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Promote Osteoblast Proliferation
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Weidong Niu™*

" School of Stomatology, Dalian Medical University, Dalian, China, 2 Department of Stomatology, Bozhou People’s Hospital,
Bozhou, China

Icariin is a class IV drug of low solubility, permeability, and poor bioavailability. Synthetic
nanomaterials have developed rapidly. However, some literatures point out that synthetic
nanomaterials such as liposomes, aptamers, metal nanoparticles, and nanogels have
high toxicity and are affected by the reticuloendothelial system or mononuclear
phagocyte system. It is known that exosomes could be used as an ideal clinical drug
delivery vehicle to avoid the above-mentioned problems to a certain extent. Studies have
shown that drugs can be loaded into exosomes by passive and active loading. We used
Fetal bovine serum (FBS) exosomes to carry Icariin for the first time in this experiment,
FBS exosomes-Icariin (FBS EXO-ICA) more effectively promoted the proliferation of
osteoblasts and bone regeneration than Icariin alone. FBS EXO-ICA could become a
new nano scale drug formulation for treating diseases associated with bone loss.

Keywords: exosomes, ICA, osteoblast, proliferation, FBS

INTRODUCTION

Bone loss is the main clinical manifestation of rheumatoid arthritis, osteoporosis, and myeloma
(Currey, 2003; Oftadeh et al., 2015). The current research hotspot for the treatment of these
diseases is the regeneration of bone tissue. Under the stimulation of injury-regenerative medicine,
osteoblasts provide a cell source for bone defect repair, secrete bone-related extracellular matrix,
and accelerate the bone repair process. Exosomes (EXO) are tiny vesicles secreted by most cells.
The diameter of a typical exosome is about 30-150 nm (Huo et al., 2019; Luo et al., 2019; Qayoom
et al., 2019). It has a lipid bilayer membrane structure and is oval or cup shaped. Exosomes
contain specific targeting receptor at their surface which makes them perfect for targeted delivery.
Over the past three decades, exosomes have been developed as natural nano-scale drug carriers
with unique biological advantages (Fonseca et al., 2016; Ghayad et al., 2016; Nguyen et al., 2016;
Trelis et al., 2016).

The synthesis cost of nanomaterials such as liposomes, aptamers, metal nanoparticles, and
nanogels are high, the stability is poor, and there are clinical problems that cannot be ignored,
including the cytotoxicity of the material and the rapid clearance by the reticuloendothelial
phagocytic capacity (REPC) and the mononuclear phagocyte system (MPS), Zhao et al. (2016)
and Suk and Gopinath (2017). The instability of liposomes is not favorable for long-circulating
treatment, controlled release or conservation (Li et al., 2017). The limitations of aptamers include
the susceptibility to degradation by nucleases, fast renal clearance, low thermal stability, and the
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limited functional group diversity (Odeh et al, 2019). The
disadvantage of metal nanoparticles is expensive and toxicity
(Mathur et al., 2018). Nanogels have several disadvantages such
as rapid reduction in permeability, disposal problems, and high
sensitivity to environmental conditions (Zhao et al., 2018). As
substances produced in vivo, exosomes are natural nanovesicles
that are highly biocompatible, of low immunogenicity and
cytotoxicity, and they are even able to cross the blood-brain
barrier, which makes them the ideal clinical drug carrier
(Patel and Patel, 2017). Epimedium is a traditional Chinese
medicine used to treat bone diseases, such as osteoporosis
and rheumatoid arthritis. Icariin (ICA) is the main biologically
active pharmaceutical ingredient of Epimedium (Cao et al., 2019;
Chen et al, 2019; Hu et al,, 2019). It is soluble in ethanol
and ethyl acetate, and minimally soluble in water. Niculescu
discovered that ICA enhances BMP-2 mediated osteoblast
development by downregulating connective tissue growth factor
(CTGF) (Niculescu et al., 2019). Cao first discovered that ICA
could promote bone marrow mesenchymal stem cell (BMSC)
proliferation through ERK and p38 MAPK signaling (Cao et al.,
2019). This showed that ICA could be used as a potential
therapeutic drug in bone regeneration (Wu et al., 2019).
However, according to the biopharmaceutical classification
system, ICA is a class IV drug of low solubility, permeability,
and poor bioavailability. Previously, ICA has been loaded into
Polycaprolacton (PCL)/gelatin nanomaterials to enhance its
role in promoting osteogenesis (Xu et al, 2019b). However,
the disadvantages of synthesized nanomaterials have made the
demand for drug carriers more urgent (Zuo et al., 2019).

Exosomes are mainly secreted from immature dendritic cells,
mesenchymal stem cells, and other cells (Kalluri and Lebleu,
2020). They have the disadvantages of low concentration, time-
consuming preparation, and high cost. Fetal bovine serum (FBS)
is an important and commonly used component of cell culture
fluids. Studies have shown that FBS contains a large number
of extracellular vesicles, and these vesicles have the function of
supporting cell growth and reducing cell sensitivity to genetic
toxicity and endoplasmic reticulum stress (Ochieng et al., 2009;
Eitan et al., 2015; Lehrich et al., 2018). Therefore, in this study
an EXO were extracted from FBS and icariin was incorporated
into them (FBS EXO-ICA), and the effect of these vesicles on the
proliferation of osteoblast precursor cells was observed to provide
a new research direction for the clinical treatment of bone loss
(Figure 1). This study provides a new approach to the clinical
treatment of bone loss by utilizing the effect of icariin loaded into
exosomes on the proliferation of osteoblasts.

MATERIALS AND METHODS

Cell Culture

MC3T3-El cells (American Type Culture Collection, Manassas,
VA, United States) were grown in Dulbecco’s modified Eagle’s
medium (DMEM, Invitrogen, Carlsbad, CA, United States)
supplemented with 10% FBS, 100 U/mL penicillin, and
100 mg/mL streptomycin. The cells were maintained at 37°C
under 5% CO; in humidified air.

Extraction of FBS Exosomes

Exosomes were extracted from 15 mL of 100% FBS by
ultracentrifugation, centrifugation at 2,500 x g for 30 min, and
centrifugation at 12,000 x g for 30 min to remove cell debris,
followed by centrifugation at 100,000 x g for 3 h to extract the
exosomes and other microvesicles. The exosomes were dissolved
in 100 pL of PBS solution to prepare a suspension, which was
stored at —80°C after measuring the concentration (Beninson
and Fleshner, 2015; Eitan et al., 2015; Lehrich et al., 2018).

Nanoparticle Tracking Analysis

The concentration and particle diameter of the isolated exosomes
were measured by Nanoparticle Tracking Analysis (NTA). A 405-
nm monochromatic laser beam was applied to the exosome
suspension diluted with PBS. Particle motion was analyzed by
NTA software. Each particle was identified and tracked frame
by frame, and its Brownian motion was tracked and measured.
By applying the Stokes-Einstein equation, the particle size was
calculated from the speed of particle motion, and the visualized
nanoparticle diameter and relative concentration were obtained.
All sample evaluations were repeated three times.

Transmission Electron Microscopy (TEM)
Exosomes (30 L) were dropped into a petri dish and placed
in a copper mesh for 5-10 min. The copper mesh was stained
with phosphotungstic acid for 5 min and observed using a
transmission electron microscope.

Western Blotting

Sample were added 100 pl of lysates on ice for 30 min. The
cell and exosomes lysates were clarified by centrifugation at
12,000 rpm for 15 min, and the supernatants were collected.
The protein concentration was measured with the QuantiPro
BCA Assay Kit (KeyGen Biotech Co., Ltd., Shanghai, China).
The protein concentration of each sample was measured with the
QuantiPro BCA Assay Kit (KeyGen Biotech, Shanghai, China).
20 pg protein was applied to Western Blotting. The membranes
were incubated overnight at 4°C with specific anti-CD63 (diluted
1: 200; Abcam, United States), anti-CD81 (diluted 1: 500; Abcam,
United States), anti-CD40 (diluted 1: 1000; Bioss, China), anti-
ALIX (diluted 1: 1000; Abbexa, United Kingdom), anti-RUNX2
(diluted 1: 500, SAB, United States), anti-BMP-2 (diluted 1: 500,
Bioworld, United States), anti-OPN (diluted 1: 1000, Proteintech,
United States), and anti-GAPDH (diluted 1: 5000, Bioworld,
United States). Incubation with the secondary antibody (diluted
1: 500, ABclonal, China) lasted 1 h. The ECL luminescent
solution was configured to collect the blotting results with a BIO-
RAD gel imaging system, and the results were analyzed with
Image Lab software.

PKH67 Fluorescence

1 x 10° MC3T3-El cells were plated in a six-well plate for
culturing and 100 pL of FBS EXO or FBS EXO-ICA were added.
100 pL of the A and B solutions in the PKH67 kit (Sigma,
United States) were prepared at a ratio of 1:4000, mix 200 wL, and
incubated for 15 min at room temperature in the dark. 200 pL of
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FIGURE 1 | Schematic illustration of construction FBS EXO-ICA.

FBS EXO-ICA

1% BSA were added to the above solution, which was centrifuged
at 100,000 x g for 2 h. The concentration was measured, and
the solution was added to the cells at a concentration of 20 pug
per well, and cultured for 24 h. The cells were fixed with 4%
paraformaldehyde for 20 min, and blocking solution was added
for 20 min. Phalloidin (1: 200) was incubated in a wet box at 4°C
overnight. Then the cells were stained with DAPI for 8 min prior
to observation with an inverted fluorescence microscope.

Cell Counting Kit-8

Cells were seeded in a 96-well plate at a density of 2,000 per well.
After the cells had adhered, 0, 0.1, 1, 10, and 20 pg/mL aliquots
of ICA were added to the MC3T3-E1 cells. After incubation for
24 and 48 h, 100 pL Cell Counting Kit-8 (CCK-8) was added to
each well. The mixture was incubated for 1 h and the absorbance
was measured at 450 nm.

Preparation of FBS EXO-ICA

Icariin was formulated as a 1 mg/mL stock solution. Icariin
solution and exosomes were mixed at a ratio of 1: 9 and incubated
for 24 h, then centrifuged at 1,000 x g for 10 min to remove
free drug. The mixture was centrifuged at 135,000 x g for 2 h
to collect drug-loaded exosomes (FBS EXO-ICA). They were
then dissolved in PBS, filtered through a 0.22-pm filter, and the

concentration was measured (Aqil et al., 2016; Munagala et al.,
2016; Agrawal et al., 2017).

High Performance Liquid

Chromatography

500 WL of acetonitrile were added to 100 wL of FBS EXO-ICA
to destroy the exosomal membrane structure, thereby releasing
the drug and precipitating the exosomal proteins. The mixture
was centrifuged at 1,000 x g for 10 min to isolate the exosomal
protein, and the supernatant was used for detection of ICA. The
analysis was performed using an Agilent 1200 LC system and an
API 3200 LC-triple quadrupole mass spectrometer. A Hypersil
ODS C18 column (150 mm x 2.1 mm, 5 pm) was used to analyze
a 5-uL sample on the High Performance Liquid Chromatography
(HPLC) system. The mobile phase was 0.1% methanol aqueous
solution-acetonitrile. ICA was detected by PDA-UV at 200-
400 nm, and the drug concentration was calculated with reference
to the standard curve of ICA.

Statistical Analysis
Data are expressed as the Mean £ SEM. Significant differences
between test groups were analyzed via one-way analysis of
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FIGURE 2 | FBS EXO extraction and identification. (A) Centrifugation; (B) NTA detection of the median particle size of FBS EXO; (C) Observation of FBS EXO
structure under TEM (x 100,000); (D) Western Blotting was used to detect the protein expression of exosome markers CD63, CD81, and ALIX and the microcapsule
surface marker CD40 in different batches of FBS EXO, 1-6 represented exosomes extracted from different batches.

variance and the Student-Newman-Keuls test; P < 0.05 was
considered to be statistically significant.

RESULTS

Extraction and Identification of FBS EXO
FBS was centrifuged at 2,500 x g and 12,000 x g for 30 min to
remove dead cells, cell debris, and large vesicles remaining in the
serum, and then the exosomes were obtained by centrifuging at
100,000 x g, as shown in Figure 2A. Examination of FBS EXO
by NTA showed that the median particle size was 117 nm, which
was within the normal range of exosome size (Figure 2B). TEM
results showed that FBS EXO had a typical lipid bilayer structure,
and the size was between 30 and 150 nm (Figure 2C). This result
indicated that the FBS EXO was successfully extracted. Western
Blotting results showed that exosome marker factors CD63,
CD81, and ALIX were positive; while the microcapsule surface
marker CD40 was negative and no bands appeared. This result
suggested that FBS EXO was successfully extracted (Figure 2D).

Effects of ICA on Osteoblast Proliferation

After MC3T3-El cells were treated with ICA at 0, 0.1, 1,
10, and 20 pg/mL for 24 h, and CCK-8 results showed
that the cell proliferation activity was highest at 0.1 pg/mlL,
indicating that a low concentration of ICA could promote the
proliferation of osteoblasts. As the concentration increased, the

cell proliferation activity gradually decreased, and it was the
lowest at 20 pg/mL, indicating that a high concentration of
ICA was associated with a certain lethality. Thus, 0.1 pg/mL
was chosen as the optimal experimental concentration of ICA
(Figure 3A). When 0.1 pg/mL ICA was applied to MC3T3-E1
cells for 0, 24, and 48 h, the results showed that ICA treatment
of osteoblasts for 24 and 48 h gave a significantly increased cell
proliferation activity, and the results were statistically significant
(P < 0.05) (Figure 3B). Western Blotting showed that the
protein expression levels of osteogenic markers BMP-2, RUNX2,
and OPN increased significantly after 24 h of treatment with
ICA at 0.1 ug/mL. The results were statistically significant
(P < 0.05) (Figure 3C).

Construction and Identification of FBS

EXO-ICA

The median particle size of FBS EXO detected by NTA was
about 117 nm, and that of FBS EXO-ICA was about 122 nm,
which is in the normal range of exosomes. The particle size of
FBS EXO-ICA was slightly larger than EXO (Figure 4A). TEM
results showed that FBS EXO-ICA still had a typical lipid bilayer
membrane structure, and at the same magnification, FBS EXO-
ICA had a slightly larger diameter than EXO (Figure 4B). The
peak area values of the ICA standard solution chromatogram
and FBS EXO-ICA were measured by HPLC. According to
these values, the efficiency of incorporation of ICA in FBS EXO
was about 13% (Figure 4C). PKH67 fluorescence staining was
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FIGURE 3 | Effects of ICA on osteoblast proliferation. (A) ICA (0.1 wg/mL) promoted osteoblast proliferation; (B) Time dependence of the effect of ICA on osteoblast
proliferation activity; and (C) Increased protein expression of BMP-2, RUNX2, and OPN after ICA was applied to MC3T3-E1 cells. *P-value < 0.05 (n = 4).

used to detect the uptake of fetal FBS EXO and FBS EXO-
ICA by MC3T3-El. The results showed that both FBS EXO
and FBS EXO-ICA were normally taken up by MC3T3-El
cells (Figure 4D).

FBS EXO-ICA Promoted the Proliferation

of Osteoblasts

Cell Counting Kit-8 results showed the proliferation of cells
treated with FBS EXO and ICA were significantly increased
compared to those treated with control (P < 0.01). FBS
EXO-ICA was significantly increased compared with control
(P < 0.001). The cells treated with FBS EXO-ICA was
significantly increased compared to those treated with ICA and
FBS EXO (P < 0.05) (Figure 5A).

Western Blotting results showed that FBS EXO-ICA, FBS
EXO, and ICA increased the protein expression levels of
osteogenic markers BMP-2, RUNX2, and OPN more than
control (P < 0.05). FBS EXO-ICA increased the protein
expression levels of osteogenic markers than FBS EXO and ICA
(P < 0.05) (Figure 5B).

DISCUSSION

Exosomes are found in fluids such as blood, urine, saliva,
amniotic fluid, milk, cerebrospinal fluid, and tears (Wei et al.,
2019). EXOs promote bone repair ability, and EXOs were used as
carriers to load drugs to promote bone repair. Recent studies have
shown that the administration of EXOs can promote endogenous
angiogenesis (Zhang et al., 2015), myogenesis (Nakamura et al.,
2015) and osteogenesis (Zhang et al., 2019). EXOs have been
reported to be effective in the bone regeneration of fractures
(Zhang et al., 2020). Narayanan found that the exosomes secreted
by HMSC could induce the ossification of HMSC cells in vitro
and in vivo (Narayanan et al., 2016). Cui found that the exosomes
of osteoblasts could increase the expression of osteogenic-related
miRNAs and promote the differentiation of bone marrow stromal
cells into osteoblasts (Cui et al., 2016).

Fetal bovine serum is a supplement commonly used in
the laboratory to promote cell growth and cell nutrition.
FBS has a high protein content and EXO content (Shelke
et al., 2014; Beninson and Fleshner, 2015; Aswad et al,
2016; Lehrich et al., 2018). In this study, NTA, TEM, and
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Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 6 February 2021 | Volume 9 | Article 615920


https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

Dong et al.

FBS EXO-ICA Promote Osteoblast Proliferation

A 3
25
e
£
& 2
LM
<
o
D 1.5
=
< Kook
0 1
—
o]
A
< 05 @
0
0h 24h
B
N Gl

ood\

A\
N o

RUNX2 . -
OPN W . ..56KDa
an wo S ¥

BMP-2 44 KDa

GAPDH 36 KDa

**P-value < 0.001.

T skeskox
L
@@= control
—=@==ICA
sk
" @=@u==EXO
EXO-ICA
48 h
® control
mICA
mEXO
<12 EXO-ICA
>
4 ok
| I skoskeok kKoK
.9 =
$0.8 «
=
0.6
2
5
0.4
,
§s
30.2
2
oy
0
BMP-2 RUNX2 OPN

FIGURE 5 | FBS EXO-ICA promoted osteoblast proliferation. (A) CCK8 results showed that FBS EXO-ICA had a greater ability to promote the proliferation of
osteoblasts than ICA; (B) Compared with ICA, FBS EXO-ICA significantly promoted the expression of the osteogenic marker proteins. *P-value < 0.05,

Western Blotting were used to determine whether EXO was
successfully extracted. Presence of exosomal markers such
as CD36, CD63, and XDH in exosomes isolated from milk
(Munagala et al, 2016). Studies had also shown that EXO
is a natural nanoscale carrier that can participate in cell-to-
cell communication and other biological processes. However,
some studies have pointed out that the toxicity of synthetic
nanomaterials. EXO could be an ideal clinical drug delivery
vehicle, as it avoids the above problems. Yu pointed out
FBS EXO might serve as efficient carrier systems of immune
stimulators to lymph nodes for desired immune responses
(Yu et al., 2018).

ICA is the main medicinal ingredient of the Chinese herbal
medicine Epimedium, which is a flavonoid (Jiang et al., 2018;
Cao et al.,, 2019; Jing et al., 2019). Epimedium is often used
in traditional Chinese medicine to nourish the kidney and
strengthen the bones (Kim et al., 2018). Many studies have shown
that ICA could promote the proliferation and differentiation

of osteoblasts, and regulate the differentiation of mesenchymal
cells into osteoblasts (Li et al., 2018; Zhang et al., 2018; Zhu
et al,, 2018; Xu et al., 2019a). In our experiments, drug carrying
was achieved by co-incubating ICA with exosomes, and the
successful incorporation of ICA was detected by NTA and TEM.
NTA results showed that the particle size of FBS EXO-ICA
was slightly larger than that of pure FBS EXO. Farrukh and
others embedded triptolide in exosomes and similarly found
that the exosomes were slightly larger after drug incorporation.
This is consistent with the results obtained in this experiment.
TEM results showed the lipid bilayer membrane structure of
FBS EXO-ICA, and the particle diameter was slightly larger
than that of pure FBS EXO. The above results indicated that
FBS EXO was successfully co-incubated with ICA to form FBS
EXO-ICA. The efficiency of ICA incorporation in FBS EXO
calculated for this experiment was about 13%. Munagala and
others loaded various compounds such as Withaferin A (WFA),
Paclitaxel (PAC), Docetaxel, PAC (DOC) into exosomes, and
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the amounts of drug embedded according to UPLC were 5-
15% (Munagala et al., 2016). In this experiment, FBS EXO
and FBS EXO-ICA were fluorescently labeled with PKH67. The
results showed that FBS EXO and FBS EXO-ICA could both
be taken up by MC3T3-E1 cells. Ochieng found that FBS EXO
could be taken up by tumor cells and recycled back to the
conditioned medium (Ochieng et al., 2009). In order to observe
whether the ability of ICA to promote osteoblast proliferation
was enhanced when it was in exosomes, we compared the
efficacies of an ICA group and an FBS EXO-ICA group. CCK-
8 results showed the proliferation of cells treated with FBS EXO
and ICA were significantly increased compared to those treated
with control. This means that both FBS EXO and ICA could
promote the proliferation of osteoblasts. The cells treated with
FBS EXO-ICA was significantly increased compared to those
treated with ICA and FBS EXO. This means that FBS EXO-
ICA better promoted the proliferation of osteoblasts than ICA
alone. Farrukh demonstrated the chemotherapeutic potential of
Celastrol in lung cancer and that exosomal formulation enhanced
its efficacy and reduced dose related toxicity (Aqil et al., 2016).
Milk-derived exosomes have been investigated for oral delivery
of the chemotherapeutic drug paclitaxel (PAC) as an alternative to
conventional therapy for improved efficacy and reduced toxicity
(Agrawal et al, 2017). The above results indicated that the
exosomes loaded with the complex could promote the efficacy of
the drug. Bone morphogenetic protein-2 (BMP-2) is an inducer
of osteoblast differentiation and bone formation; Runt-related
transcription factor 2 (RUNX2) is a specific transcription factor
for osteoblast differentiation; Osteopontin (OPN) is involved
in bone tissue formation. Therefore, BMP-2, RUNX2 and OPN
could be used as the marker factors of osteoblasts. In our
results the protein expression levels of the bone markers, BMP-2,
RUNX2, and OPN were detected by Western Blotting. The results
showed that the protein expression levels of each factor in the
FBS EXO-ICA group were significantly higher than those in the
ICA and FBS EXO groups. Our results showed that FBS EXO-
ICA promoted the proliferation and differentiation of osteoblasts,
so the expression of osteogenic marker proteins increased. The
above results showed that, compared with ICA, FBS EXO-ICA
had a stronger ability to promote osteoblast proliferation and
enhance bone regeneration.

In the past two decades, the anti-osteoporosis activity of
ICA had become a hot spot in the field of osteoporosis
treatment. ICA is classified as a Class IV drug with low solubility,
permeability and poor bioavailability in the biopharmaceutical
classification system. These unfavorable physical and chemical
and pharmacokinetic factors limit its clinical application. Many
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