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Perinatal cells, including cells from placenta, fetal annexes (amniotic and chorionic
membranes), umbilical cord, and amniotic fluid display intrinsic immunological properties
which very likely contribute to the development and growth of a semiallogeneic fetus
during pregnancy. Many studies have shown that perinatal cells can inhibit the activation
and modulate the functions of various inflammatory cells of the innate and adaptive
immune systems, including macrophages, neutrophils, natural killer cells, dendritic cells,
and T and B lymphocytes. These immunological properties, along with their easy
availability and lack of ethical concerns, make perinatal cells very useful/promising in
regenerative medicine. In recent years, extracellular vesicles (EVs) have gained great
interest as a new therapeutic tool in regenerative medicine being a cell-free product
potentially capable, thanks to the growth factors, miRNA and other bioactive molecules
they convey, of modulating the inflammatory microenvironment thus favoring tissue
regeneration. The immunomodulatory actions of perinatal cells have been suggested
to be mediated by still not fully identified factors (secretoma) secreted either as soluble
proteins/cytokines or entrapped in EVs. In this review, we will discuss how perinatal
derived EVs may contribute toward the modulation of the immune response in various
inflammatory pathologies (acute and chronic) by directly targeting different elements of
the inflammatory microenvironment, ultimately leading to the repair and regeneration of
damaged tissues.

Keywords: perinatal derivatives, secretome, extracellular vesicles, immunomodulation, tissue regeneration

EXTRACELLULAR VESICLES

Extracellular vesicles (EVs) are membrane-bound vesicles secreted into the extracellular
environment by healthy (Raposo and Stoorvogel, 2013) and apoptotic cells (Hristov et al., 2004).
Exosomes (exo), microvesicles (MVs) and apoptotic bodies are the three main subtypes of EVs
which are distinguished based upon their biogenesis, release pathways, size, content, and function
(Zaborowski et al., 2015) (Figure 1). Among the subtypes, the most numerous are exosomes
(Rani et al., 2015), whose diameters ranges from 40 to 120 nm. Exosomes form by fusion
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between multivesicular endosomes and plasma membrane. MVs
are between 100 and 1,000 nm in size and bud directly
from the plasma membrane. Apoptotic blebs’ size ranges from
50 to 2,000 nm and the bodies are released by dying cells
(Zaborowski et al., 2015).

Originally, EVs were thought to serve as a disposal
mechanism by which cells eliminate unwanted proteins and
other molecules. However, today EVs represent a well-known
mechanism of cell-to-cell communication that goes beyond the
classical signaling through cell-cell contact and secreted bioactive
factors (i.e., cytokines, inflammatory mediators, metabolites,
and hormones) (Pitt et al., 2016). Therefore, EVs exert
their biological effect through activation of cell signaling by
physical ligand/receptor interactions or by fusing with their
recipient cells, transferring their contents (miRNAs, mRNAs,
proteins, phospholipids, or generally, a morphogen) into the
cytosol, and modifying the physiological state of the recipient
cells (Figure 1). EVs may also be endocytosed by the
target cells or release their bioactive molecules, receptors and
genetic information into the extracellular space (Figure 1)
(Turturici et al., 2014).

Extracellular vesicles content and mechanism of release differs
according to cell origin and it changes in response to fluctuations
of physiological states or pathological conditions. During
physiological processes EVs can regulate angiogenesis, immune
responses, apoptosis, coagulation, cellular homeostasis, and
intercellular signaling (Gurunathan et al., 2019). Furthermore,
they play a role in the development and progression of diseases
(e.g., cancer, neurodegeneration, infections, and cardiovascular
disease) (Zaborowski et al., 2015; Kao and Papoutsakis, 2019).
EVs can be isolated from a variety of body fluids (e.g., blood,
semen, saliva, plasma, urine, cerebrospinal fluid, synovial fluid,
malignant and pleural effusions of ascites, bronchoalveolar
lavage (BAL) fluid, breast milk, and amniotic fluid) (Rani
et al., 2015), and from solid tissues like lung tumors, brain
(Hurwitz et al., 2019), and perinatal derivatives, such as placenta
(Fitzgerald et al., 2018).

Extracellular vesicles are gaining increasing interest for a
broad range of applications, such as potential tools for cancer
diagnosis (Rahbarghazi et al., 2019) and therapeutic approaches
in regenerative medicine. More specifically, given their role
in modulating immune responses, EV-based therapeutics are
being developed for the treatment of inflammatory diseases,
autoimmune disorders and cancer (Robbins and Morelli, 2014).
In order to pursue such applications involving EVs, a better
understanding of the immunomodulatory mechanisms through
which EVs act, such as deciphering their bioactive cargo and
target cells, is needed. The aim of this review is to discuss
the current status and advances of EVs from perinatal, or
birth-associated, cells isolated from placenta, umbilical cord,
and fetal membranes. Perinatal cells and their secretome have
demonstrated robust immunomodulatory properties (Mattar and
Bieback, 2015; Magatti et al., 2016, 2018, 2019; Abumaree et al.,
2017; Lim, 2017; Silini et al., 2017), that have been correlated
to their ability to contribute to tissue regeneration (Silini et al.,
2017). Hence herein we will discuss the contribution of perinatal-
derived EVs to the immune response, with a focus on their ability

to promote reparation and regeneration of damaged tissues in the
context of acute and chronic inflammation.

PERINATAL TISSUES AS SOURCES OF
EXTRACELLULAR VESICLES

As mentioned previously, perinatal or birth-associated tissues,
refer to tissues that are obtained from term placentas and
fetal annexes and more specifically refers to the amniotic
membrane, chorionic membrane, chorionic villi, umbilical
cord (including Wharton’s jelly), the placental basal plate
(including maternal and fetal cells), and the amniotic fluid
(Silini et al., 2020).

The fetal membranes enclose the fetus and its surrounding
amniotic fluid, forming a highly specialized interface between
the mother and the fetus that performs vital functions. The
fetal membranes consist of two components: the amnion
and the chorion. The amnion, the inner of the two fetal
membranes, is a thin, avascular membrane, composed of an
epithelial and a mesenchymal layer. The amniotic epithelium is
in direct contact with the amniotic fluid and is composed of
columnar and cuboidal epithelial cells; the amniotic mesoderm
is composed of fibronectin and collagen (type I and III) and
hosts rare macrophages and dispersed mesenchymal stromal
cells (Silini et al., 2020). Weakly linked but not fused to the
amnion, the chorionic membrane consists of a mesodermal
region, containing chorionic mesenchymal stromal cells, and
a trophoblastic area, rich in proliferating trophoblasts and
fibrinoid deposits. In order to maximize exchange surface
between mother and fetus tissues, finger-like structures, known
as chorionic villi, develop from the outer region of the
chorion. The chorionic villi anchor the placenta to maternal
endometrium and are involved in fetal-maternal exchange
(Silini et al., 2020).

The umbilical cord is an extraembryonic tissue connecting
the placenta to the fetus, externally covered by a single
epithelial layer of cells, supposed to derive from amniotic
epithelium. The structure of umbilical cord is made up of
a mucous connective tissue called Wharton’s jelly, enriched
in fibroblast-like cells. Within this glycosaminoglycan and
collagen-rich matrix are immersed a vein and two umbilical
arteries, essential for nutrient, metabolic and gas exchange
(Anzalone et al., 2010).

The decidua is the maternal component of placenta and
its formation is due to the growth and the proliferation of
the functional layer cells of endometrium after implantation.
The part of decidua that lies at the site of implantation and
interacts with the trophoblasts is defined as decidua basalis,
while decidua capsularis refers to the portion of decidua
covering the conceptus on the luminal site. The remaining
section of endometrium, blending by the fourth month of
gestation with the decidua capsularis, is the decidua parietalis
that lines the rest of uterus cavity (Abumaree et al., 2016;
Turco and Moffett, 2019).

Several cell types can be obtained and expanded from the
different regions of the human placenta and the fetal annexes,
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FIGURE 1 | Biogenesis of extracellular vesicles (EVs). EVs are a heterogeneous family of membrane-bound vesicles produced by a donor cell that target a recipient
cell. EVs are distinguished into three main subtypes according to their size: microvesicles (100–1,000 nm), exosomes (40–120 nm), and apoptotic bodies
(50–2,000 nm). Exosome biogenesis starts from the endosomal system, with the early endosome that transforms into a late endosome, deriving from the inward
budding of intraluminal vesicles. EVs can carry many biologically active molecules such as proteins and genetic material (mRNA, miRNA, and DNA), with important
immunomodulatory functions. The exosomes produced then can be released by the exocytotic pathway with the fusion between the multivescicular late endosome
and the plasma membrane. Microvesicles present a less defined mechanism of biogenesis and release compared to exosomes with different mechanisms that have
been identified for the shedding of the MVs depending also on the biological content. Apoptotic bodies are released by dying cells following the blebbing process.
EVs are taken up by the recipient cell via different mechanisms including membrane fusion endocytosis, phagocytosis or ligand–receptor interactions. Created with
Biorender.com.

the most prominent being epithelial cells, mesenchymal stromal
cells (MSC), endothelial, and hematopoietic cells, and all of these
produce and release EVs.

IMMUNOMODULATORY PROPERTIES
OF PERINATAL CELLS AND THEIR EVs

The essential role of the placenta in maintaining a state of
fetal-maternal tolerance during pregnancy initially suggested
that cells derived from gestational tissues may possess
intriguing immunomodulatory properties, exploitable for
several regenerative medicine applications. Nowadays, the
immunomodulatory properties of perinatal cells, especially MSC,
have widely been demonstrated (Magatti et al., 2016). Indeed,
different in vitro studies have demonstrated that perinatal cells
target components of the innate and adaptive immune systems,
including T and B lymphocytes, macrophages, dendritic cells,
neutrophils and natural killer cells.

Specifically, they can suppress the proliferation of T
lymphocytes (Magatti et al., 2008; Kronsteiner et al., 2011),
and can inhibit the differentiation into Th1 and Th17, causing
concurrently the formation of Th2 cells, with an immune
regulatory cytokine profile, and the enhancement of regulatory
T cells (Pianta et al., 2016; Khoury et al., 2020). In addition,
perinatal cells directly interact with B cells, reducing proliferation
and plasma cells formation as well as promoting regulatory B
cells induction (Che et al., 2012; Magatti et al., 2020). Perinatal
cells can also inhibit the migration and maturation of dendritic
cells and promote the polarization of monocytes/macrophages
toward an anti-inflammatory phenotype (Magatti et al., 2009,
2015; Banas et al., 2013; Croxatto et al., 2014; Abomaray et al.,
2015; Abumaree et al., 2019).

In line with this, preclinical studies have shown that
administration of perinatal cells or their secretome induces
therapeutic effects in many models of inflammatory diseases
such as liver (Lee et al., 2010; Manuelpillai et al., 2010, 2012;
Jung et al., 2013; Cargnoni et al., 2018), and lung fibrosis
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FIGURE 2 | Immunomodulatory effects of perinatal-MSC extracellular vesicles (EVs). The molecular content of perinatal MSC-EVs represented by proteins, lipids,
and nucleic acids can strongly affect both the innate (neutrophils and macrophages) and adaptive immune response (T lymphocytes). Treg, T regulatory cell; Th1, T
helper 1 cell; M1, macrophage type 1; M2, macrophage type 2; NLRP3, NLR family pyrin domain containing 3; NF-κB, nuclear factor kappa B. Created with
Biorender.com.

(Cargnoni et al., 2009, 2020; Vosdoganes et al., 2011; Murphy
et al., 2012; Moodley et al., 2013; Tan et al., 2014, 2017),
collagen-induced arthritis (Parolini et al., 2014), experimental
autoimmune encephalomyelitis (Parolini et al., 2014; Donders
et al., 2015), cerebral ischemia (Lin et al., 2011), and diabetes
(Wang et al., 2014; Tsai et al., 2015).

A large body of evidence has demonstrated that these effects
are mediated by active molecules secreted by perinatal cells able
to affect cell survival, function and repair in host damaged tissues
(Gunawardena et al., 2019; Silini et al., 2019). As a matter of
the fact, the delivery of conditioned medium (CM), generated
from in vitro culture of perinatal cells, representing perinatal
cell secretome, produced benefits similar to that obtained with
parental cells (Cargnoni et al., 2012, 2014; Danieli et al., 2015;
Pischiutta et al., 2016; Giampa et al., 2019).

In the last decade, several studies have reported that EVs
from perinatal tissues are comparable to the parental cells
when transplanted in several preclinical models of inflammatory
mediated diseases such as wound healing (Li et al., 2016; Zhao
et al., 2017), pulmonary fibrosis (Tan et al., 2018), hepatic
fibrosis (Alhomrani et al., 2017); bronchopulmonary dysplasia
(BPD) (Chaubey et al., 2018; Willis et al., 2018), liver failure

(Jiang et al., 2019; Yao et al., 2019), vascular repair (Spinosa
et al., 2018; Wei et al., 2019), renal injury (Zou et al., 2014,
2016), neurodegenerative diseases (Ding et al., 2018; Ma et al.,
2019; Romanelli et al., 2019; Thomi et al., 2019), autoimmune
diseases (Bai et al., 2017; Mao et al., 2017), and Duchenne
muscular dystrophy (Bier et al., 2018). Furthermore, EVs have the
advantage of being a cell-free therapy and therefore with reduced
risks associated with the transplantation of live cells.

In relation to the therapeutic utility of perinatal EVs
assessed in the above cited preclinical studies, there are five
clinical trials applying EVs from perinatal cells reported in
the ClinicalTrials.gov database and one reported in Chinese
Clinical Trial Registry. They are phase I studies with the
primary endpoint to establish the safety of the treatment.
One of these (NCT03437759), will apply exosomes from
human UC-MSCs to large and refractory macular holes (MHs).
Another study (NCT04213248), explores whether the local
delivery of exosomes from UC-MSCs is able to reduce dry-
eye symptoms in patients with chronic Graft Versus Host
Diseases (cGVHD). Exosomes from UC-MSCs will also be used
to treat multiple organ dysfunction syndrome after surgical
ascending aortic replacement (NCT04356300). Exosomes from
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another source, amniotic fluid, are under evaluation to treat,
in combination with ultrasound therapy, depression, anxiety,
and neurodegenerative dementia in patients resistant to any
pharmacological treatment (NCT04202770).

Finally, two more trials, one using EVs derived from
human amniotic fluid (NCT04384445) and the other using
exosomes from umbilical cord MSCs (ChiCTR2000030484
study, from Chinese Clinical Trial Registry), will assess the
ability of these treatments to suppress cytokine activation
and any incidence of associated adverse events, in subjects
suffering from COVID-19 infection with severe acute
respiratory syndrome.

Impact of Perinatal EVs on Cells of the
Myeloid Lineage
It is now widely recognized that the therapeutic effect of perinatal
cells is largely mediated via secretion of bioactive factors rather
than cell–cell interactions (Silini et al., 2019). Many studies have
suggested the MSC EVs modulate inflammation and contribute
to tissue regeneration (Fatima et al., 2017), however, the exact
mechanism by which perinatal derived/secreted factors regulate
the immune response is still unknown. Importantly, several
recent papers focused their attention on EVs from perinatal MSC,
highlighting their potential for a cell-free therapy (Robbins and
Morelli, 2014; Phinney and Pittenger, 2017).

Innate immune cells, including neutrophils, NK cells, and
phagocytic cells such as macrophages and dendritic cells, are
the first cells to initiate an immune response against a potential
pathogen, clear from residual apoptotic or necrotic cells, and
remodel the extracellular matrix to prepare the “scenario” pivotal
to the subsequent healing steps (White and Mantovani, 2013;
MacLeod and Mansbridge, 2016). Perinatal EVs have been shown
to interact with various innate immune cells (Figure 2). In the
following sections we describe the interactions between perinatal
EVs and immune cells (summarized in Figure 2) and identify
several key molecules involved in these interactions (summarized
in Table 1).

MSC-EVs Interfere With Infiltration and Accumulation
of Neutrophils
Several studies have shown the ability of perinatal EVs to act on
neutrophils. For example, in a rat model of hepatic ischemia-
reperfusion injury, IV injection of EVs from human umbilical
cord MSC (hUC-MSC) reduced serum biomarkers of liver injury
(ALT, AST, and ALP), hepatic necrosis and hepatocyte apoptosis
(Yao et al., 2019). These effects were mediated by EVs ability in
reducing neutrophil hepatic infiltration, suppressing neutrophil
respiratory burst (in vitro evidence) and in decreasing the
expression and the levels of inflammatory cytokines (IL-1β, IL-
6, and TNF-α) in hepatic tissues and serum, respectively. The
authors suggested that the hepatic protective effects of hUC-MSC
EVs may be mediated through the vesicular secretion of a crucial
enzyme with anti-oxidant action (MnSOD) (Yao et al., 2019).
However, no mechanism has been explored to explain EVs action
on neutrophil recruitment.

Exosomes derived from Wharton’s jelly MSC (hWJ-MSC)
of premature neonates, injected intraperitoneally in a mouse
model of hyperoxia-induced BPD, decreased lung inflammation,

alveolar structural alterations, endothelial cell damage and
demyelination in the brains (Chaubey et al., 2018). Interestingly,
exosome treatment specifically suppressed the hyperoxia-
induced neutrophil accumulation in BAL while it did not affect
BAL macrophage levels. In the same study, a group of BPD
animals received either the CM (hWJ-MSC-CM) or the exosome-
depleted fraction of CM, and while both hWJ-MSC-CM and
hWJ-MSC-exosome treatments improved BPD pathology, the
exo-free fraction did not, suggesting that the exosome fraction
is responsible for the beneficial effects observed. Interestingly,
the authors detected the presence of tumor necrosis factor alpha-
stimulated gene-6 (TSG-6) in exosomes and in CM and observed
that the use of a TSG-6 neutralizing antibody or of exosomes
obtained from TSG-6 siRNA knockdown hWJ-MSC abolished
the therapeutic effects.

MSC-EVs Affect Macrophage Activation and
Polarization
Human umbilical cord MSC EVs have been reported to
differently affect the activity of inflammatory macrophages, by
modulating their activation (Li et al., 2016), favoring a skewing
toward anti-inflammatory M2 macrophages, or modulating their
recruitment to the injured site of inflammation (Yu et al., 2016;
Willis et al., 2018; Wei et al., 2019). Jiang et al. (2019) reported
the capacity of UC-MSC-derived exosomes to directly inhibit
M1 macrophage activation in a mouse model of acute liver
failure by inhibiting the expression of the NLRP3 inflammasome
complex and the production of inflammatory cytokines. These
findings were also confirmed in a cell line of LPS-stimulated
RAW 264.7 macrophages, where the administration of UC-
MSC exosomes was able to reduce the expression of NLRP3,
caspase 1 as well as of the inflammatory cytokines IL-1β and
IL-6 (Jiang et al., 2019). In another mouse model of acute
burn, administration of the UC-MSC-derived exosomes strongly
reduced the activation of M1 macrophages by impairing the NF-
κB/p65 pathway, consequently reducing the expression of TNFα,
IL-1β and increasing the amount of IL-10 produced and released
(Li et al., 2016). As a matter of fact, in vitro studies performed
in a cell line of mouse macrophages identified a specific miRNA,
miR-181c, as the one responsible for the effect observed. Indeed,
this miRNA directly affects the expression of toll-like receptor
4 (TLR4), whose downregulation directly impacts NF-κB/p65
pathway activation (Li et al., 2016).

Importantly, EVs can regulate the phenotype polarization
of M1 toward M2 macrophages thus reducing the release of
inflammatory cytokines. Using the human monocytic cell line
THP1, Ti et al. (2015) reported that exosomes from LPS-
primed UC-MSC were able to affect the M1/M2 skewing and
enhance the expression of miR-Let7b. The overexpression of this
miRNA can directly impact M1 polarization favoring instead a
skewing toward the M2 subset by downregulating the TLR4/NF-
κB/STAT3/AKT signaling pathway which is essential for the
regulation of macrophage plasticity (Ti et al., 2015). Comparable
effects were observed when UC-MSC were primed with the
inflammatory cytokine IL-1β. Indeed, researchers observed that
the priming was able to trigger an increase in the total amount of
miRNA-146a molecules contained in the UC-MSC EVs resulting
in a strong polarization of bone marrow-derived macrophages
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TABLE 1 | Summary of perinatal EVs mechanisms of action and biological effects.

Cell type Model Target cells Key
molecules/Molecular
mechanism

Biological effect References

hUC-MSC Rat hepatic
ischemia-reperfusion
injury

Hepatocytes,
Neutrophils

Mitochondrial
manganese superoxide
dismutase Mn(SOD),
anti-oxidant activity

Decreased expression of inflammatory
cytokines in hepatic tissue and serum,
decreased hepatocyte necrosis

Yao et al. (2019)

hUC-MSC Mouse model of acute
liver failure; RAW 264.7
macrophages in vitro
activated with LPS

Macrophages Inhibition of NLRP3
inflammasome complex
expression

Reduced caspase 1 and inflammatory
cytokines (IL-1β and IL-6)

Jiang et al. (2019)

hUC-MSC Mouse model of acute
burn

Macrophages miR-181c
downregulation of
TLR-4 receptor
expression with
consequent
downregulation of
NF-κB/p65 pathway

Reduction of M1 macrophage activation Li et al. (2016)

hUC-MSC Mouse model of aortic
aneurysm

T lymphocytes miR-147 Decreased expression of inflammatory
cytokines, reduction of lymphocytes infiltration,
improved aortic diameter, and elasticity

Spinosa et al.
(2018)

hUC-MSC (LPS
primed)

Wound healing model
in diabetic rat

Macrophages miR-let-7b down
regulation of TLR4/NF-
κB/STAT3/AKT
signaling pathway

Promotion of M2 macrophage activation,
enhanced diabetic cutaneous wound healing

Ti et al. (2015)

hUC-MSC
(IL-1β primed)

Mouse model of sepsis Macrophages miR-146a Increased polarization of macrophages toward
the M2 anti-inflammatory subset

Song et al. (2017)

hUC-MSC Mouse and rat spinal
cord injury model

Macrophages - Reduction of inflammatory cytokines and M2
polarization

Romanelli et al.
(2019); Sun et al.
(2018)

hUC-MSC Mouse model of
inflammatory bowel
disease

Macrophages - Reduced macrophage recruitment and
reduced inflammation

Mao et al. (2017)

hUC-MSC Mouse model of retinal
laser injury

Macrophages - Downregulation of MCP1 and macrophage
infiltration

Yu et al. (2016)

hUC-MSC Rat model of
experimental
autoimmune
uveoretinitis

CD4 T
lymphocytes, NK
cells, neutrophils
and
macrophages

- Reduced infiltration of inflammatory immune
cells

Bai et al. (2017)

hUC-MSC Synthetic vascular
grafts in rat model of
hyperlipidemia

Macrophages - Reduced macrophage infiltration and
enhanced M2 macrophage polarization,
associated with reduced thrombosis and
vascular intimal hyperplasia

Wei et al. (2019)

hUC-MSC Alzheimer mouse
model

Microglia - Reduced number of M1 microglial cells,
promotion of M2 microglial polarization
associated with reduced neuroinflammation
and B amyloid deposition

Ding et al. (2018)

hUC-MSC Human in vitro purified
T lymphocytes

T lymphocytes Adenosine signaling
through CD73
expression

Reduced T lymphocyte activation Kerkelä et al. (2016)

hUC-MSC Mouse model of
contact hypersensitivity

T lymphocytes STAT1 signaling
pathway inhibition

Reduced cytotoxic and Th1 lymphocyte
infiltration and induced Treg with reduced
tissue swelling

Guo et al. (2019)

hUC-MSC Human in vitro purified
T lymphocytes

T lymphocytes - Reduced T lymphocyte proliferation and
inflammatory cytokine production

Monguió-Tortajada
et al. (2017)

hUC-MSC GVHD mouse model T lymphocytes - Reduced CD8 cytotoxic T lymphocyte and
reduced inflammatory cytokines in serum,
alleviated GVHD manifestations and reduced
mortality of the recipient mice

Wang et al. (2016)

hUC-MSC (β2
microglobulin
deficient)

Rat model of
myocardial infarction

CD8 T
lymphocytes

miR-24 Reduced CD8 T lymphocyte cytotoxicity with
improved preservation of cardiac function after
myocardial infarction

Shao et al. (2020)

(Continued)

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 6 February 2021 | Volume 9 | Article 637737

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-09-637737 February 1, 2021 Time: 18:10 # 7

Cargnoni et al. Extracellular Vesicles From Perinatal Cells

TABLE 1 | Continued

Cell type Model Target cells Key
molecules/Molecular
mechanism

Biological effect References

hUC-MSC
(primed with
TGFβ and IFNy)

In vitro study on human
PBMC

Treg IDO1 Increased Treg polarization Zhang et al. (2018)

hUC-MSC In vitro study on
hUC-MSC and
hCB-MSC

miRNA profiling miR-a25b, miR26a,
miR145, miR181c-5p,
miR-Let7e, miR-Let7c,
miR-Let7f, and
miR.106a

miRNAs with immunoregulatory functions Meng et al. (2017)

hUC-MSC Rat model of renal
ischemic reperfusion
injury

NK cells CXC3L1, TLR-2 Reduced CXC3L1 and TLR-2 expression with
consequent reduced NK cell recruitment

Zou et al. (2016)

hWJ-MSC Mouse model of acute
kidney injury

Macrophages - Decreased CXCL3 ligand 1, reduced
macrophage and T lymphocyte infiltration, and
reduced renal injury

Zou et al. (2014)

hWJ-MSC Perinatal brain injury rat
model

Microglia TLR4/CD14 signaling
pathway inhibition

Reduced expression of inflammatory cytokines
by microglial cells

Thomi et al. (2019)

hWJ-MSC Mouse model of
hyperoxia-induced
bronchopulmonary
dysplasia (BPD)

Neutrophils Tumor necrosis factor
alpha-stimulated
gene-6 (TSG-6)

Suppression of hyperoxia-induced neutrophil
accumulation in bronchoalveolar lavage (BAL)
with improvement of BPD pathology

Chaubey et al.
(2018)

canine
WJ-MSC

In vitro study with
canine PBMC

CD4 T
lymphocytes

TGF-β1/Adenosine
signaling

Reduced CD4 T lymphocyte proliferation Crain et al. (2019)

hWJ-MSC Hyperoxia-induced
bronchopulmonary
dysplasia

Macrophages - Reduced M1 macrophage lung infiltration,
enhanced M2 polarization

Willis et al. (2018)

hAF-MSC
(primed with
IFNy)

In vitro co-culture with
PBMC; mouse model
of allogeneic skin graft
transplantation

Treg IDO1 Increased number of Treg cells promoting
in vivo allograft survival

Romani et al.
(2015)

hAF-MSC In vitro THP1
macrophage cell line;
mouse model of
monoiodoacetate
induced osteoarthritis

Macrophages - Promoted skewing of THP1 committed M1
macrophages toward M2 subset. In vivo
increased pain tolerance and improved
histopathological score

Zavatti et al. (2020)

hAF-SC In vitro and in vivo
models of skeletal
muscle atrophy
(HSA-Cre, SmnF7/F7
mice)

B lymphocytes - Reduced B lymphocyte maturation and
decreased skeletal muscle inflammation
associated with enhanced muscle strength
and survival

Balbi et al. (2017)

hAEC Mouse model of CCl4
induced liver fibrosis

Macrophages - Reduced liver fibrosis through promotion of M2
macrophage polarization

Alhomrani et al.
(2017)

hAEC Bleomycin-induced
pulmonary fibrosis

Macrophages/T
lymphocytes

- Reduced lung fibrosis through promotion of
M2 macrophage polarization and reduction of
T cell infiltration

Tan et al. (2018)

hUC-MSC, human umbilical cord mesenchymal stromal cells; hAF-SC, human amniotic fluid stem cells; hAF-MSC, human amniotic fluid mesenchymal stromal cells;
hWJ-MSC, human Wharton’s jelly mesenchymal stromal cells; IDO1, indoleamine-2,3-dioxygenase-1; LPS, lipopolysaccharide; TLR-2/4, Toll like receptor 2 or 4; CXC3L1,
chemokine (C-X3-C motif) ligand 1; GVHD, acute graft-vs-host disease; NK, natural killer cells; MCP-1, monocyte chemotactic protein-1, PBMC; human peripheral blood
mononuclear cells.

toward M2 macrophages both in vitro and in an animal model
of sepsis (Song et al., 2017). Similarly, IV injection of EVs and
exosomes from hUC-MSCs was able to reduce inflammatory
cytokines and induce M2 macrophage polarization with a
concomitant improvement of motor function in models of spinal
cord injury induced in mice (Sun et al., 2018) and in rats
(Romanelli et al., 2019), respectively.

Analogous findings were observed by Zavatti et al. (2020)
in a murine model of monoiodoacetate-induced osteoarthritis.

The authors report the capability of amniotic fluid-derived MSC
(hAF-MSC) to directly affect the differentiation of the THP1
cell line toward the M1 subset (Zavatti et al., 2020). Indeed,
exposure of THP1 committed M1 macrophages to hAF-MSC
EVs, strongly reduced the expression of canonical M1 markers
like iNOS, the expression of the co-stimulatory molecules CD86
and IL1R favoring instead the acquisition of feature typical of
M2 macrophages like the expression of arginase, CD163 and
TGFβ (Zavatti et al., 2020). Moreover, the authors reported the
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ability of hAF-MSC-EVs to increase pain tolerance and improve
histopathological scores (Zavatti et al., 2020).

MSC-EVs Prevent Inflammatory Immune Cell
Recruitment
Furthermore, UC-MSC EVs can also affect the inflammatory
microenvironment by preventing the migration of pro-
inflammatory M1 macrophages (Zou et al., 2014; Yu et al.,
2016; Bai et al., 2017). Injection of WJ-MSC EVs in an animal
model of acute kidney injury was able to reduce the renal
cell apoptosis by reducing the infiltration of inflammatory
macrophages thus improving the survival and proliferation of
the renal cells. This effect was due to the down-modulation of
CXCL3 ligand 1, a chemotactic factor essential for monocyte
and T lymphocyte recruitment in the injured area (Zou et al.,
2014). Moreover, WJ-MSC EVs were able to strongly impact
the total number of CD68+ immune cells recruited, correlating
the potential therapeutic effect of the treatment to the reduced
amount of infiltrating inflammatory cells (Zou et al., 2014). hUC-
MSC exosomes were also able to reduce acute inflammatory
macrophage hepatic infiltration and related liver injury induced
by intraperitoneal injection of LPS toxin (Jiang et al., 2019).
hUC-MSC exosomes also reduced macrophage infiltration
in colon tissues after injection in mice with dextran-induced
inflammatory bowel disease (Mao et al., 2017).

In another study, Yu et al. (2016) reported the capacity
of UC-MSC EVs to reduce the migration and infiltration of
inflammatory cells in a mouse model of retinal laser injury. This
effect was due to the reduction of MCP1, TNF-α, and ICAM1.
Importantly, these findings were confirmed also in in vitro
experiments where the treatment with UC-MSC EVs was able
to reduce the expression of MCP1 thus positively impacting the
amount of heat-induced apoptosis or death of retinal cells (Yu
et al., 2016). These findings suggested that UC-MSC EVs exert
their protective effect, at least partially, through regulation of
MCP-1 and macrophage infiltration. Exosomes from hUC-MSC
were also able to inhibit the autoimmune response in a rat model
of experimental autoimmune uveoretinitis (EAU) (Bai et al.,
2017). hUC-MSC exosomes reduced the amount of CD4+ T cells,
neutrophils, NK cells and macrophages infiltrating the retina.

Recently, Wei et al. (2019) used EVs from hUC-MSC
to functionalize synthetic vascular grafts in order to reduce
inflammatory-induced thrombosis and vascular intimal
hyperplasia occurring in hyperlipidemic rats. hUC-MSC-derived
EVs enhance the patency of vascular grafts by reducing
macrophage infiltration and inducing M2 polarization.
In another study performed in a mouse model of aortic
aneurysm formation, mice treated with UC-MSC EVs displayed
decreased expression of inflammatory cytokines and in
parallel reduced lymphocyte infiltration thus improving aortic
diameter and elasticity through the activity played by miR-147
(Spinosa et al., 2018).

Furthermore, EVs from human amniotic membrane epithelial
cells (hAEC) were able to reduce macrophage infiltration in
the liver and lung parenchyma in a model of CCl4-induced
liver fibrosis (Alhomrani et al., 2017) and in a model of

bleomycin-induced pulmonary fibrosis (Tan et al., 2018). hAEC-
EVs were also able to promote M2 macrophage polarization
(Alhomrani et al., 2017; Tan et al., 2018), while reducing
pulmonary T cell infiltration (Tan et al., 2018). Interestingly,
exosomes from WJ-MSC were also able to reduce macrophage
lung infiltration when IV injected in a model of hyperoxia-
induced BPD (Willis et al., 2018).

MSC-EVs Modulate the Microglial Inflammatory
Response
Tissue resident macrophages of the central nervous system,
microglia, play a pivotal role in modulating the inflammatory
response (Lenz and Nelson, 2018). Thomi et al. (2019) reported
that the administration of WJ-MSC-EVs was able to modulate the
microglia response by interfering with the TLR4/CD14 signaling
pathway thus dampening the expression of inflammatory
cytokines such as TNF-α and IL-6 but without affecting the
inflammasome pathway. Furthermore, in a transgenic mouse
model of Alzheimer’s disease exosomes derived from hUC-
MSC ameliorated spatial learning and memory function and,
in parallel, reduced the number of inflammatory M1 microglial
cells and increased levels of M2 immunomodulatory microglia
(Ding et al., 2018). In addition, reduced levels of inflammatory
cytokines (IL-1β and TNF-α) and increased of anti-inflammatory
ones (IL-10 and TGF-β) were found in peripheral blood and in
brains of mice treated with hUC-MSC exosomes.

Impact of Perinatal EVs on Cells of the
Lymphoid Lineage
Perinatal MSC-EVs Influence T Lymphocyte
Activation and Polarization
In addition to the effect observed on innate immune cells,
several groups have also shown that perinatal EVs modulate
the adaptive immune response, as well as the infiltration of
T lymphocytes in the inflamed tissues. Crain et al. (2019)
reported that WJ-MSC EVs were able to inhibit CD4 T
lymphocyte proliferation in a dose-dependent manner. The
observed effect was possibly due to the high amount of TGFβ1
delivered by the EVs. Indeed, the administration of TGFβ1
neutralizing antibodies and TGFβ1R antagonist reverted the
efficacy of the WJ-MSC EVs. Similar findings were also obtained
when adenosine signaling was blocked, thus suggesting that
the mechanism of action of WJ-MSC-EVs was based on the
activation of these two axes (Crain et al., 2019). As a matter
of fact, similar findings were observed also by Kerkelä et al.
(2016), who reported the capacity of UC-MSC EVs to affect
the extracellular microenvironment through the production of
adenosine by the CD73 ectonucleotidase expressed on the surface
of the EVs. The authors reported how CD39 expressed by the
T lymphocyte synergizes with CD73 expressed on the surface
of the exosomes to convert the extracellular ATP in ADP, AMP,
and finally in adenosine, thus inhibiting the immune response
(Kerkelä et al., 2016).

hUC-MSC EVs have been also used to treat immune-
dysregulated diseases such as allergic dermatitis characterized by
an excessive antigen-specific T cell reaction (Guo et al., 2019).
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Application of hUC-MSC EVs in a mouse model of contact
hypersensitivity (CHS) reduced ear swelling and ear leukocyte
infiltration, reduced the percentages of IFN-γ producing
CD8+ and CD4+ T cells, increased the levels of T regulatory
(Treg) cells in the cervical lymph nodes, and finally, decreased
serum levels of IFN-γ and TNF-α while increasing those
of IL-10 (Guo et al., 2019). The authors suggested that
the immunomodulatory action of hUC-MSC EVs may
be mediated by their ability to suppress STAT1 activation
(Guo et al., 2019).

The ability of UC-MSC EVs to affect T lymphocyte activation
and proliferation was also observed in a comparison article aimed
to determine whether the different fractions of the secretome
display distinct immunomodulatory properties. Indeed, one
study that compared the results obtained from the complete
CM, the ultracentrifuged pellet, the non-EV fraction, and the
EV fraction isolated by size-exclusion chromatography (SEC)
(Monguió-Tortajada et al., 2017). Importantly, the authors
reported that EVs do not induce monocyte polarization or
cytokine secretion, but the non-EV fraction is able to trigger the
expression of two M2 markers namely CD163 and CD206, while
at the same time enhance the production of the inflammatory
cytokine TNF-α (Monguió-Tortajada et al., 2017). Moreover,
the SEC-purified EV fraction was the only fraction able to
inhibit T lymphocyte proliferation and inflammatory cytokine
production in vitro, resembling the effect of parental UC-MSC.
Furthermore, the other fractions triggered the polarization of
polyclonally stimulated T cells toward the inflammatory Th17
subset (Monguió-Tortajada et al., 2017). Additionally, the ability
of UC-MSC EVs to affect Th subset polarization was also reported
by Wang et al. (2016). Indeed, the authors highlighted how
UC-MSC-EVs can trigger the conversion of inflammatory Th1
subset toward the Th2 subset by the downregulation of the pro-
inflammatory cytokines TNFα and IFNγ, and instead trigger
the expression of IL-10 and IL-4. Furthermore, when inoculated
in a mouse model of graft versus host disease, UC-MSC EVs
were able to reduce the serum level of inflammatory cytokines
IL-2, TNFα, and IFNγ, increase the amount of IL-10, and
reduce the absolute number of cytotoxic CD8 T lymphocytes
(Wang et al., 2016).

In line with this, another study reported that EVs isolated from
the B2 microglobulin negative fraction of UC-MSC lack of the
capacity to trigger the activation of cytotoxic CD8 T lymphocytes.
Moreover, authors observed an enrichment of miR-24 promoting
survival of cardiomyocytes by targeting Bim. As a matter of
fact, the authors highlighted the capacity of UC-MSC EVs to
counteract fibrosis induced by the TGFβ pathway in an in vivo
model of myocardial infarction in rats (Shao et al., 2020). These
findings were also confirmed by Guo et al. (2019), who reported
that, both in vitro and in an in vivo model of allergic contact
dermatitis (ACD), UC-MSC-EVs were able to reduce the total
amount of cytotoxic CD8 IFNγ + T lymphocytes, and inhibit
the polarization of the inflammatory CD4 Th1 subset and instead
foster the Treg polarization. In a different study, internalization of
the EVs was able to reduce the STAT1 protein level thus affecting
the transcriptional polarization toward the inflammatory and
cytotoxic T lymphocyte subsets (Guo et al., 2019).

Perinatal EVs Impact Treg Polarization and
T Lymphocyte Recruitment
Perinatal EVs can also affect Treg polarization. In this context,
Zhang et al. (2018) reported how UC-MSC primed with TGFβ

and IFNγ for 72 h were able to enhance Treg polarization,
putatively through upregulation of IDO molecules.

Similarly, EVs isolated from primed amniotic fluid MSC were
able to induce the polarization and expansion of CD4 Treg cells.
Romani et al. (2015) reported that pre-treatment with IFNγ was
able to strongly increase the amount of IDO1 conveyed by the
EVs. These in vitro findings were confirmed in a mouse model
of allogeneic skin graft transplantation, where the treatment with
hAF-MSC EVs induced an increase in the number of Treg cells in
the draining lymph nodes of recipient mice (Romani et al., 2015).
Converserly, Balbi et al. (2017) highlighted how EVs isolated
from hAF-SC were not able to affect the proliferation of human
PBMC activated with different stimuli. Furthermore, they did
not observe any significant effect in the polarization of CD4
Treg cells, while a significant reduction on B cell maturation was
detected (Balbi et al., 2017). Finally, several studies also reported
the ability of EVs isolated from UC-MSC and hAEC to inhibit
the recruitment of inflamed T lymphocytes. Indeed, in a mouse
model of uveoretinitis Bai et al. (2017) reported a reduction
of IFN-γ- and IL-17-producing CD4+ T cells in the damaged
area. However, these findings were associated neither with a
diminished T cell proliferation nor with increased cell apoptosis,
but rather with the ability of hUC-MSC exosomes to inhibit T cell
migration (Bai et al., 2017). Similar results were reported also by
Tan et al. (2018), highlighting the potential immunomodulatory
effect of hAEC EVs, able not only to induce polarization of
monocytes toward anti-inflammatory M2 macrophages, but also
to reduce the infiltration of T lymphocytes in a mouse model of
bleomycin induced pulmonary fibrosis. Besides T-cells, in vitro
and in vivo studies have reported the capacity of the exosomes
isolated from UC-MSC to affect other lymphoid cells, such as
the migration of NK cells by down modulating the expression
of the C-X3-C motif chemokine ligand-1 (CX3CL1) and toll-
like receptor-2 (TLR-2), thus affecting NK cell recruitment
(Zou et al., 2016).

miRNAs REGULATE THE IMMUNE
MODULATORY PROPERTIES OF
PERINATAL EVs

Many of the observed effects can be in part attributable
to the presence of bioactive molecules like the miRNAs. As
a matter of fact, among the bioactive factors contained in
EVs, miRNAs have emerged as one of the main effectors in
regulating several biochemical and transcriptional pathways such
as proliferation, differentiation, inflammation, metabolism, and
apoptosis (He and Hannon, 2004). Indeed, several miRNAs have
been associated with the modulation of T lymphocytes being
able to boost or dampen their activation and polarization in
order to maintain homeostasis (Rodríguez-Galán et al., 2018).
At present, only a few studies have attempted to characterize
the miRNA profile of the EVs isolated from perinatal MSC
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(Fang et al., 2016; Balbi et al., 2017; Meng et al., 2017; Zou
et al., 2018). Importantly, these studies reported the presence
of a few specific and highly expressed miRNAs, previously
described for their immunomodulatory potential, such as miR-
16, miR-Let7-c, miR-181a, miR-125b, miR-26a, miR-145, miR-
181c-5p, miR-Let-7e, miR-Let7-c, miR-Let-7f, and miR-106a
(Meng et al., 2017). Moreover, UC-MSC EVs express high
levels of miR16 and miR-Let-c (Zou et al., 2018). These two
miRNA have been reported as directly targeting the 3′UTR of
mTOR and RICTOR consequently reducing mTOR signaling
and triggering Treg cell induction (Marcais et al., 2014). Since
all these miRNAs impact the function of T lymphocytes, they
represent possible mechanisms of action for the effects of EVs
described so far.

The effects of perinatal EVs/exosomes may be mediated by
a variety of miRNA that alter the activity of macrophages. For
example, Ti et al. (2015) suggested that exosomes from LPS-
primed hUC-MSC can affect macrophage plasticity through
TLR4/NF-κB/STAT3/AKT regulatory signaling pathway via
let-7b miRNA (Ding et al., 2018). The authors suggested
that let-7b may activate AKT pathway which, in turn,
suppresses macrophage TLR4/NF-κB activation and the resulting
inflammatory response. TLR4/CD14 signaling pathway was
affected also through exosomal delivery of miR-181c (Yao
et al., 2019) and by the treatment with hWJ-MSC-exosomes
which possibly act via the exosomal shuttle of miR-146a/b
(Ma et al., 2019).

CONCLUSION, CHALLENGES AND
FUTURE DIRECTIONS

The studies performed until now have on one hand demonstrated
the attractive therapeutic potential of EVs derived from perinatal
cells, but, on the other hand, they uncover the limitations of our
knowledge and the need to solve many critical aspects before the
translation of these products as therapeutic tools in clinic.

A common observation that should be outlined is the
great heterogeneity in methods/techniques applied to obtain
EVs/exosomes. Lack of standardized procedures does not assure
the reproducibility, purity and maintenance of EV functional
properties (Théry et al., 2018). The most applied EV-isolation
methods in these papers are ultracentrifugation and precipitation
kits each of which differ for recovery and specificity (Théry
et al., 2018). Different methods of EV quantification have been
applied, the most used is the total protein amount, some
report the particle numbers (Alhomrani et al., 2017; Bier et al.,
2018; Li et al., 2020), one the RNA concentration (Li et al.,
2016) and others the injection volume (Alhomrani et al., 2017;
Willis et al., 2018).

Another parameter that makes comparison difficult is referred
to the conditioned media from which EVs/exosomes are isolated.
The detailed preparation protocol for CM is often omitted in the
publications, even if it is well known that culture conditions (cell
passage, cell density, culture volume, culture medium, culture
duration, etc.) affect cell functions as well as cell EV/exosome
production. It is important to consider that supplements, such
as serum, used in cell culture media, may contain EVs therefore

ultimately affecting readouts. Although the use of serum-free
medium or EV-depleted medium is strongly advisable, some
studies use medium with serum (Li et al., 2016). Moreover, in
order to exclude any possible contribution of the medium itself
to EV composition, negative controls are needed. In this case,
negative control means the “material” obtained from culture
medium not conditioned by cells but processed in the same way
as CM (Théry et al., 2018). Very few studies include this negative
control in the planned treatment groups (Ding et al., 2018), while
often this control is incorrectly replaced with a group treated
with PBS, representing the vehicle in which EVs/exosomes are
usually dissolved.

An important aim of some of the above reported studies is to
compare the therapeutic efficacy of EVs/exosomes with respect
to that of parental cells (Bier et al., 2018; Romanelli et al., 2019;
Yao et al., 2019; Zavatti et al., 2020). However, this outcome is
compromised by the lack of equivalent doses (Bier et al., 2018;
Yao et al., 2019), differences in frequency and timing of delivery
(Zavatti et al., 2020), and very few studies testing more than one
dose (Sun et al., 2018).

Another important point, but that only a few studies have
addressed (Alhomrani et al., 2017; Chaubey et al., 2018), is to
establish whether treatment with EVs/exosomes is advantageous
(for example, in terms of efficacy, effect duration, and tissue
distribution) with respect to the treatment with CM in toto
or with EV-depleted CM, to rationalize the time and money
consuming procedure to isolate EVs from CM.

Some studies tried to approach another important point:
the possible functional differences among EVs/exosomes derived
from MSC from different sources and contrasting results have
been reported. Willis et al. (2018) observed that, when IV
injected in a murine model of hyperoxia-induced BPD, exosomes
from bone marrow-derived MSC (BM-MSC) exerted therapeutic
effects comparable to exosomes from WJ-MSC, while no benefits
were observed after treatment with exosomes from human
dermal fibroblasts. Instead, other authors found that in a
model of bleomycin-induced pulmonary fibrosis exosomes from
human lung fibroblasts show some of the anti-inflammatory
effects observed when hAEC exosomes are used (Tan et al.,
2018). In contrast with Willis et al. (2018); Bier et al. (2018)
found that, in a model of Duchenne muscular dystrophy,
BM-MSC-derived exosomes, unlike placenta-derived, did not
ameliorate the pathology.

Another major point scarcely studied is the ability of
EVs/exosomes to home to injury sites. Ma et al. (2019) injected
fluorescent-labeled hUC-MSC EVs in rat tail vein and 24 h
after injection EVs were found in the muscle lesioned by sciatic
nerve transection, suggesting that EVs may maintain the tropism
of parental cells.

Currently, there are a few ongoing clinical trials using MSC-
derived EVs/exosomes. An updated search (December 2020) in
the database of NIH https://clinicaltrials.gov/using the key words
“MSC exosomes OR MSC extracellular vesicles” resulted in 13
clinical trials, most of these using exosomes derived from BM-
MSC or from adipose MSC, and only 6, as mentioned previously,
regarded the application of perinatal EVs.

Even considering the ongoing clinical trials, a concerted
effort is still required to standardize perinatal EVs. Consortiums
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such as the COST SPRINT Action (CA17116), which aims to
approach consensus for different aspects of perinatal derivatives
(PnD) research, such as providing inputs for future standards for
the processing, in vitro characterization and clinical application
of perinatal cells and their secretome, will be fundamental to
address this challenge.

Albeit cell heterogeneity doesn’t seem to be a sine qua non-
condition for EV efficacy as demonstrated by many preclinical
studies and initial clinical trials. Rather, standardizing EVs
and understanding heterogeneity is crucial to fine-tune EV
preparations for specific therapeutic applications and to select
EVs that will provide an optimal response to the disease.
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