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Being as a non-pharmacological medical intervention, low-magnitude high-frequency

vibration (LMHFV) has shown a positive effect on bone induction and remodeling for

various muscle diseases in animal studies, among which dental implants osteointegration

were reported to be improved as well. However, whether LMHFV can be clinically

used in dental implant is still unknown. In this study, efficacy, parameters and side

effects of LMHFV were analyzed via data before 15th July 2020, collecting from

MEDLINE/PubMed, Embase, Ovid and Cochrane Library databases. In the screened

1,742 abstracts and 45 articles, 15 animal studies involving 972 implants were included.

SYRCLE’s tool was performed to assess the possible risk of bias for each study. The

GRADE approach was applied to evaluate the quality of evidence. Random effects

meta-analysis detected statistically significant in total BIC (P < 0.0001) and BV/TV (P

= 0.001) upon loading LMHFV on implants. To conclude, LMHFV played an active

role on BIC and BV/TV data according to the GRADE analysis results (medium and

low quality of evidence). This might illustrate LMHFV to be a worthy way in improving

osseointegration clinically, especially for osteoporosis.

Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO,

identifier: NCT02612389

Keywords: low-magnitude high-frequency vibration, osseointegration, osteoporosis, systematic review andmeta-

analysis, dental implant

INTRODUCTION

In recent years, oral implantation has become one of the favorable therapeutic strategies for wide
range of dental application from simple missing tooth to reconstruction of edentulous jaw (Liu
et al., 2017). A tight biological connection between bone tissue and embedded implant, also known
as osseointegration, is considered as the foundation of clinical implantation (Zhang et al., 2020).
Generally speaking, firm osseointegration is essential to improve implant stability in its early
phase and long-term success rate (Simmons et al., 1999; Romanos, 2004). Nowadays, immediate
implantation has been raised to realized implant insert with coinstantaneous loading (Tuminelli
et al., 2017). Although similar survival rate was reported on immediate and delayed protocol,
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immediate restoration was limited by the immature early
osseointegration (Chen et al., 2019). Thus, clinical failures owing
to unstable osseointegration were also occasionally happened
(Sanz-Sánchez et al., 2015).

In the meantime, some patients are suffering from metabolic
bone diseases such as osteoporosis, which is one of the
systemic risk factors for implant failure (Armas and Recker,
2012; Jiang and Xia, 2018). The difficulties for osteoporosis
implantation were reported to be poor bonemass and bad wound
recovery, which might lead to a pessimistic implant success rate
(Cochran et al., 2011; Aghaloo et al., 2019). More seriously, an
improper treatment has a potential harm on the bone healing
time and implant osseointegration after surgery. Therefore,
a careful, comprehensive and effective method is urgently
required to promote implant osseointegration in these medically
compromised patients (Aghaloo et al., 2019; Castellanos-Cosano
et al., 2019).

It is well-known that the bone is able to adjust its mass
and micro-structure upon biomechanical loading (Savoldi et al.,
2017, 2018a). LMHFV is the vibration wave triggered by low-
magnitude and high-frequency that elicits a positive effect on
bone induction and remodeling (Lau et al., 2010; Thompson
et al., 2015). LMHFV can be classified into whole-body
vibration (WBV) and direct-loading vibration (DLV). For WBV,
a biomechanical loading is acted on the whole body through
trunk to apply an indirect force on the implant. For DLV, a
biomechanical loading is acted on the specific part as needed,
aiming to create a direct coupling on the implant (Zhang et al.,
2012a; Corbiere and Koh, 2020). As a non-pharmacological
intervention, LMHFV has been widely applied in the field of
skeletal muscle diseases for its simple, convenient, non-invasive
and early-effective characteristics (Judex et al., 2007; Holguin
et al., 2009). Notably, its application potential in oral implant
surgeries is still emerging. Previous studies (Rubin et al., 2001;
Jing et al., 2015, 2018) have reported that LMHFV could
stimulate bone healing and osseointegration on peri-implant
bones. Although increasing evidences have shown the correlation
between LMHFV and osseointegration, the defined outcome
and results remain unclear. In the present study, a prospective
systematic review and meta-analysis on animal studies is
conducted as a pre-clinical screening to analyze the parameters,
efficacy, and adverse effects of LMHFV on osseointegration so as
to provide useful references in the application of clinical trials.

METHODS

Study Design
This systematic review and meta-analysis was registered in
the international prospective register of systematic reviews
(PROSPERO) (CRD42020200276) following the preferred
reporting items for systematic review and meta-analysis
(PRISMA) statement and the population, interventions,
comparisons, outcomes, study design (PICOS) question to these
investigations (Moher et al., 2015; Shamseer et al., 2015):

• Population: Animals (ovariectomized, non-ovariectomized);
• Interventions: LMHFV (WBV, DLV) loading;

• Comparisons: Sham-loading or non-loading;
• Outcomes: BIC, BV/TV (primary outcomes); parameters,

gene expressions, adverse effects and relevant study outcomes
(secondary outcomes);

• Study design: RCT studies.

The focused question was “Does LMHFV enhance the implant
osseointegration in animal models?” Appendix 1 shows the
specific screening criteria based on the PICOS question.

Classification of Outcome Measures
Primary outcome measures: The assessed primary outcomes
were bone-to-implant contact (BIC) and peri-implant bone
volume relative to tissue volume (BV/TV), which were defined
as follows:

(1) BIC, %: the sum of bone contact region lengths with implant
(mm) divided by total length along the implant from the first
to the last (mm);

(2) BV/TV, %: the amount of bone within a specific region of
interest (mm2) divided by the total amount of bone on the
implant surface (mm2).

Secondary outcome measures: Secondary outcomes included
parameter (magnitude, frequency, duration), gene expression
and adverse effect of LMHFV treatment.

Search Strategy
An electronic search was conducted among four databases
(MEDLINE/PubMed, Embase, Ovid and Cochrane Library) from
inception until 15th July 2020. The search was not limited
by any restrictions on language or publication. Each database
search combines concepts and subject headings, as detailed in
Appendix 2.

An extensive manual search was also performed through
included references and other related systematic reviews. In
addition, relevant articles published between July 2000 and July
2020 were also inspected. The journal list was depicted as
outlined in Appendix 3. Finally, the “specific theses database”
(www.theses.com) and the “Gray Literature” (opensigle.inist.fr)
were additionally screened for ongoing studies.

Search Criteria
Inclusion criteria: (1) RCTs of animals; (2) Ovariectomized
(OVX) or non-ovariectomized (non-OVX) implant
osseointegration model; (3) More than one sham-loading control
group; (4) the effect of LMHFV on peri-implant bone healing
or osseointegration process; (5) Definition of the LMHFV’s
parameters and application; (6) Mean bone-to-implant contact
(BIC, %) and/or mean peri-implant bone volume relative to
tissue volume (BV/TV, %); (7) Outcomes related to peri-implant
bone morphology/efficacy/adverse effects/gene expressions; (8)
Full-text literature published in English before 15, July, 2020.

Exclusion criteria: (1) Included parameters were not
consistent with LMHFV definition; (2) Sample size was <3
animals; (3) Treatment period was <2 weeks; (4) Only positive
control group was set; (5) Outcomes of the studies remained
ambiguous or unavailable; (6) Not animal RCTs (e.g., clinical
trials, cell investigations, cross-sectional studies, cohort studies);
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(7) Other implant osseointegration models of animals (e.g.,
diabetes mellitus models, bone defect models); (8) Other
publication types (reviews, conference reports).

Selection of Studies
Study selection was conducted by two trained researchers (XY
and YB) independently. The reviewers received a professional
training prior to the formal evaluation, and the level of agreement
between the reviewers of screening was calculated by kappa
statistics. All stages (titles, abstract, full-text) were carried out
in duplicate to exclude irrelevant papers in initial screening.
Then, relevant studies of full-text were retrieved and reviewed
based on specific inclusion and exclusion criteria to confirm
study eligibility. Study exclusion reasons were recorded as well.
We resolved any disagreement by discussion with a third author
(SW). Finally, in case of incomplete data, the corresponding
authors of included studies were contacted and asked for
further information.

Data Extraction
Two reviewers (YZ and YZ) extracted the information
independently. A third reviewer (XY) moderated any
disagreement if needed. Extracted information on study
characteristics were presented in Appendix 4. Data was
synthesized in a data form which was specifically designed for
meta-analysis according to significant category methods, and
measurement data was carried out on Microsoft Excel (version
16.38, Microsoft Corp, Redmond, US). For relevant missing data,
we have attempted to contact original authors. Only if we failed
to contact with authors in 3 times, we would use GetData Graph
Digitizer (version 2.26, getdata-graph-digitizer.com, Germany)
to obtain the data in the chart.

Quality Assessment
In this study, the risk of bias was assessed by SYRCLE’s tool
(Hooijmans et al., 2014; Zeng et al., 2015), while the level of
evidence was assessed by GRADE approach (GradeProSetup,
the Cochrane Collaboration) (Guyatt et al., 2008; Balshem
et al., 2011). A calibration exercise was conducted before the
assessment in order to ensure consistency across reviewers.
Judgements were made independently by two reviewers (SX
and YD) based on the criteria for judging the risk of bias.
Disagreements were resolved by discussion and consulting a third
author (YG) for arbitration and consensus. Extracted data were
combined into a summary Excel (version 16.38, Microsoft Corp,
Redmond, US).

Statistical Analysis
A systematic narrative summary was provided with information
presented in table to summarize and clarify included studies’
characteristics. The data was collected manually into three
subgroups (OVX-WBV, non-OVX-WBV, and non-OVX-DLV).
The I2 statistics was used to assess the statistical heterogeneity
in each subgroup. We considered heterogeneity to be statistically
significant if P < 0.1 (Du et al., 2020). Due to the statistical
heterogeneity, the random effect model was chosen for
meta-analysis by RevMan (version 5.3, RevMan, the Cochrane

Collaboration). Continuous outcomes (BIC and BV/TV) were
analyzed by using standardized mean difference (SMD)with 95%
confidence intervals (CI), P< 0.05 was set as significance. Finally,
the analysis of the effect on parameters was presented in bubble
chart using R package ggplot2 (version 3.3.2, cran.r-project.org).

RESULTS

Results of the Search
In this systematic review and meta-analysis, 2,162 studies were
searched and selected from MEDLINE/PubMed database (889
studies), Embase database (503 studies), Ovid database (672
studies), and Cochrane Library database (98 studies). After
duplicates removed from 2,162 studies, 1,741 studies remained
for further analysis. Based on rough evaluation on abstracts,
unsatisfied 1,697 studies were excluded due to their topic
or content. Afterwards, 30 studies (Figure 1) were left under
rigorous evaluation on remained 45 full articles. The most
common reasons for exclusion were unsatisfied stimulus types,
unacceptable stimulus parameters or absence of animal RCTs.
The reasons for excluded articles were recorded detailly in
Appendix 1. Besides, no qualified article was found via manual
search. Eventually, 15 manuscripts (Akca et al., 2007; Shi et al.,
2010; Ogawa et al., 2011a,b, 2014; Chen et al., 2012; Zhang
et al., 2012b,c; Chatterjee et al., 2014; Liang et al., 2014; Zhou
et al., 2015; Wang et al., 2016, 2018; Ruppert et al., 2018, 2019;
Shibamoto et al., 2018) were recruited for qualitative analysis.

Characteristics of the Included Studies
Descriptive characteristics of included studies were listed in
Table 1. Fifteen selected studies were conducted between 2007
and 2019, including 13 rat studies (6 OVX rat studies and 7 non-
OVX studies), 1 rabbit study, and 1 dog study. Among them,
13 studies reported tibia implantation, 1 study revealed femur
implantation, while only 1 beagle dog study conducted implant
surgical in mandibular bone. In terms of loading modes, 10
studies reported the effect of WBV and the others applied DLV
instead. Three studies combined the effect of LMHFV and drugs,
in which 2 studies explored the differences and connections due
to different biomechanical types. In total, 811 animals, including
785 rats, 20 rabbits, and 6 dogs, were involved in this paper. The
implant number is 1,096 in 811 animal studies, we selected 972
for this review.

OUTCOMES

Parameters
As a device-driven therapy, the parameters of LMHFV bear an
important guiding significance for its application (Zhang et al.,
2012b; Gao et al., 2016), which were defined in this paper as
follows: Vibration magnitude <1 g (WBV) or 150µm (DLV),
frequency >20Hz. According to different animal models and
vibration patterns, three groups were classified, namely OVX-
WBV group, non-OVX-WBV group, and non-OVX-DLV group.

Among studies involving non-OVX-WBV cases (Ogawa et al.,
2011a,b, 2014; Ruppert et al., 2018), the frequency, magnitude,
andweekly loading time ranged 45–140Hz (MD: 85.0± 34.3Hz),
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FIGURE 1 | PRISMA flowchart of the screening process.

0.043–0.6 g (MD: 0.28 ± 0.16 g), and 25–75min (MD: 47.5 ±
22.2min), respectively, which were 32.5–140Hz (MD: 59.6 ±
40.0Hz), 0.2–0.5 g (MD: 0.35 ± 0.12 g) and 70–300min (MD:
142.2 ± 92.7min), respectively in OVX-WBV subgroup (Chen
et al., 2012; Chatterjee et al., 2014; Liang et al., 2014; Shibamoto
et al., 2018). As OVXmagnified defects in bone mass, the loading
duration in OVX model was significantly longer than that in
non-OVX model.

Generally, the amplitude (µm) was selected to replace DLV
as its magnitude was often <0.1 g (Wang et al., 2016). The
relationship among frequency, amplitude, and magnitude was
expressed as follows:

A =
9.81g

(2πf)2
(1)

where g (m/s2) represented the magnitude, A (m) was the
amplitude, and f (Hz) was the frequency.

Among studies involving non-OVX-DLV cases (Shi et al.,
2010; Zhang et al., 2012a,b; Wang et al., 2018; Ruppert et al.,
2019), the frequency, the magnitude and weekly loading time
ranged 20–100Hz (MD: 51.0 ± 41.0Hz), 7.7–73.8µm (MD:
19.3 ± 19.2µm), and 50–210min (MD: 92.0 ± 62.5min),
respectively. In fact, the results from Equation (1) concluded that
the values of magnitude and frequency of DLV were significantly
lower than those of WBV treatment. However, the therapeutic

effect of DLV was not as good as that of WBV, and lower levels
of DLV parameters indicated worse outcomes. Three studies (Shi
et al., 2010; Zhang et al., 2012b; Wang et al., 2018) explored the
optimal vibration parameters of DLV treatment, and the best
parameters were as follows: 20Hz frequency, 15µm magnitude,
and 210min weekly loading time in rabbits; 40Hz frequency,
7.8µmmagnitude and 50min weekly loading time in rats; 40Hz
frequency, 8µm magnitude and 50min weekly loading time in
rats. Discrepancies between different parameters may be attribute
to different animal models, types of implants, and loading sites.

To clarify the relationship between parameters and effect of
LMHFV, we extracted eligible data and results of LMHFV from
each study and plotted them into Figure 2. Relevant parameters
from a total of 24 groups were extracted from 15 studies,
including 6 OVX-WBV group, 9 non-OVX-WBV group, and 9
non-OVX-DLV group. There were 5 and 7 studies demonstrated
beneficial effects of WBV on osteointegration enhanced by
vibration treatment in OVX animals and non-OVX animals,
respectively. One showed that a relative high frequency in early
period do not have a significant positive effect on OVX rats, and
2 showed that a relative low frequency with a low magnitude
does not have a significant positive effect on non-OVX rats. For
9 studies reporting the effect of DLV on non-OVX animals, 5
showed positive effects on rabbits and rats, and the remaining
showed no significant or no positive influence of vibration
during osseointegration.
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TABLE 1 | Summary of the study characteristic.

References Model Animal Implant F-Up LMHFV Index

OVX non-OVX sham-OVX N type sex age na/nb typec Ø (mm) L (mm) Local WBV DLV BIC BV/TV

Akca et al. (2007)
√

× × 15 r f 12w 30/20 Ti 1 5 t 2w
√

× ×
√

Chatterjee et al.

(2014)

√
×

√
59 r f 12w 59/40 Ti 2 8 t 4–14 d

√
×

√ √

Chen et al. (2012)
√

×
√

40 r f 5 mh 40/30 HA-Ti 1 10 t 8w
√

×
√ √

Liang et al. (2014)
√

×
√

36 r f 12w 72/72 Ti 2 7 t 4w
√

×
√ √

Shibamoto et al.

(2018)

√
× × 44 r f 11w 44/16 Ti 2 13 t 4w

√
×

√ √

Zhou et al. (2015)
√

×
√

40 r f 3 mh 80/80 HA-Ti 1 10 t 12w
√

× ×
√

Ogawa et al. (2011a) ×
√

× 95 r m 3 mh 95/92 Ti 2 10 t 1–4w
√

×
√ √

Ogawa et al. (2011b) ×
√

× 42 r m A 42/40 Ti 2 10 t 3–25 d
√

×
√ √

Ogawa et al. (2014) ×
√

× 120 r m 3 mh 120/119 Ti 2 10 t 1–4w
√

×
√ √

Ruppert et al. (2018) ×
√

× 80 r f 24w 80/80 Ti6Al4V 2 10 t 6w
√

×
√ √

Ruppert et al. (2019) ×
√

× 70 r f 24w 70/40 Ti6Al4V 1.5 20 fe 4–8w ×
√ √ √

Wang et al. (2016) ×
√

× 20 rb m 6 mh 40/40 Ti 1.2 9.25 t 20 d ×
√

×
√

Wang et al. (2018) ×
√

× 6 dg m 3 mh 36/36 Ti 3.3 8 j 2–8w ×
√ √ √

Zhang et al. (2012a) ×
√

× 69 r m A 138/131 Ti 2 8 t 29 d ×
√ √ √

Zhang et al. (2012b) ×
√

× 75 r m 3 mh 150/123 Ti 2 10 t 1–4w ×
√ √

×

aTotal number of implants included in the investigation.
bTotal number of implants extracted for the review.
cSome studies included multiple types of surface treatments.

Animal type: r, rat; dg, dog; rb, rabbit; sex: f, female; m, male; age: A, adult; d, days; mh, months; w, weeks; local: fe, femur; j, jaw; t, tibia; Ø, diameter; BIC, bone-to-implant contact;

BV/TV, volume/total volume; DLV, direct-loading vibration; F-Up, follow-up; HA, hydroxyapatite-coated; L, length; LMHFV, low-magnitude high-frequency vibration; Ti, titanium; WBV,

whole-body vibration.

Meta-Analysis
Complexities of pre-clinical researches (animal species,
experiment methods etc.) might result in meta-analysis
heterogeneity. Hence, subgroup analyses were conducted
to eliminate possible sources of heterogeneity. Due to
different experimental design, the extracted data were
mostly close to the following parameters: 50Hz, 0.3 g/8µm,
2w, medulla.

BIC

Twelve included studies (Shi et al., 2010; Ogawa et al., 2011a,b,
2014; Chen et al., 2012; Zhang et al., 2012b,c; Chatterjee et al.,
2014; Liang et al., 2014; Ruppert et al., 2018, 2019; Shibamoto
et al., 2018; Wang et al., 2018) contributed data for analysis from
259 subjects, and there was a high statistical heterogeneity among
the studies (P < 0.00001, I2 = 81%). The random-effects model
was used for meta-analysis. According to the results, the BIC of
the test group was higher than that of the control group [MD =
1.67, 95% CI (0.97, 2.37), P < 0.00001]. All of the 3 subgroups,
that is, OVX-WBV [MD= 2.91, 95% CI (1.30, 4.52), P= 0.0004]
(Chen et al., 2012; Chatterjee et al., 2014; Liang et al., 2014;
Shibamoto et al., 2018), non-OVX-WBV [MD = 1.52, 95% CI
(0.18, 2.86), P=0.03] (Ogawa et al., 2011a,b, 2014; Ruppert et al.,
2019) and non-OVX-DLV [MD = 0.81, 95% CI (0.18, 1.43), P
= 0.01] (Shi et al., 2010; Zhang et al., 2012a; Wang et al., 2018;
Ruppert et al., 2019) showed statistically significant differences
(Figure 3).

BV/TV

Fourteen included studies (Akca et al., 2007; Shi et al., 2010;
Ogawa et al., 2011a,b, 2014; Chen et al., 2012; Chatterjee et al.,
2014; Liang et al., 2014; Zhou et al., 2015; Wang et al., 2016, 2018;
Ruppert et al., 2018, 2019; Shibamoto et al., 2018) contributed
data for analysis from 304 subjects, and there was a considerable
statistical heterogeneity among the studies (P < 0.00001, I2 =
88%). The random-effects model was used for meta-analysis.
According to the results, the BV/TV of the test group was
higher than that of the control group, and the difference was
statistically significant [MD = 1.43, 95% CI (0.57, 2.29), P <

0.00001]. Among the three subgroups, OVX-WBV [MD = 2.55,
95% CI (0.39, 4.71), P = 0.02] (Akca et al., 2007; Chen et al.,
2012; Chatterjee et al., 2014; Liang et al., 2014; Zhou et al.,
2015; Shibamoto et al., 2018) and non-OVX-WBV [MD = 1.28,
95% CI (0.29, 2.27), P = 0.01] (Ogawa et al., 2011a,b; Ogawa
et al., 2014; Ruppert et al., 2018) showed statistically significant
benefits, non-OVX-DLV [MD = 0.73, 95% CI (−0.37, 1.83), P
= 0.19] (Shi et al., 2010; Wang et al., 2016, 2018; Ruppert et al.,
2019) demonstrated benefits for test groups but not significant
(Figure 4).

Qualitative Analyze
Table 2 listed the main findings about
LMHFV/osseointegration/conclusion of the recruited eligible
studies. Though lack of quantitative analyze, the effect of
LMHFV on gene expression and adverse effect were discussed
as follows:
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FIGURE 2 | Bubble chart of frequencies (Hz), magnitudes (g/µm), and duration (min) of vibration treatment used in the studies. Green bubbles indicate more than

two-thirds positive measurements, among which two test data were statistically significant (P < 0.05); Yellow bubbles indicate more than half positive measurements;

Red bubbles indicate more than half negative measurements. Area of circle represents LMHFV loading duration. aAn average of the composite vibration; bconverted

from other units. (A) OVX-WBV group; (B) non-OVX-WBV group; (C) non-OVX-DLV group.

Gene Expression

Generally speaking, the bone transforms mechanical signals
into biological signals, and further regulates osteoblast lineages

and cartilage formation of mesenchyhmal stem cells through
adjustment factors (Rubin et al., 2000; Fan et al., 2006). Two
included studies (Shi et al., 2010; Zhou et al., 2015) reported
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FIGURE 3 | Meta-analysis. BIC Standardized mean differences of LMHFV treated compared to sham or untreated animals.

FIGURE 4 | Meta-analysis. BV/TV Standardized mean differences of LMHFV treated compared to sham or untreated animals.
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expression levels of genes associated with LMHFV. As a result,
osteogenesis-associated genes were up-regulated after loading,
while those associated with osteoclast generation were down-
regulated (Lau et al., 2010). Adjustment factors (such as BMP2,
ALP, OCN, Runx2, Wnt3a, Lrp6, β-catenin, Sost, RANKL, OPN,
OC, M-CSF, and OPG) were involved in this process (Lau et al.,
2010; Birmingham et al., 2015; Ota et al., 2016). In addition, the
Wnt/β-catenin, RANKL andMAPK-ERK 1/2 signaling pathways
participate in the process of osteoblast behaviors (Pichler et al.,
2013; Li et al., 2015; Zhou et al., 2015; Chen et al., 2016).

Adverse Effect

Since the curative effect of LMHFV has been affirmed, the
safety of its application has been well-concerned. Among fifteen
included studies, no serious adverse events of LMHFV were
reported in any included studies. One study (Wang et al., 2016)
reported a temporary weight loss on experimental animals, whilst
all animals well-tolerated this process. In general, a short-term
application of LMHFV was relatively safe, and a constant or
intense application of LMHFV may slightly influence physical
functional metabolism (Branemark et al., 2014; Ruppert et al.,
2019). One study (Xie et al., 2016) indicated that a long-term
WBV loading might contribute to bone trabeculae loss in OVX
rats and aggravate osteoporosis. Besides, loading parameters
also exert an independent role. For example, compared to
continuous loading, cyclic loading mitigates the development of
tolerance and maintains a high efficacy (Umemura et al., 2002).
In comparison to vertical loading, a composite loading reduces
the intensity of the stimulus and alleviates the adverse effects of
treatment (Torvinen et al., 2003).

Quality Assessment
The kappa test result of the two evaluators was 0.74, which was
considered as qualified. Following the standards of SYRCLE’s
tool, a total of 10 items were evaluated (Figure 5). Specifically,
one study (Ruppert et al., 2018) was identified as high risk of
sequence generation because there was no clear indication of
randomization. Five studies (Ogawa et al., 2011a,b, 2014; Zhang
et al., 2012b,c; Wang et al., 2018) were identified as high risk
of incomplete outcome data because there existed some missing
sample data without an adequate explanation. However, many
items were not explained in detail in the included studies, which
may lead to great difficulties and deviations in the interpretation
of research bias. The GRADE approach was performed to assess
the level of evidence body. In detail, the evidence quality of two
BIC subgroups (OVX-WBV, non-OVX-DLV) and one BV/TV
subgroup (OVX-WBV) were moderate level, while the others
were low (Appendix 6).

DISCUSSION

To the best of our knowledge, this was the first prospective
systematic review and meta-analysis about LMHFV on
osseointegration, which comprehensively discussed the efficacy,
gene expressions and adverse effects in animal models, and
further analyzed osseointegration with regard to specific
loading regimens.

Summary of Key Findings
Focusing on the study results alone, the positive effect of WBV
treatment was more definite than that of DLV treatment. Meta-
analysis showed that both WBV (P = 0.0006) and DLV (P
= 0.01) have positive effects on improving BIC in non-OVX
groups. However, WBV (P = 0.01) presented a stronger effect
on osteogenesis in comparison to DLV (P = 0.19), manifesting
as the improved BV/TV. It is believed that the weak effect of
DLV treatment may result in an insufficient loading transfer
to surrounding tissues or a massive micro-interface movement,
further leading to an insufficient force conduction and a sparse
embedding of soft tissues (Shi et al., 2010; Zhang et al., 2012b,c).

In addition, the osteogenic effect of LMHFV was more
significant on OVX animal models. Since osteoporosis affects the
quality and quantity of whole-body bones, WBV is more suitable
for treatment (Marín-Cascales et al., 2018), while DLV has more
direct efficiency on peri implant osseointegration. Meta-analysis
showed that WBV could improve BIC in both non-OVX-WBV
(P = 0.03) and non-OVX-DLV (P = 0.0004) groups. Also,
BV/TV was comparable between groups because WBV caused
bone growth in both non-OVX (P = 0.01) and OVX (P =
0.02) models. Due to bone mass reduction and bone structure
deterioration, the loss of the initial stability of implants in
osteoporosis patients is likely to cause an implant failure without
a proper treatment (Friberg et al., 2001). The evidence of this
meta-analysis suggested that LMHFV could reverse the negative
effect caused by osteoporosis partially and enhance bone healing
and osseointegration in peri-implant tissues.

Quality of the Evidence
The GRADE approach showed that three subgroups (non-OVX-
DLV in BV/TV, non-OVX-WBV in BIC and BV/TV) were not
conclusive. This might be high risk of bias and considerable
heterogeneity within one subgroup. Despite less influence on
our result, the evidence was low quality, which needs to be
with caution.

In fact, in medical field, systematic reviews are one of the
powerful keys to provide high level of evidence (Albelasy et al.,
2020; Pound and Ritskes-Hoitinga, 2020), that is essential and
formed a basis for pre-clinical assessment for medical devices
(Savoldi et al., 2018b) and drugs (Faggion, 2015). Nonetheless,
animal trial design in particular RCT, is important because a
proper design signifies the success of the translational outcome
(Hall and Traystman, 2009; Mak et al., 2014). Thus, this research
only selected RCT trials on animal studies. It should be noticed
that animal study cannot replace or be a guide for any human
clinical trial (Van Norman, 2020), but rather a proof for authority
to approve a certain level of safety (Pound et al., 2004). Indeed, all
experiments might have certain limitations and it is important
to report all factors, no matter contributive or destructive, so
that readers or even the “artificial intelligence” can learn the
facts genuinely. For the published data, prospective systematic
review on animal studies was indeed recently advocated that
can produce sound and actual clinical knowledge (Pound and
Ritskes-Hoitinga, 2020), under the circumstances proper designs
and valid models which can be found in methotrexate (Leenaars
et al., 2020) and dental implant (Manzano et al., 2014) studies
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TABLE 2 | The impact of LMHFV on osseointegration.

References Results I

(Findings related to osseointegration)

Results II

(Findings related to LMHFV)

Conclusion

Akca et al. (2007) • The BV/TV of peri-implant bone was increased in

experiment group.

• WBV can’t affect Tb.Th and Tb.Sp

• WBV (50Hz, 5N, 2w) performed more

effective than PEMFs

• Biophysical stimulation remarkably enhances

bone volume around titanium implants

placed in OVX rats

Chatterjee et al.

(2014)

• WBV significantly increased BIC at medullary

levels, but cortical bone around the implant is less

sensitive to HF-WBV loading

• The combination of ALN and HF-WBV didn’t

affect the bone healing response

• In the case of osteoporosis, HF-WBV has a

positive effect on implant osseointegration

Chen et al. (2012) • The BIC, BF and BMD of OVX-WBV group were

higher than those of OVX group, but lower than

that of sham-OVX group and OVX-ALN group

• The combination of the ALN and WBV

(30–35Hz, 0.3 g, 8w) may have a synergistic

or cumulative effect on osteoporosis patients

• WBV enhanced bone-implant

osseointegration in OVX rats, but it was not

as effective as ALN

Liang et al. (2014) • The BIC, BF, MAR and TBL of OVX-WBV group

were higher than those of OVX group, but lower

than that of sham-OVX group

• NA • Four-week WBV loading reduced the

negative effects of osteoporosis and

promoted bone healing around implants in

OVX rats

Shibamoto et al.

(2018)

• Compared with the control group, BIC and BV/TV

were increased in all WBV loading group

• WBV (50Hz, 0.5 g, 4w) loading and PTH

have additive effects on peri-implant bone

healing and osseointegration in OVX rats

• LMHF loading and PTH can act locally and

additively on the bone healing process,

improving the condition of

implant osseointegration

Zhou et al. (2015) • In OVX-WBV group, BV/TV, Conn, Tb.N, Tb.Th

were increased, and Tb.Sp were decreased.

• WBV-driven genes and proteins including Runx2,

OPN, OC, RANKL, M-CSF and OPG to facilitate

bone formation rather than bone resorption

• NA • WBV has been shown to be beneficial in

improving osseointegration in osteoporotic

condition.

• Activation of ERK1/2 plays an important role

in vibration-induced bone remodeling

Ogawa et al.

(2011a)

• The BIC and BF was significantly increased in the

experimental group

• Twice 1.25min of loading seemed to have

the most favorable effect

• LMHF loading with a particular time

sequence can stimulate peri-implant bone

healing and formation

Ogawa et al.

(2011b)

• LMHF loading increased BIC and BF significantly. • The loading effect seemed to decrease as

the distance to the implant increased.

• LMHF loading had a bone-stimulating

potential, through WBV, on peri-implant bone

healing and implant osseointegration

Ogawa et al.

(2014)

• The BIC and BV/TV was increased in the

experimental group.

• Loading regimes at high acceleration with

medium or high frequency

(70-90/130-150Hz, 0.3 g, 4w) showed

significant results

• Highfrequency vibration loading showed

potential to accelerate and enhance

implant osseointegration

Ruppert et al.

(2018)

• The BV/TV and bone volume around the implant

was significantly improved after WBV treatment

• Amplitude at 45Hz, 0.6 g, 5w seemed to

showed the most favorable effect.

• There was no significant difference between

different amplitudes

• Vibration has demonstrated its therapeutic

benefits for increasing bone adjacent to

the implant

Ruppert et al.

(2019)

• DLV demonstrated improved peri-implant bone

volume with increased BIC, but showed no

statistical difference

• LIPUS was superior to vibration for

accelerating osseointegration at 4 weeks

• Vibration has demonstrated its therapeutic

benefits for increasing bone adjacent to

the implant

Wang et al. (2016) • The BIC, BV/TV and the number of osteoclasts

was increased in the DLV group

• DLV at 20Hz, 15µm, 20 d result in

signifificant improvement, however, the use

of 40Hz did not.

• Temporary weight loss were noticed on the

experimental animals

• The application of a direct LMHF (10, 20, or

30Hz) micro-vibration on implants promoted

bone formation and osseointegration

Wang et al. (2018) • The treatment group had significantly increased in

BIC compared with the control group after 2

weeks of loading

• There was no significant difference between

groups after 8 weeks

• DLV loading positively influenced peri-implant

bone healing in the early healing period

Zhang et al.

(2012c)

• BIC was inhibited in the experimental group.

• Normal healing response after implantation was

irrespective of the loading regime.

• The expression of calcitonin gene was increased

in the experimental group

• Significant increase was only found in case

of HF-LM loading (40Hz, 0.5N, 4w).

• The peri-implant tissue response to the

loading via different modes of application

varies. WBV seems to be superior to DLV

• Mechanical loading contributed to

peri-implant bone healing.

• To provoke a positive response, LF loading

required higher magnitudes than HF loading

Zhang et al.

(2012b)

• The BIC increased at cortical and medullary

compared to the control group.

• The BF did not significantly increase after loading

• Significant increase was only found in case of

HF-LM loading (40Hz, 8mm, 4w) at cortical.

• The applied load regimes failed to influence

the peri-implant bone mass

• The effect of implant loading on

bone-to-implant contact was only observed

in case of high-frequency

low-magnitude loading

ALN, alendrinate; BF, bone fraction; BIC, bone-to-implant contact; BMD, bonemineral density; BV/TV, bone volume/total volume; Conn, connectivity density; DLV, direct-loading vibration;

LIPUS, low-intensity pulsed ultrasound; LMHFV, low-magnitude high-frequency vibration; OVX, ovariectomized; PEMF, pulsed electromagnetic field; PTH, parathytoid hormonr; Tb.N,

trabeculae number; Tb.Sp, trabecular separation; Tb.Th, trabecular thickness; WBV, whole-body vibration.
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FIGURE 5 | Results of SYRCLE’s RoB tool in included studies. (A) Representative summary table for the risk of bias assessment; (B) Representative summary for risk

of bias analysis across studies.

that were with meta-analysis. Thus, our current study can give a
frank, fair, and open opinion to all readers.

Further Observations
Cell experiments have shown that LMHFV regulates the
proliferation and differentiation of mesenchymal stem cells
by improving gene expressions, growth factor secretion, bone
matrix synthesis, energy metabolism etc. (Bacabac et al., 2006;
Zhou et al., 2011; Suenaga et al., 2012). This effect was
still manifested in implant application by initial stability,
biomechanical properties and osseointegration rate of implant,
because LMHFV improved promoting bone healing, soft tissue
repair and angiogenesis (Shih et al., 2004; Birmingham et al.,
2015). However, the transmission mechanism of regulating
factors and signaling pathways on LMHFV has not been
determined. Further researches on gene expressions are required.

Besides, contact finite element analysis showed different bone
responses based on direct forces (i.e., DLV) and indirect forces
(i.e., WBV) (Rucci et al., 2007). The main differences between
WBV and DLV were shown in Table 3. In particular, WBV had

a positive effect during osseointegration process, while DLV only
showed a positive effect at the early stage of osseointegration
(inflammatory phase and callus formation, for 2 weeks) (Wang
et al., 2018; Ruppert et al., 2019).

Moreover, the effect of LMHFV is not as good as that of
anti-osteoporosis drugs in OVX animals (Chen et al., 2012). To
our interest, the dosage of parathytoid hormonr (PTH) could
be reduced appropriately when LMHFV applied simultaneously.
This combination could produce synergistic or cumulative effects
to some extent (Shibamoto et al., 2018). However, we failed to
obtain a pre-conceived better effect of combining LMHFV and
alendrinate (ALN), which may be attributed to the inhibited
osteoclast activity (Chatterjee et al., 2014). It is suggested that
biomechanical interventions can not only improve treatment
efficiency, but also reduce drug adverse effects. Thus, researchers
can achieve an augmented effect (Shibamoto et al., 2018).

Clinical Promotion
Compared to WBV loading, DLV loading by small device
embedded in mice is more appropriate in oral therapy (Wang
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TABLE 3 | Differences between WBV treatment and DLV treatment.

WBV treatment DLV treatment

Mode General; indirect Local; direct

Region Close to the surface of implant Close to the loading area

Parameters • M = 0.3–0.5 g

• F = 20–90Hz

• T = 15–30 min

• A = 5–15µm

• F = 20–40Hz

• T = 10–20min

Extent • Extensive

• Whole process of osseointegration

• Circumscribed

• Early stage of osseointegration

Strengths • Definite curative effects

• Operating parameters and wide span defined

• Result in stochastic resonance and extra bone stimulus

• More suitable for dental implants

• Less loading energy

• Shorter loading time

• Less adverse reactions

Limitations • Poorly control of the mechanical conditions

• Risks of possible adverse reactions from systemic exposure

• Lack of clinical vibration stimulation device

• No conclusion on the best parameters

Potential clinical applications • Bone mineral density in postmenopausal women increases

• Adjuvant treatment of osteoporosis

• Prevention of falls and fractures in the elderly

• Accelerate implant osseointegration

• Promotion of fracture, extraction socket and bone defect

healing

• Increase bone mass

A, amplitude (µm); DLV, direct-loading vibration; F, frequency (Hz); M, magnitude (g); T, time (min); WBV, whole-body vibration.

et al., 2018), which pronouncedly highlights its convenient
clinical application. Differently, WBV loading can play a positive
role on systemic diseases treatment (Marín-Cascales et al., 2018),
while back pain and Raynaud’s syndrome may occur when the
body is exposed to an extensive loading for a long time (Yung
et al., 2018).

At this stage, LMHFV clinical promotion is limited as follows:
(Leung et al., 2014; Wong et al., 2020): (1) Lack of large-
scale multi-center clinical RCTs; (2) Unknown exact instruction
for jaw bone application; (3) Long treatment period; (4) High
medical cost; (5) Lack of follow-up from professional guidance.

Limitations
Several limitations in our paper should be well-concerned: (1)
Among included studies, only one was conducted in jaw bone,
and our findings should be fully clinically validated; (2) Due
to limited sample size and low evidence level of biomechanical
index on osseointegration, it was excluded in our study; (3)
Insufficient sample size on osseointegration estimation in other
bone diseases, such as bone defect and diabetes; (4) The
heterogeneity was unavoidable due to differences between
implants and animal species even if we had conducted subgroup
analysis; (5) The data conducted in one research team and
converted via graphs might lead to potential bias; (6) The quality
of evidence wasmedium or low in this study, the exact conclusion
needed to be verified by high-quality studies in the future.

CONCLUSION

Based on this systematic review and meta-analysis, LMHFV is
demonstrated to be relatively beneficial in improving animal
implant osseointegration. The influence factors might be loading
parameters andmode. Nevertheless, the fundamentalmechanism

and ideal parameters remain unclear, which need to be further
expounded. Therefore, it is inferred that LMHFV might be a
worthy method to improve implant osseointegration clinically,
particularly in osteoporosis. Multi-center RCTs with a large
sample size are required for examining the efficacy of LMHFV
on dental implant clinically.
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