requiring
detailed knowledge of the analytical measurement technique
(e.g., metabolite concentrations rather than GC-MS traces, or
transcripts per cells rather than individual genomic sequencing
reads). Furthermore, the use of standardized schemas is

TABLE 1 | Workflow for the paper and demonstrative Jupyter notebooks and

screencasts.

Step Description Demonstration

1 WT strain import into ICE Screencast 1

2 WT multiomics data generation Notebook A

3 EDD import of WT multiomics data Screencast 2

4 EDD visualization of WT multiomics data Screencast 3

5 Initial designs generation by ART Notebook B

6 Bulk ICE import of bioengineered (BE)

strains

Screencast 4

7 ICE export of BE strains Screencast 5

8 Isoprenol production data generation for

BE strains

Notebook C

9 Bulk EDD import and visualization of BE

strains production data

Screencast 6

10 EDD export of BE production data Screencast 7 + Notebook D

11 ART predictions and recommendations Screencast 8 + Notebook D

12 Using the ART frontend Screencast 9

13 Comparing ART predictions with ground

truth

Notebook E

All screencasts and notebooks are enumerated in Tables 2, 3.

TABLE 2 | Screencasts.

Screencast Description

1 WT strain import into ICE

2 EDD import of WT multiomics data

3 EDD visualization of WT multiomics data

4 Bulk ICE import of bioengineered (BE) strains

5 ICE export of BE strains

6 Bulk EDD import and visualization of BE strains production data

7 EDD export of BE production data

8 ART predictions and recommendations

9 Using the ART frontend

fundamental for downstream analysis such as machine learning
or mechanistic modeling. Indeed, it is estimated that 50–80% of
a data scientist’s time is spent with the type of data wrangling
that EDD avoids by providing an ontology (For Big-Data
Scientists, ‘Janitor Work’ Is Key Hurdle to Insights - The New
York Times) (Lohr, 2014). This ontology reflects the objects
and processes most often encountered in metabolic engineering
experiments (see Figure 2 in Morrell et al., 2017). For example, a
typical metabolic engineering project starts by obtaining several
strains from a strain repository (e.g., DMZ, ATCC, ICE). Those
strains are cultured in different flasks under different conditions
(different media, induction levels etc.), which we call lines
because they are a combination of strain and culture conditions,
and represent a different line of enquiry or question being asked
(e.g., does this strain under this condition improve production?).
The final steps usually involve making measurements relevant to
the experiment’s ultimate goal. These measurements could be the
concentration of the metabolite that the strains are engineered
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FIGURE 7 | Storing strain information in ICE. ICE provides a standardized repository to store information for DNA parts and plasmids, proteins, microbial host strains,

and plant seeds. These data will be linked to the experimental data contained in EDD through the part ID, to be present in the experiment description file.

to produce (e.g., isoprenol in our example), or a transcriptomics
or proteomics analysis that describes the amount of gene
transcription or protein expression. Each of these measurements
is obtained by applying a protocol (e.g., proteomics) to a given
line, resulting in an assay. Performing an assay results in a set
of measurement data: e.g., the number of grams of acetate per
liter in the media, or the number of proteins per cell. In this
ontology, assays can include one or more time points. As a
general rule, destructive assays (e.g., proteomics through LC-
MS) include one time point per assay, and non-destructive assays
(e.g., continuous measurement of cell optical density through an
optode in a fermentation platform such as a biolector) include
several time points in the same assay. All this information is
collected in a study, which is used to describe a single continuous
experiment (e.g., using measuring isoprenol production for all
bioengineered strains).

The first step in the data import involves creating a study
and uploading an “Experiment description” file, which collects
all the experimental design and metadata (see Screencast 2).
The “Experiment description” file describes the strains being
used through a “Part ID” number tied to a strain repository,
such as ICE (Figure 7). This file also contains metadata relevant
to the experiment (e.g., temperature, culture shaking speed,
culture volume etc.). The “Experiment description” file should
not include any result data. Often, the distinction between data
and metadata is crystal clear, but it can be blurred in the
case of concatenated experiments: e.g., the hydrolysate sugar
concentration for a plant deconstructed with ionic liquid can

be data for a deconstruction experiment, but metadata for an
experiment focused on the fermentation of that hydrolysate
through a bioengineered strain. As a rule of thumb, metadata
involves the information that is known before the experiment,
and data is the information that is only obtained by performing
the experiment. Once the “Experiment description” file is added,
you should be able to see all the experimental design data under
the “Experiment description” tab in EDD.

The second step in data input involves uploading the data
files for each assay. In order to do so, click on “Import data,”
and you will access EDD’s new streamlined import. This new
import emphasizes clarity and usability, and starts by prompting
for the “Data category” to be uploaded (Figure 8). Data categories
involve broad umbrellas of data types such as: transcripts,
proteins, metabolites, or other data. The next choice involves
the actual specific protocol used for acquiring the data. There
are many types of, e.g., proteomics protocols which differ in
extraction protocols, as well as the type ofmass spectrometer used
and its setting (chromatography column, gradient time, etc.). We
encourage the use of formal protocol repositories which provide
DOIs (digital object identifiers), such as protocols.io (Teytelman
et al., 2016), to encourage reproducibility. Protocols can be added
by the system administrator in charge of the EDD instance used.
The next choice involves the type of file used to input the data.
All protocols include a generic file type which is the simplest
possibility (see “Data Formats for Generic Input Files” section).
More complex file types can be easily added through scripts that
map into this generic file type. The file upload completes the
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FIGURE 8 | Importing data into EDD. The new data import into EDD is divided into three parts: an initial choice of the data category, the protocol used to gather the

data, and the file format used for the data. Once these are chosen, the data is uploaded for future visualization and use with, e.g., machine learning algorithms or

mechanistic models.

data import, and these data can be now found under the “Data”
tab in the study. Similar to entering strains in ICE, data and
metadata import into EDD creates incremental documentation
of the experiment in a form that can easily be published later by
modifying the study’s access controls.

We import data into EDD twice in our metabolic engineering
workflow (Figure 2): steps 3 and 9 in Table 1. In the first case
(Screencast 2), we upload data created through the OMG library
for the wild type (WT, Notebook A). Later (step 8) we use OMG
to simulate isoprenol production data for the 95 bioengineered
strains proposed by ART (Notebook C), and upload that data into
EDD (step 9, Screencast 6).

Visualizing Data in EDD
EDD provides data visualization for the comparison of
multiomics data sets though line and bar graphs. For example,
you can easily compare the synthetic data sets created for
this manuscript, which include the cell density, extracellular
metabolites, transcriptomics, proteomics and metabolomics data
for the base strain (Figure 2). Once in EDD, the data can be
viewed by clicking on the “Data” tab in the corresponding EDD
study (see Screencast 3, Figure 3). The default view is the “Line
Graph” view, which displays the data as times series, with the
time dimension on the x-axis and the measurements on the
y-axis. Each different measurement unit is given an axis (e.g.,

mg/L for metabolites, proteins/cell for proteomics, FPKM for
transcriptomics). The filters at the bottom of the screen allow
the users to choose the data they want to concentrate on: e.g.,
only transcriptomics, only proteomics, only metabolites, only
metabolite “octanoate,” or only proteins “Galactokinase” and
“Maltoporin,” or only gene “b0344” and protein “Enolase.” It is
also possible to view the data in the form of bar graphs clustered
by measurement, line, or time. The “Table” tab shows a quick
summary of all data available in the study.

EDD provides basic visualization capabilities to check data
quality and compare different lines and data types. Users who
want a customized visualization or figure can download the
data into a pandas DataFrame (pandas - Python Data Analysis
Library) (McKinney, 2015) through the REST API (see next
section), and use Python to leverage any of the available
visualization libraries: e.g., Matplotlib (Yim et al., 2018) or
Seaborn (Seaborn: Statistical Data Visualization — Seaborn
0.10.1 Documentation) (Waskom et al., 2020).

EDD visualization is demonstrated for two very different cases
in two steps of our metabolic engineering workflow (Figure 2):
steps 4 (Screencast 3) and 9 (Screencast 6). The first case
involves visualizing multiomics data for a single strain (WT,
Figure 3), whereas the second case involves the visualization of
shallow data (final isoprenol production at a final point) for 96
different strains.
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FIGURE 9 | Exporting data from EDD into an executable Jupyter notebook for downstream processing. The EDD study web address (A) provides the server

(magenta) and the slug (red) to export the study data in the form of a pandas DataFrame into a Jupyter notebook (B). Once in a DataFrame format in a Jupyter

notebook, a plethora of Python libraries are available for visualization, mechanistic modeling or machine learning.

Exporting Data From EDD
Data can be exported from EDD in two ways: a manual CSV file
download, or a REpresentational State Transfer (REST) (Masse,
2011) Application Programming Interface (API). The REST API
is the preferred method since it is easy to use, convenient,
and flexible.

CSV export works through the Graphical User Interface (GUI)
found in the “Table” tab. By selecting the desired measurements
and clicking on “Export Data,” the user can access a menu that
provides options for layout and metadata to be included, as well
as a visual example of the export. A CSV file is then generated by
clicking on “Download.”

The REST API provides a way to download the data in a
form that can be easily integrated into a Jupyter notebook (see
Figure 9, Screencast 7, and Table 3). A Jupyter notebook is a
document that contains live code, equations, visualizations and

TABLE 3 | Jupyter notebooks.

Jupyter notebook Description

A WT multiomics data generation

B Initial designs generation by ART

C Isoprenol production data generation for BE strains

D EDD export and ART recommendations

E Comparing ART predictions with ground truth

explanatory text (Project Jupyter | Home1; Jupyter Notebooks)
(Kluyver et al., 2016). The edd-utils package uses EDD’s REST
API to provide a DataFrame inside of your Jupyter notebook
to visualize and manipulate as desired. A DataFrame is a
structure from the popular library Pandas (Python ANd Data
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FIGURE 10 | ART also provides a frontend that does not require coding. The frontend can be found at https://art.agilebiofoundry.org/ and provides the main

functionality of the ART library (Figure 5) in an intuitive interface. The frontend also provides a REST API that users with coding experience can leverage to use

Berkeley Lab’s compute resources for running ART, or to trigger ART runs automatically from other code.

AnalysiS) (pandas - Python Data Analysis Library) (McKinney,
2015), that focuses on providing tools for data analysis in
python. The combination of Pandas with Jupyter notebooks
provides reproducible workflows and the capability to do
automated data analyses (see Screencast 8). The users can run
the export_study() function from the edd-utils package (see
code availability) to download a study from a particular EDD
instance. The study is identified by its slug: the last part of the
internet address corresponding to the EDD study (Figure 9). The
EDD instance is identified by its internet address (e.g., http://
public-edd.agilebiofoundry.org/ or https://public-edd.jbei.org/).
Anyone with an approved account can use the EDD instances
hosted at those addresses, or anyone can create their own EDD
instance by downloading and installing the open source EDD
software (see code availability). EDD includes access controls,
e.g., for preventing dissemination of experimental data prior
to publication.

EDD export is demonstrated in a single step in our workflow
(Figure 2): the export of production data for the bioengineered
strains in step 10 (Screencast 7). These data will be used
to train the machine learning algorithms in the Automated
Recommendation Tools, and recommend new designs.

Recommending New Designs Through ART
The data stored in EDD and ICE can be used to train machine
learning methods and recommend new experiments. We will
now show, for example, how to use the data we uploaded
into EDD to suggest how to improve the final production of
isoprenol, by using the Automated Recommendation Tool (ART)
(Radivojević et al., 2020). ART is a tool that combines machine
learning and Bayesian inference to provide a probabilistic
predictive model of production, as well as recommendations for
next steps (Figure 5, see technical details in Radivojević et al.,
2020). In this case, we will use as input the genetic modifications
on the strain (e.g., knockout ACCOAC, overexpress MDH,

maintain CS, etc.) and we will try to predict final isoprenol
production (see “Generating training data for machine learning
and testing predictions” section).

Firstly, we will adapt the DataFrame obtained previously
(step 10 in Table 1) to provide training data for ART. All we
need to provide ART is the input (genetic modifications) and
response (final isoprenol production) for each of the 96 instances.
We do this by expanding the line description to include the
design details into several new columns detailing the specified
genetic modification for each reaction (Screencast 8, Notebook
D). Next, we specify ART’s parameters: input variables, response
variable, number of recommendations, etc. ART uses these data
and parameters to train a predictive model, which is able to
recapitulate quite effectively the observed isoprenol production
for the training data set (Figure 6). Recommendations for
designs that are predicted to increase production are also
provided by ART (Figure 5).

We can also use ART’s web-based graphical frontend
to produce recommendations, if we prefer not to use
code (Figure 10). ART’s frontend can be found at https://
art.agilebiofoundry.org/, and requires creating an account
(Screencast 9). Once the account is created and approved, we can
provide the same DataFrame we created above in CSV or Excel
format (Notebook D). We can then select the input variables
and response variables, select the objective (maximization,
minimization or reach a target value), a threshold for declaring
success, and then press “Start.” The job is sent to the server and
an email is sent to the user once it is finished.

ART’s recommendations suggest that knocking out the PPCK
flux and either maintaining or overexpressing all other seven
fluxes should increase production of isoprenol from 0.46 mMol
to 0.57 mMol (23% increase, Figure 5). The machine learning
model suggests that these are the best combinations based on
the predictive probability. We can check this result through the
OMG library, which we consider our ground truth (Figure 2).

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 11 February 2021 | Volume 9 | Article 612893

https://art.agilebiofoundry.org/
http://public-edd.agilebiofoundry.org/
http://public-edd.agilebiofoundry.org/
https://public-edd.jbei.org/
https://art.agilebiofoundry.org/
https://art.agilebiofoundry.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Roy et al. Multiomics Tools for Metabolic Engineering

Indeed, isoprenol production for this design is 0.57 mMol vs.
the predicted 0.57 ± 0.02 (Figure 6). Hence, ART has been
able to predict which combination of designs would produce a
production increase. This is a non-trivial endeavor, since only
11% of designs actually improve production, according to the
synthetic data provided by OMG.

CONCLUSION

In conclusion, we have shown that the combination of tools
presented here (ICE + EDD + ART + OMG + Jupyter
notebooks) provide a standardized manner to store data so it can
be leveraged to produce actionable recommendations. We have
shown how to use ICE to store strain information, EDD to store
experiment data and metadata, and ART to leverage these data
to suggest new experiments that improve isoprenol production.
By combining these tools we have shown how to pinpoint genetic
modifications that improve production of isoprenol, a potential
biofuel, by 23% (from 0.46 mMol to 0.57 mMol, Figure 5), in
a simulated data set (through OMG). The same procedures are
applicable in the case of real experimental data. In sum, this set of
tools provides a solution for the data deluge that bioengineering
is currently experiencing, and a way to build on preexisting data
to fruitfully direct future research.
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