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One-Time Optimization of Advanced
T Cell Culture Media Using a
Machine Learning Pipeline

Paul Grzesik* and Sebastian C. Warth

R&D Cell Culture Systems, CellGenix GmbH, Freiburg, Germany

The growing application of cell and gene therapies in humans leads to a need for cell
type-optimized culture media. Design of Experiments (DoE) is a successful and well
known tool for the development and optimization of cell culture media for bioprocessing.
When optimizing culture media for primary cells used in cell and gene therapy, traditional
DoE approaches that depend on interpretable models will not always provide reliable
predictions due to high donor variability. Here we present the implementation of a
machine learning pipeline into the DoE-based design of cell culture media to optimize
T cell cultures in one experimental step (one-time optimization). We applied a definitive
screening design from the DoE toolbox to screen 12 major media components, resulting
in 25 (2k + 1) media formulations. T cells purified from a set of four human donors were
cultured for 6 days and cell viability on day 3 and cell expansion on day 6 were recorded
as response variables. These data were used as a training set in the machine learning
pipeline. In the first step, individual models were created for each donor, evaluated and
selected for each response variable, resulting in eight final statistical models (R? > 0.92,
RMSE < 1.5). These statistical models were used to predict T cell viability and expansion
for 10° random in silico-generated media formulations for each donor in a grid search
approach. With the aim of identifying similar formulations in all donors, the 40 best
performing media formulations of each response variable were pooled from all donors
(n = 320) and subjected to unsupervised clustering using the k-means algorithm. The
median of each media component in each cluster was defined as the cluster media
formulation. When these formulations were tested in a new set of donor cells, they not
only showed a higher T cell expansion than the reference medium, but also precisely
matched the average expansion predicted from the donor models of the training set. In
summary, we have shown that the introduction of a machine learning pipeline resulted
in a one-time optimized T cell culture medium and is advantageous when working with
heterogeneous biological material.

Keywords: T cells, culture media design, machine learning, design of experiment, screening, cell culture, cell and
gene therapy, donor variability

INTRODUCTION

In autologous cell therapy approaches, cells from a given patient are isolated, may be genetically
modified to fulfill a therapeutic purpose and expanded in order to provide a sufficient dose of the
cell product (Kazmi et al., 2009; June et al., 2018). In case of T cell therapy, the donor material is
isolated from peripheral blood and consists of T cells and multiple other cell types. Even when T
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cells are purified by their common surface marker CD3, they
differ in each donor in expression of other surface markers as
well as in their metabolic and functional capacity (Mahnke et al.,
2013; Klein Geltink et al., 2018). In the manufacturing process,
these cells are typically activated by ligation of the T cell co-
receptors CD3 and CD28 to trigger expansion of T cells and
are cultured for several days in culture media supplemented
with appropriate cytokines (Trickett and Kwan, 2003; Xu et al.,
2014). In this process, an efficient and robust expansion of T
cells from any donor regardless of the heterogeneity of cell
populations is essential not only to meet the specifications of good
manufacturing practice but also because timely manufacturing of
the cell product can be critical to patient treatment (Gee, 2018).
This can be achieved with an optimized cell culture medium
formulation that supports the expansion of each donor’s T cells.

Cell culture media are complex mixtures of substances such
as nutrients, salts, trace elements, buffers, hormones, carrier
proteins, etc. (Yao and Asayama, 2017). For each cell type, the
optimal composition and amounts of these components must be
determined by suitable experimental setups.

For decades, the Design of Experiments (DoE) has been
used for the development of cell culture media (Yao and
Asayama, 2017). Sequential strategies, such as screening of several
components followed by characterization of the relationships
between the variables and finally their optimization, have proven
to be particularly successful in bioprocessing (Castro et al., 1992;
Kim et al,, 1998; Liu et al., 2001). Recently, high-throughput
technology in combination with exhaustive experimental designs
has enabled rapid optimization of the medium for fed-batch
cultures within a short time (Jordan et al., 2013; Rouiller et al.,
2013; Bayer et al., 2020). While these strategies can be easily
implemented using established cell lines such as Chinese hamster
ovarian cells, the design of cell culture media for primary T cells
is of greater challenge. The heterogeneous populations of cells
purified from different human donors show a high degree of
variability in cell expansion and viability, which leads to donor-
dependent effect sizes of the screened media components and
therefore makes sequential strategies with different donors in
succession difficult.

To meet these challenges, we present in this study the
extension of traditional experimental design with machine
learning to optimize a cell culture medium for T cell expansion
in one step. We applied a definitive screening design (Jones
and Nachtsheim, 2011) with a minimum number of tested
formulations, which allowed screening of a maximum number
of different components in a given experimental system. In
traditional workflows (Figure 1A) scientists focus on inference
using interpretable model architectures such as ordinary least
squares regression (OLS) to select significant features based on
cell biological understanding. In contrast, we used competitive
machine learning algorithms such as elastic net regularized
general linear models (Zou and Hastie, 2005) and random
forest (Breiman and Schapire, 2001). These complex model
architechtures generate highly complex models which are less
interpretable than traditional OLS models but have better
prediction accuracy (Figure 1B). These algorithms were used to
build individual high-performance statistical models, to predict

cell expansion and viability of random in silico generated media
formulations. We aimed to identify media compositions that
encompass different media requirements of cells from individual
donors. For this purpose, we pooled the top 40-predicted media
formulations from each donor and used k-means clustering to
identify clusters across donors with similar compositions. Using
the median component level of each cluster we defined a cluster
medium formulation that would potentially support expansion
of cells from all donors. Finally, we demonstrated the enhanced
performance of the selected cluster medium formulations in a
confirmation experiment against other test and reference media
for T cell expansion on a new test set of four different donors. The
evaluation of model performances on the test set showed that our
machine learning models were able to predict T cell expansion
with higher precision than a single response linear regression
model based on pooled data (traditional approach).

MATERIALS AND METHODS

Cell Culture

CD3™ T cells were purified from healthy human donor blood
preparations by negative magnetic bead isolation (EasySep™
Human T Cell Isolation Kit, Stemcell Technologies) and
cryopreserved. Thawed cells were activated using Dynabeads
Human T-Activator CD3/CD28 (Thermo Fisher) at a ratio of 1:1
bead:cell in test media or reference media in the presence of IL-
7 (10 ng/ml, CellGenix) and IL-15 (10 ng/ml, CellGenix). Cells
were cultured at 37 °C in a humidified incubator at 5% CQO, in 96-
well U bottom plates with two to three repeats per condition. On
day 3 cells were splitted and reseeded with cytokine-containing
media. To determine cell viability, cells were labeled with 7-
Amino-Actinomycin D (7-AAD, BD-Pharmingen) and analyzed
by flow cytometry. Cell count was determined using an Attune
Nxt Flow Cytometer (Thermo Fisher).

Culture Media

Test media were prepared from a common base medium with
the 12 test components added at the appropriate amounts
according to the DoE levels. To control for media preparation,
a reference medium with defined expansion properties was
prepared in parallel. All media were adjusted to pH = 7.2 and
osmolality = 300 mOsm/Kg H,O.

Data Processing and Modeling

All statistical analysis were carried out with the statistical software
R v3.6.0 (R Core Team, 2020) and RStudio v1.1.463 (2009-2018
RStudio, Inc.). Data processing and visualization was carried
out with package tidyverse v1.2.1. Design of Experiments was
carried out with package daewr v1.1-7 and rsm v2.1.0. Modeling
and feature selection was carried out with package caret (using
the integrated ranger package v4.6-7, glmnet package v2.0.18
and MASS package v7.3-51.4). Cluster analysis was carried out
with package cluster v2.1.0 and clustertend v1.4, visualization
of multivariate data analysis was carried out with package
factoextra v1.0.6.
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A Traditional DoE approach

B Machine learning pipeline for one-time optimization
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FIGURE 1 | Overview of the traditional Design of Experiment (DoE) approach (A) and of a machine learning pipeline (B). Both approaches include a screening step
for data collection, in this case from expansion of T cells from four different healthy donors in a definitive screening design. Traditional DoE uses interpretable model
architectures across all donors such as ordinary least squares regression (OLS) to select significant features (Characterization I). A second experimental step is
applied to screen for optimal parameter levels (Optimization l). In a second modeling step using OLS the optimal parameter levels are determined for an optimal
media formulation (Characterization Il) that is experimentally confirmed (Confirmation). The machine learning pipeline (B) uses competitive machine learning
algorithms to generate complex models for every response variable in every donor, which allow high prediction accuracy but are less interpretable (Supervised
machine learning). After cross-validation these models are used to select the top 40 media formulations for every donor and every response variable from a random
set of 10° in silico media formulations (Grid search). The top 40 formulations of all donors and responses are clustered by formulation similarity and a cluster
formulation was defined by the median component level of all formulations in a cluster (Unsupervised Clustering). Back evaluation of cluster formulations in the donor
models for every response allows selection of the media formulation with the best response across all donors and responses, which again is experimentally

As statistical tests in sections “Clustering and Selection of
in silico Formulations", “Evaluation of Selected Cluster Medium
Formulation on a New Set of Donors”, and “Evaluation of Model
Performance” an ANOVA followed by Tukey post hoc test at a
significance level <0.05 was performed.

RESULTS
Strategy Outline

We aimed to improve a proprietary base medium formulation
for the expansion of primary human T cells. In contrast to a
traditional optimization strategy based on sequential screening,
characterization and optimization (sco) steps (Anderson, 2019)
(Figure 1A), we carried out a one-time media optimization
using a machine learning pipeline. We reasoned that cell viability
at an early stage of cell culture might be influenced by an
independent set of components than the T cell expansion at the
end of culture, which could additionally contribute to overall
expansion. Therefore, we selected T cell viability on day 3 and
T cell expansion on day 6 as response variables. To account for
the donor variability, we included cells from four human donors
into the analysis as independent experimental blocks. This data
served as our training set for the modeling steps. Our strategy
consisted of following steps (Figure 1B) which are described in

detail in sections “Data Collection,” “Data Modeling,” “Prediction
of In Silico Formulations,” “Clustering and Selection of High-
Performance In Silico Formulations,” and “Evaluation of Selected
Cluster Medium Formulations on a New Set of Donors.”

Data Collection

We selected 12 cell culture media components (c01-c12), which
might impact the performance of the base medium formulation
in terms of T cell viability on day 3 and T cell expansion on day 6
of cell culture. These components belong to different categories,
such as buffer substances, metabolically active components,
proteins or trace elements. The diversity of selected components
makes it difficult to draw conclusions about potential main
effects of single components and synergistic effects of multiple
components, so that an experimental design with high resolution
was required. We decided on a 2k + 1 definitive screening design
(Jones and Nachtsheim, 2011) in three levels (in scaled notation, -
1,0, and 1) to investigate main effects, curvature and interactions
of the screened components with a minimum number of runs.
One experimental block resulted in a total of 26 runs, consisting
of 25 formulations and the reference medium with known
performance (Supplementary Table 1). T cells isolated from
four different donors were investigated in separate experimental
blocks, resulting in four randomized complete blocks and a total
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of 104 runs. T cell viability on day 3 and T cell expansion on day 6
were recorded. The data was processed and served as our training
set for the model building process.

The screening results of T cell viability on day 3 showed two
categories of test media with low (<75% viable cells) and high
performance (>75% viable cells) (Figure 2, upper panel). In
terms of T cell expansion on day 6, each test combination showed
a lower performance (median expansion units < 26) than the
reference medium (Figure 2, lower panel).

Data Modeling

To meet the challenge of the high response variability introduced
by using cells from different donors, we first built statistical
models with the training set of four donors for each experimental
block and each response variable separately. Centered and scaled
data were used for this step.

First, we defined three different initial model equations
(Supplementary Table 2) to account for different possible
constellations of main, quadratic and two-way interaction terms
of the 12 media components.

Next, we selected three different model algorithms for the
statistical modeling: ordinary least squares regression (OLS)
with stepwise AIC feature selection, random forest and elastic
net regularized general linear models (glmnet) with automated
multiple feature selection. To evaluate the model performance
on the training set, we performed a tenfold cross-validation and
automated hyperparameter tuning during the modeling step.
Details of the model hyperparameter tuning of all final models
are outlined in Supplementary Table 5.

In this way, nine independent statistical models were
generated for each donor and each response variable, resulting in
72 final models. The statistical models were ranked by root mean
squared error (RMSE) and coeflicient of determination (R?) and

one final model with highest R? and lowest RSME was selected
for each donor and response variable.

Due to a higher robustness toward overfitting of the data
(Zou and Hastie, 2005), we selected best performing glmnet
and random forest models over linear regression models for
predictions of in silico formulations. The eight selected models
showed high prediction power on the training set, with R* > 0.92
and RMSE less than 1.5 units (Table 1).

Prediction of in silico Formulations

Predictions of T cell viability and expansion were carried out
via grid search. Component c02 was expensive and sought to be
reduced in the final media formulation. Therefore, a constraint of
component c02 to medium level was introduced.

We generated 10° random formulations over the experimental
space of the 12 screened components and used these as input
data for prediction of expansion and viability in the previously
selected models for each donor. The formulations were ranked
and the top 40 performing formulations for T cell viability or
expansion from each of the eight models were pooled, resulting in
320 formulations. These formulations were used for the following
clustering step.

Clustering and Selection of
High-Performance in silico Formulations

First, the clustering tendency of the 320 formulations was
assessed by means of the hopkings test (0.423), revealing weak
structures. Next, the k-means algorithm was used for clustering
of the centered and scaled data. To find the optimal number
of clusters, the average within-cluster distance to the centroid
using the “elbow” method was determined (Figure 3, upper
panel). Here we selected six clusters for further analysis. The
cluster integrity was examined based on the silhouette width.
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TABLE 1 | Final model and its performance on the train set for each
response and each donor.

Donor ID Response Model ID Method Train RMSE Train R2
014 Expansion  b1.model7e Gimnet 1.16 0.93
016 Expansion  b2.model9e Gimnet 0.97 0.96
020 Expansion  b3.model8e Gimnet 1.44 0.92
448 Expansion  b4.model9e Glmnet 1.06 0.96
014 Viability b1.modeldv  Random forest 1.10 0.98
016 Viability b2.model9v  Gimnet 0.82 0.99
020 Viability b3.model9v  Gimnet 1.05 0.99
448 Viability b4.model9v  Gimnet 1.13 0.99

The average silhouette width was scored 0.15, confirming weak
structures (Figure 3, lower panel). For cluster visualization,
dimensionality reduction (principal component) was performed
and 6 partially overlapping clusters could be identified by plotting
the two highest dimensions on X- and Y-axis, exploring 30% of
the variation (Figure 4).

While cluster 2 and 6 consisted mainly of formulations
of the viability response (92 and 98.44%), formulations in
cluster 1 and cluster 4 were mainly from the expansion
response (82.69 and 76.12%). Cluster 3 consisted of
nearly equal distribution of formulations from viability

(53.19%) and expansion response (46.81%), which might
explain the overlap on clusters 1 and 4 (Table 2). This
data revealed that favorable formulation characteristics
differ depending on the response variable, resulting in
inhomogeneous clusters.

The median of each component of the observations within the
six cluster was calculated to obtain a prototypic formulation of
each cluster (Figure 5). These cluster medium formulations were
“back-evaluated” by predicting the expansion and viability in the
selected models for each donor. Data were grouped by cluster
and summarized by median of expansion and viability. While
the predicted values of viability were very similar for all clusters,
the predicted expansion varied markedly (Supplementary
Table 3). We therefore selected the medium formulation of
cluster 1 and 4 for further experimental evaluation, as both
formulations showed higher predicted median values of T
cell expansion than the formulations of cluster 2, 3, and 6,
respectively. The in-depth evaluation of the clusters revealed
that clusters 1, 4, and 5 contained formulations of all donors
for the expansion response which correlated with the higher
predicted median expansion across all donors. On the contrary,
clusters 2, 3, and 6 contained only formulations of three
donors (Cluster 3), two donors (Cluster 2) or only one donor
(Cluster 6), which in any case correlated with lower predicted
median expansion across all donors (Supplementary Figure 1A
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TABLE 2 | Number and proportion of media formulations within the clusters.

Cluster number Response Formulations (n) Percentage (%)
1 Expansion 43 82.69
Viability 17.31
2 Expansion 2 8.00
Viability 23 92.00
3 Expansion 22 46.81
Viability 25 53.19
4 Expansion 51 76.12
Viability 16 23.88
5 Expansion 41 63.08
Viability 24 36.92
6 Expansion 1 1.56
Viability 63 98.44

and Supplementary Table 3). In addition, cluster medium
formulation 1 and 4 differed significantly in their characteristics
by relative concentrations of component c05 and c08. A weak

difference could be identified for components c04, c07, and c010
(Figure 5).

Evaluation of Selected Cluster Medium

Formulations on a New Set of Donors

Cluster medium formulations 1 and 4 were used in a
confirmation experiment against six test media obtained by
a traditional optimization strategy using a single response
ordinary least squares regression model that is based on pooled
expansion data from the definitive screening design. For the
linear regression model, the training data of T cell expansion
at day 6 were pooled and a single linear regression model
was built to obtain a medium formulation that is characterized
by enhanced robustness against donor variability. As expected,
the final model performance was lower when compared to the
individual models obtained from the machine learning approach
(R? = 0.85, RMSE = 1.79). Six media formulations from the
single response linear regression model that differed in the
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concentration of the screened components were selected and
used for the confirmation experiment (Supplementary Table 4).

To evaluate the performance of the identified media
formulation, T cells from a test set of four new donors were
expanded in a randomized complete block design, resulting in a
total of 36 confirmation runs.

Both cluster medium formulations showed significantly
higher T cell expansion (median > 30 expansion units) compared
to all test media from the single response linear regression model
as well as to the reference medium (Figure 6, lower panel and
Tables 3A,B). T cell viability after culture in cluster medium
formulation 1 was significant lower on day 3 in comparison
to cluster medium formulation 4 or the reference medium, yet
viability was in a very narrow range across all media (>75%)
(Figure 6, upper panel).

Evaluation of Model Performance

To reveal the performance of the statistical models, we compared
the experimental values for T cell viability and expansion of the
test set with the predicted counterparts from the final statistical
models of the training set. Using the individual models, the

prediction of the T cell expansion averaged over all donors
was highly accurate. For cluster medium formulation 1, 30.54
expansion units with an IQR of 2.16 were predicted compared
to the experimental value of 30.53 with an IQR of 4.31 expansion
units. For cluster medium formulation 4, 31.65 expansion units
with an IQR of 4.87 were predicted compared to 30.36 with an
IQR of 3.94 experimental expansion units (Table 3A).

The model performance for the viability response on day 3
was less accurate. While the predicted values for both cluster
medium formulations were estimated at 85% viability with an
IQR of 4.31 and 3.94, the viability in the confirmation experiment
was 78.55% with an IQR of 2.67% for Cluster 1 and 80.85%
with an IQR of 1.62% for Cluster 4 (Table 3A). The prediction
of T cell expansion with the single response regression model
for expansion at day 6 was not that accurate compared to
the individual models. Four of the six test media formulations
showed a significant deviation of the predictions from their
experimental values (Table 3B).

To evaluate the benefit of the clustering step, we performed
an in silico experiment, where only the component-wise median
of the best performing formulations from all donor-specific
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TABLE 3 | Comparison of predicted vs. experimental values of the test set for the
individual models (median of n = 4 models) (A) and the single regression model of
pooled data (B).

(A
Response Formulation Predicted IQR Experimental 1QR
ID values values
(median) (median)
Expansion Cluster 1 30.54 2.16 30.53 4.31
Cluster 4 31.65 4.87 30.36 3.94
Viability Cluster 1 85.23 4.31 78.55 2.67
Cluster 4 85.86 3.94 80.58 1.62
(B)
Response Formulation Predicted Experimental IQR
ID values values
(median)
Expansion TO1 20.30 24.60 417
TO2 19.99 25.74 2.72
TO5 19.87 19.86 3.60
TO9 19.76 27.22 2.59
T10 19.74 28.95 3.47
T13 19.63 19.90 3.38

regression models were simulated. This simple ensembling
method generated a medium formulation with a predicted
expansion of 27.65 units with an IQR of 0.36 and a viability of
83.28% with an IQR of 1.55% averaged over all donors. While

the result was very similar in terms of the viability response,
the predicted expansion was lower compared to cluster medium
formulations 1 and 4, respectively. Taken together our new one-
time media optimization approach was able to predict a culture
media formulation based on a training set of human donors, that
significantly improved expansion of T cells from a new set of
human donors in a confirmation experiment.

DISCUSSION

The biggest challenge in the development of cell culture media
for cell therapies is the high variability of biological material
obtained from different human donors. This fact complicates
a conventional DoE-based sequential optimization strategy
consisting of screening, characterization and optimization blocks
due to donor-dependent effect sizes of the screened components.

In this work we present the implementation of a machine
learning pipeline into DoE-based development of cell culture
media, resulting in a one-time media optimization strategy
that combines component screening with component level
optimization in one experiment by using statistical models that
focus on prediction rather than on inference.

The use of competitive modeling algorithms such as
random forest or elastic net and cross-validation to assess
model performance enabled us to extract extensive statistical
information to build individual models for every donor of the
training set with improved predictive power. In comparison,
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predictions made by an interpretable single response regression
model based on pooled data of all donors were less accurate due
to variability introduced by donor-dependent effect sizes of the
screened components.

Instead of aggregating donor data for modeling, which
is commonly preferred in a sco strategy when operating
with high variance of the data, we pooled high performance
predictions from each donor model and used unsupervised
clustering to identify formulations with similar characteristics.
The formulations in each clusters contained i silico formulations
from all input models suggesting that a prototypic cluster
medium formulation could be beneficial for each donor and
would subsequently yield a cell culture medium with high
robustness for all donors. This clustering step turned out
to be more efficient than a more basal ensembling method
that was not supported by unsupervised machine learning.
Of note, the small sample size of n = 4 donors resulted
in weak overlapping cluster structures and a certain risk of
under-representation of the population, which could decrease
the robustness of the final medium. We evaluated the cluster
composition according to the proportion of different donor
formulations and selected cluster 1 and 4, which represented
all four donors, for the confirmation experiment. Using the
median value of each component within the cluster, we
were able to confirm a robust expansion reaction for the
selected cluster medium formulations in all four donors
of the test set.

For the selected cluster media formulations, the predictions
for T cell expansion made with the individual donor models
precisely matched with the median expansion response observed
experimentally for a test set of new donors. Having reliable
models that allow predictions of experimental outcomes opens
further perspectives for media optimization and characterization.
For example, inspection of the mathematical model terms may
uncover the contributions of individual media components.
One may further modify the formulation by eliminating
undesired factors from the formulation in silico and re-
evaluate manual adjustments of the formulation in the original
model. Here, again, component effects that only apply to
specific donors can be monitored by back evaluation in the
different donor models.

Notably, the predictions for the viability response were
less precise than for the expansion response. The spread of
the viability over the four donors of the test data set was
higher than in the training data set and was likely not in the
response space covered by our initial models. This highlights
the requirement to use donors in the training data set that
reflect the distribution of all observed responses in the donor
population as good as possible to improve the predictive
power of the models.

Although the viability on day three was not improved
in Clusterl formulation, compared to cluster 4 formulation,
both formulations achieved similar T cell expansion on day 6.
This suggests that moderate differences in cell viability at the
beginning of the culture do not necessarily affect the degree of cell
expansion observed later in the culture. Apart from that, a culture
medium that confers high cell viability early in culture is always

favorable in shorter protocols that rely more on cell viability and
substitute exponential expansion of cells by increased starting cell
numbers or in vivo expansion of cells.

In summary, we have shown that the extension of the
traditional DoE-based strategy with a machine learning pipeline
allows the generation of statistical models with excellent
predictive power for T cell expansion. This new approach
might be a competitive alternative to a more traditional
strategy in which model interpretation is highly desired in
the optimization process. Our pipeline facilitates the discovery
of high-performance cell culture media formulations in a
one-time optimization approach that achieved high media
performance across donors from one training data set without
the need for sequential experiments. This applies to primary
culture media development as well as to other applications,
where responses of individual donors to a specific input
vary due to biologic variance, for example in biotechnological
process development for T cell therapies with the need
to optimize seeding cell density, incubation times, media
feed or perfusion regimens, gene transfection procedures
etc. The described experimentation strategy can lead to a
major reduction of the experimental effort and can shorten
development times substantially and thereby help to optimize
robust autologous cell products for viable therapies for every
particular patient.
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