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This article explores examples of successful and unsuccessful regenerative medicine
on human epithelia. To evaluate the applications of the first regenerated tissues, the
analysis of the past successes and failures addresses some pending issues and lay the
groundwork for developing new therapies. Research should still be encouraged to fill
the gap between pathologies, clinical applications and what regenerative medicine can
attain with current knowledge.
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INTRODUCTION

Regeneration is often thought to belong to animal species phylogenetically distant from humans.
However, human bodies are constantly rebuilding themselves, which means that we all have the
chance to improve our health, if we can harness the regenerative capacity of our bodies. After
the reconstitution of the hematopoietic system by bone marrow infusion (Thomas et al., 1957),
the importance of stem cell content was elucidated by lengthy studies on clinical outcomes. Later
on, brilliant scientists isolated stem cells capable to regenerate the human epidermis in vitro
(Rheinwatd and Green, 1975) for subsequent transplantation to the human body, managing to heal
very severe burns. This step marked the beginning of a new era, sketching out the idea that, by
harnessing their power into the clinic, stem cells could be used to tackle a wide range of diseases.
Indeed, many human tissues and organs possess the ability to self-renew due to specific stem cells,
which generate progenitors, producing terminally differentiated cells. The cultures of these specific
stem cells have been shown to fully restore some severely damaged tissues. Unfortunately, the
clinical translation was delayed by many hurdles, as several human tissues do not regenerate, stem
cells of some tissues have not been found yet, or we are still unable to stimulate them properly.
A goal in regenerative medicine is to find ways to engineer tissues replacement and/or kick-
start tissue regeneration in the body. The epithelia were the first cultured tissues because most
of them are easily accessible and highly renewing. However, epithelia are highly specialized and
some of them are characterized by various differentiation lineages, multiple signaling, and specific
microenvironments on several matrices (Figure 1). Thus, their regeneration requires different and
multidisciplinary medical expertise as they cover the whole body both internally and externally. To
evaluate the applications of the first type of cultured stem cell in tissue regeneration, namely the
epithelia, an analysis of the past clinical successes and failures can address some pending issues and
support new applications.
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FIGURE 1 | Haematoxylin and Eosin images of the described epithelia. (A) Cornea (B) Oral cavity (C) Trachea (D) Intestine (E) Urethra (F) Skin (G) Salivary gland.

THE SKIN

The skin is the largest organ in our body and ensures not
only a barrier against the environment and microorganisms but
has also many other functions such as immune surveillance
and tactile sensitivity. Its integrity is fundamental for survival;
therefore, it renews constantly and comes with stem cells,
similar to other lining epithelia. Its stem cells reside in the hair
follicles, from where they can generate hair follicles, sebaceous
glands, or the epidermis; however, some of them reside in the
interfollicular epidermis.

The expression of several markers characterizes the
interfollicular cells: cytokeratin (CK) 19 (Michel et al., 1996),
β1-integrin (Jensen et al., 1999), α6-integrin (Li et al., 1998),
desmoglein-3 (DSG3) (Wan et al., 2003) and high levels of
melanoma chondroitin sulfate proteoglycan (MCSP) (Legg et al.,
2003). Instead, C200 and CK15 identify hair follicle bulge cells
(Ohyama et al., 2006; Inoue et al., 2009). However, these markers
do not appear to be specific for the stem cells population. In 1999,
the p63 transcription factor was essential in stratified epithelial

regeneration (Yang et al., 1999). Two years later, Pellegrini
et al. (2001) demonstrated that only small cells expressing high
levels of p63 in the nuclei could be identified as epidermal
and corneal stem cells in humans. Similarly, Yes-associated
protein (YAP), a transcriptional activator involved in the Hippo
pathway, was explicitly shown in the nuclei of human stem
cells of the epidermis (De Rosa et al., 2019). A YAP target
named survivin, more expressed in the hair follicles than in the
interfollicular epidermis, is considered an additional stem cells
marker (Marconi et al., 2007; Dallaglio et al., 2009).

The epidermal stem cell isolation occurred by chance, while
Howard Green’s vision drove investigations into the discovery of
a new outstanding technology: from a small skin biopsy, a large
number of human epidermal keratinocytes were obtained by
cultivating them on a feeder layer of lethally irradiated 3T3 cells
(Rheinwatd and Green, 1975). This seminal study progressively
defined a real microenvironment, providing adhesion, general
and specific proliferative stimuli, as well as differentiation signals
to obtain an appropriate polarization with the stratification of
this vital tissue.
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This technique has been considered the most successful
approach compared with the cultivation of epidermal
keratinocytes without feeder layer cells or on a feeder layer
mitotically arrested by mitomycin C (Llames et al., 2015). The
latter, for example, produced microchimerism in treated patients
(Hultman et al., 1996), likely due to in vivo re-activation of
temporarily arrested cells.

Epidermal Stem Cells: The Leading
Actors of Regeneration After Burns
In 1981, autologous cells grown from a small epidermal fragment
to a graft were applied for the very first time in two patients,
affected by third-degree burns (O’Connor et al., 1981).

The definitive proof of concept for autologous culture
engraftment occurred in two children, who suffered burns
covering over 97 and 98% of their body surfaces (Gallico et al.,
1984). Both patients survived transplantation and died 20 years
later due to complications unrelated to the burns.

The maintenance of stem cells in culture was investigated in
1987 by Barrandon and Green. These two scientists identified
three types of clonogenic keratinocytes (holoclones, meroclones,
and paraclones) by the clonal analysis of primary epidermal
cultures (Barrandon and Green, 1987). Over the following
years, this group and others demonstrated that the holoclones
exhibit all stem cell features and are consequently able to
generate meroclones (progenitor cells) and paraclones (transient
amplifying cells) (Mathor et al., 1996; Pellegrini et al., 1999a;
Larsson et al., 2014). Later on, after several clinical applications,
De Luca et al. (2006) suggested that an adequate number of
keratinocyte stem cells are necessary to produce a graft that can
be successfully transplanted to patients and obtain long-term
epidermal renewal.

The clinical outcomes of the first epidermis transplantations
onto the muscular fascia were lifesaving in severe burns.
However, the lack of dermis caused several drawbacks, such
as scarring and wound contraction, indicating the need for
connective tissue.

To address this issue, Cuono et al. (1987) and Chua et al.
(2016) proposed a composite graft consisting of allogeneic skin as
a source of dermis and autologous keratinocyte cultures to avoid
the acute rejection caused by allogenic epidermis transplantation.
This approach represents an important step forward in skin
reconstruction (Cuono et al., 1987; Chua et al., 2016).

To overcome the lack of skin donors, many groups have
studied different biological materials to reproduce the functions
of connective tissue. Some examples are Matriderm or Integra—
the most widely accepted artificial dermal substitutes—both
made up of mainly bovine collagen (Chua et al., 2016;
Girard et al., 2017).

Finally, Pellegrini et al. (1999b) and Ronfard et al. (2000)
introduced modified fibrin glues as biodegradable carriers for
cultured epidermis. This technology maintained the relative
percentage of holoclones and meroclones, proving that fibrin
does not induce clonal conversion and the consequent loss
of epidermal stem cells. The engraftment of keratinocytes was
high and permanent; and the presence of carriers prevented

tissue shrinking, enabling a significant increase in the cultured
tissue surface, with a reduction in time and cost. The
introduction of re-absorbable carriers solved problems related to
handling and transportation (Pellegrini et al., 1999b; Burd, 2000;
Ronfard et al., 2000).

Alternative applications of autologous cultured keratinocyte
sheets were produced as a wound dressing for treatment of
superficial burns and chronic ulcers, without the need for
engraftment, to promote wound healing (Johnsen et al., 2005).

Skin Pigmentation Disorders: The
Maintenance of a Correct Ratio Between
Keratinocytes and Melanocytes
After the treatment of extensive and severe skin burns with
epidermal keratinocytes, the skin discoloration drew attention to
melanocytes contained in primary epidermal cultures, showing
that they can grow in culture with keratinocytes. Melanocyte
growth and differentiation are regulated by keratinocytes, and
their contact is finely settled to maintain a physiological
keratinocyte/melanocyte ratio (De Luca et al., 1988).

These findings laid the foundation for developing a new
application for epidermal cultures, bearing a controlled number
of melanocytes for treating patients affected by skin pigmentation
disorders, such as piebaldism and some forms of vitiligo. The
former occurs during embryological development, while the
latter, a chronic inflammatory disease, affects approximately 0.5–
1% of the global population (Singh et al., 2013). Both of these
pathologies result in the absence of functional melanocytes,
thus having strong impacts on patients’ quality of life and
psychological well-being.

The first transplantation of cultured autologous melanocytes
in a patient suffering from vitiligo was performed by Lerner
et al. (1987) and then reproduced by several groups (Falabella
et al., 1989; Plott et al., 1989; Kumagai and Uchikoshi, 1997).
However, in 2000 Pellegrini’s group optimized the culture system,
allowing normal and pathological melanocytes to proliferate in a
constant ratio with respect to keratinocytes (Guerra et al., 2000).
The cultured autografts were not only physiologically appropriate
(with melanocytes in the basal layer, independent from the
presence of dermis) but also functionally capable of developing
dendritic arborizations with melanosome-containing processes
and transferring melanosomes to the keratinocyte cytoplasm
(De Luca et al., 1988).

The related treatment was effective in patients affected by
stable vitiligo or piebaldism, where the healed epidermis was
populated by the correct number of melanocytes, and stable
repigmentation was obtained in approximately 40 patients
(Guerra et al., 2000; Guerra et al., 2004).

Despite the proven efficacy, this treatment requires highly
specialized personnel, as well as high manufacturing costs.
To reduce costs, some other studies skipped the step of
in vitro co-cultures, and cells were directly transplanted onto the
depigmented area (Mulekar et al., 2008). A comparative study
between autologous non-cultured epidermal cell suspension
transplantation and its combination with non-cultured dermal
cell suspension was carried out as a randomized clinical trial
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(NCT03013049) on 40 patients with stable vitiligo. This study
suggested that the combined approach was more effective than
the use of non-cultured epidermal cell suspension alone in
patients with vitiligo stable from 3 to 6 months (Thakur et al.,
2019). However, the efficacy of this novel approach has yet
to be confirmed in the long term. Indeed, a large cohort
of patients and a long follow-up are needed to confirm the
stable repigmentation, as well as a comparative study between
this approach and the transplantation of cultured epidermal
autografts (Thakur et al., 2019).

Achievements in Epidermolysis Bullosa:
The Gene Therapy
The regenerative capacity of cultured epidermal keratinocytes
leading to successful cell therapy approaches was further
combined with gene therapy to treat genetic diseases affecting
the skin. One devastating skin genetic disease is epidermolysis
bullosa (EB), presenting with mucocutaneous blistering,
erosions, ulceration, and fragility in response to minor trauma.
It ranges from mild to severe until the point of being disabling
or fatal due to the loss of function caused by the lack of protein
adhesion (Bardhan et al., 2020).

Based on the ultrastructural sites of blister formation,
mode of inheritance, genetics, and clinical phenotype, EB
classification includes four major types: simplex (EBS), junctional
(JEB), dystrophic (DEB), and kindler (KEB) (Fuchs, 1995;
Mariath et al., 2020).

Morgan et al. (1987) first hypothesized that transduced
epidermal cells could act as vehicles for the delivery of gene
products through graft transplantation.

Thus, the first clinical confirmation of genetic correction in
JEB came from Mavilio et al. (2006), where ex vivo-cultured
keratinocytes derived from an adult patient affected by JEB were
transduced with a retroviral vector expressing laminin-5 beta3
cDNA to produce an epidermal engineered graft. Impressively,
this study showed that genetically corrected epidermal cells could
regenerate an effective, functional skin. More than 6.5 years
later, the follow-up of this patient showed a stable laminin 332
expression from the transgene (De Rosa et al., 2014), which
is essential for mediating keratinocyte adhesion. Two further
examples of effective skin restoration came from Bauer et al.
(2017), who presented a successful gene therapy of two small
skin areas of a 49-year-old woman and Hirsch et al. (2017),
who showed the first regeneration of the entire human epidermis
in a 7-year-old boy through autologous transgenic keratinocyte
cultures. They proved that the transgenic regenerated epidermis
was sustained only by a certain number of long-lived stem cells
(holoclones), giving rise to a pool of short-lived progenitors, as
widely proposed in different studies, such as those on corneal
cells (Barrandon and Green, 1987; Pellegrini et al., 1999a;
Rama et al., 2010).

These exciting advancements in combining cell therapy with
gene therapy led to the regeneration of functional epithelial
tissues and the treatment of diseases, such as EB, for which no
effective therapy existed before. Further, they paved the way for
the regeneration of other epithelial tissues in the human body.

THE CORNEA

The experience gained from cell therapy for skin regeneration
has led to the development of other stem cell-based treatments,
such as corneal epithelium replacement, aimed at the restoration
of visual acuity (Pellegrini et al., 1997; Rama et al., 2010).

The cornea is a unique avascular tissue that functions as a
refractive component of the ocular surface system. It is composed
of epithelium, stroma, and endothelium (DelMonte and Kim,
2011), and its main features, namely its mechanical strength
and transparency, are prerequisites that allow vision. In fact,
corneal trauma and burn (among others), causing the loss
of corneal transparency and the consequent corneal opacity,
represents the fourth leading cause of blindness in the world
(Pascolini and Mariotti, 2012).

Corneal Epithelial Repair and
Regeneration Approaches
The discovery of corneal regeneration driven by the centripetal
migration of cells from the limbus (between the central cornea
and the adjacent conjunctiva) led to the identification of limbal
stem cells (LSCs), which are responsible for corneal renewal.

When LSCs are depleted, corneal regeneration and wound
healing are impaired, with the consequent loss of corneal
transparency and the impairment of patients’ visual function.
The pathology is called LSC deficiency (LSCD), and the loss
of transparency is due to a progressive growth of conjunctival
cells over the corneal surface, leading to vascularization and
corneal opacity associated with chronic inflammation and
stromal scarring.

The surgical approaches for this condition required the
withdrawal of approximately 40% of limbus from the healthy
eye (conjunctival limbal autograft or CLAu) to restore the
eyesight of the damaged eye (Keivyon and Tseng, 1989).
A proposed alternative for superficial lesions was the simple
limbal transplantation, which can induce the re-epithelialization
of the treated eye in approximately 6 weeks, as the donor tissue
is trimmed and glued over an amniotic membrane (Basu et al.,
2016; Magrelli et al., 2020).

To overcome these limitations and predict the quality and
success of transplantation, a cell therapy approach including
preliminary evaluation of potency, purity, and identity of the
treatment, was proposed.

Since epidermal cells from 5 to 7 cm2 biopsy could produce
as much as 1,8 m2 body surface, it was predictable that a very
small limbal biopsy (approximately 1–2 mm2) could produce one
or two corneal surfaces, if cells are isolated and grown in an
optimized culture system to obtain a well-differentiated corneal
surface (Rama et al., 2010). However, the limbal biopsy was
removed at the boundary between the cornea and conjunctiva,
with a putative contamination of conjunctival cells that could
segregate corneal cells in culture. These conditions require
accurate in-process controls to monitor the identity and purity
of the cell population. Moreover, LSCD can be treated only by the
restoration of stem cells, which should be maintained in sufficient
numbers and controlled in culture (the potency of treatment).
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Stem cells were identified by p63 bright cells, due to strong
evidence that their clones (holoclones) had high levels of p63,
whereas progenitors expressed low levels of the transcription
factor in the nuclei. The knockout mice for p63 confirmed the
absence of stratified epithelia.

Indeed, the clinical success of limbal cultures in hundreds
of patients correlated to a specific number of transplanted
stem cells, described as p63 bright holoclones (Pellegrini et al.,
2013). The treatment became a well-established therapy and was
acknowledged through conditional approval by the European
Medicines Agency in 2015, with the name of Holoclar R©.

Besides p63, mitotically quiescent limbal stem cells were also
characterized by the expression of C/EBPδ and Bmi1 (Barbaro
et al., 2007) at molecular level. Other putative stem cell markers
such as ATP-binding cassette sub-family B, member 5 (ABCB5)
and sub-family G, member 2 (ABCG2) have been described
(Sacchetti et al., 2018), but they were never clinically validated.

Currently, numerous attempts at stroma engineering are also
ongoing to overcome a deep central cornea replacement by donor
tissue, still needed in cases of severe lesions.

Several natural or synthetic corneal stromal substitutes have
been proposed for this purpose: collagen polymers, chitosan
scaffolds, silk fibroin, hyaluronic acid, and polyarginine are
among the most studied biopolymers for corneal wound healing
(Mobaraki et al., 2019).

The work in this field is still far from effective routine
clinical use.

Corneal Endothelium: An Example of a
Low Regenerative Capacity Tissue
On the internal side of the cornea, another epithelium seals
the corneal stroma and is in contact with the aqueous humor,
the corneal endothelium (CE). The CE is a simple squamous
or cuboidal epithelium, which plays a fundamental role in the
maintenance of corneal transparency via dynamic fluid control
of its adherent polygonal cells, corneal endothelial cells (CEnCs)
(Bourne, 2003).

However, unlike the other epithelia described earlier, CE
represents an example of an epithelium with a very low
regenerative capacity. Although several markers of putative stem
cells (as nestin, p75NTR, Lgr5, SOX2, p63) have been identified
in the CE periphery and some CEnCs have shown a limited
ability to replicate (Paull and Whikehart, 2005; McGowan et al.,
2007; He et al., 2012; Hirata-Tominaga et al., 2013; Katikireddy
et al., 2016; Sie et al., 2020), the majority of them are arrested
in G0/G1 phase of cell cycle (Joyce et al., 1996). Growth arrest
is associated with a gradual decrease in corneal endothelial
cell density, at a rate of approximately 0.6% per year (Bourne,
2003). Whenever CE damage occurs following a physical/surgical
trauma or pathology, this is normally compensated by residual
CEnC enlargement, migration, and spreading (Tuft and Coster,
1990), confirming the limited CE regenerative capacity in vivo.
However, since a dysfunctional CE represents one of the major
indications for corneal transplantation (Gain et al., 2016), many
novel strategies to regenerate this tissue have been proposed and
brought to clinic. These approaches include heterologous CEnCs

expanded in vitro and injected into the patient’s anterior chamber
(Okumura et al., 2012; Kinoshita et al., 2018) or implanted
through tissue-engineered endothelial keratoplasty (TE-EK) (Peh
et al., 2017). A deep knowledge of the finely regulated molecular
mechanisms involved in CE proliferation (Joyce, 2012; Frausto
et al., 2020; Maurizi et al., 2020) is therefore fundamental to
harness a proper approach for this peculiar epithelium, and more
advancements are still needed to achieve a full control over
its regeneration.

THE ORAL MUCOSA

An additional epithelium extensively used for regeneration is
the oral mucosa. It is composed by a non-cornified squamous
epithelium endowed with a great regenerative capacity that is
necessary for the reaction to daily damages caused by chewing.
Given its easy accessibility and the possibility for multiple
biopsies, the oral mucosa is widely used in many surgical
reconstructive approaches (Yarington, 1980; Lin et al., 2003;
Grimsby and Baker, 2014).

Several studies have been conducted to identify molecular
markers for oral mucosa stem cells. Oral mucosa epithelium
differs depending on the oral cavity area (buccal, gingiva,
hard palate, tongue, etc.), and each study investigated stem
cell markers from different oral mucosa sites. It was reported
that buccal and gingival cells, expressing high levels of the
neurotrophin receptor p75, had greater in vitro proliferative
capacity and were typically slow cycling in vivo (Nakamura et al.,
2007). Two additional markers were associated with oral mucosa
stem cells, namely p63 (α isoform) and Bmi1 transcription
factors. They were enriched in holoclone cells and in young
passages of in vitro serial cultivation (Corradini et al., 2016).

Many proteins investigated as putative oral mucosa stem cells,
were previously reported as skin basal or stem cell markers
including integrins, CK 5, 15 and 19, p63, MCSP, CD44H, p75,
ABCG2 (Jones and Klein, 2013).

The high regenerative capacity of oral mucosa epithelium
has also been investigated, in human and mouse, highlighting
an essential role of SOX2 and PITX1 transcriptional networks
(Iglesias-Bartolome et al., 2018).

Among the applications of cultured oral mucosa grafts, some
were proposed as wound dressings for the treatment of superficial
lesion of the oral cavity or chronic ulcers in the digestive tract to
promote wound healing.

In the following paragraphs, we are reporting the use of oral
mucosal epithelium for engraftment in ophthalmology, where the
cultured tissue has shown the same optical transparency of the
corneal epithelium (Nishida et al., 2004), and in urology.

Oral Mucosa Applied for Corneal
Epithelial Regeneration in LSCD
In ophthalmology, the oral mucosa epithelium has been used
as a corneal substitute in total bilateral LSCD treatment.
This pathology is associated with a complete loss of corneal
stem cells in both eyes, making autologous therapeutic
approaches unfeasible. As an alternative therapy for total
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bilateral LSCD, allogenic limbal transplantation requires lifelong
immunosuppression with systemic complications (Tsai and
Tseng, 1994) and results in long-term failures.

To avoid these issues, out of the many autologous cells tested
(Homma et al., 2004; Ma et al., 2006; Tanioka et al., 2006;
Monteiro et al., 2009; Meyer-Blazejewska et al., 2011; Reza et al.,
2011; Yang et al., 2007), only oral mucosal epithelial cells have
been successfully applied to humans.

In 2003, Nakamura and co-workers transplanted autologous
oral mucosa cells, cultured on an amniotic membrane, in a rabbit
LSCD model (Nakamura et al., 2003). The procedure was used in
two clinical trials; the first one was applied to six human eyes by
the same group (Nakamura et al., 2004) and the second one to
four human eyes by a different group (Nishida et al., 2004), using
a temperature-responsive support.

These procedures were named “cultivated oral mucosa
epithelial transplantation” (COMET) and “cultivated autologous
oral mucosal epithelial cell sheet” (CAOMECS) (Burillon et al.,
2012), and they have been widely used in the last 20 years
in at least 27 published clinical studies (Attico et al., 2021).
The reported success rate is approximately 70%, although a
comparison between studies is not possible due to the many
differences in the diagnosis and the analysis of the results
(Cabral et al., 2020).

Indeed, discrepancies were found in LSCD diagnosis and the
inclusion criteria of patients affected by different pathologies,
making it difficult to understand the impact of treatment on
the ailment (Utheim et al., 2016; Cabral et al., 2020; Attico
et al., 2021). Moreover, for autologous limbal cells, many
different substrates and culture methods have been used for graft
preparation. The amniotic membrane (usually de-epithelialized),
fibrin gel, and a temperature-sensitive support made by poly(N-
isopropyl acrylamide) (Nishida et al., 2004; Satake et al., 2011)
have been employed, as also biomaterial-free cultured oral
mucosal sheets (Kim et al., 2018).

Additional discrepancies were related to the presence or
absence of different types of feeder layers, gamma-irradiated
or mitomycin-c-arrested (Kolli et al., 2014; Prabhasawat et al.,
2016), to the culture time or to the option of exposing the
epithelium to an air-liquid interface stimulus (airlift condition)
before transplantation (Cabral et al., 2020).

The behavior of oral mucosal epithelial cells (and so their
long-lasting survival) once transplanted remains unclear, and the
etiology of LSCD should be considered given that the oral mucosa
cell function is strictly dependent on the environment in which
they can find different wound beds and signaling.

The in vivo behavior of oral mucosal keratinocytes can be
evaluated only if the three epithelia that might be present on
the ocular surface (ectopic oral mucosa, limbal or conjunctival
cells) are univocally distinguished after COMET. To this
end, the analyses of the protein markers of the central
cornea, frequently removed by keratoplasty following COMET,
could provide insights into understanding the regenerative
mechanism. Several publications have reported that cultured oral
epithelial cell phenotypes, characterized by a panel of common
positive and negative proteins, were maintained after successful
COMET grafts but not after failures (Nakamura et al., 2007;

Chen et al., 2009). Moreover, Soma et al. (2014) demonstrated
the survival of GFP-tagged oral cells in a transplanted LSCD
rat model, after 8 weeks. Analyses of transplanted rabbit LSCD
models rather appeared to contain a mixed epithelium composed
of both corneal and mucosal cells on the regenerated in vivo tissue
(Sugiyama et al., 2014).

The original hypothesis of oral mucosa transdifferentiation
(Gaddipati et al., 2014) is no longer considered. It has been
proven that epithelia transplanted on an ectopic site of the body
retain their differentiated phenotype (Mavilio et al., 2006; Bianco
et al., 2013; De Rosa et al., 2014).

In this scenario, the need for a univocal oral mucosal marker
is mandatory to unambiguously identify this tissue and to
understand the clinical outcome. The current proposals rely
only on a panel of non-univocal markers, including mainly
cytokeratins, that can be activated de novo by different epithelia
in pathological environments or in regeneration processes (Moll
et al., 2008; Zhang et al., 2019).

Finally, additional studies should also address the topic
of angiogenesis related to COMET treatment. Compared to
CLET (Cultured Limbal Epithelial Transplant), the epithelium
regenerated from the oral mucosa is associated with significant
peripheral neovascularization, not impairing the central cornea.
In this process, pro-angiogenic and anti-angiogenic factors
play different roles (Chen et al., 2012), far to be fully
elucidated. Understanding their balance and regulation by the
ectopic epithelium could improve the therapeutic protocol
for bilateral LSCD.

The Oral Mucosa to Regenerate Urethra
The oral mucosal epithelium has also been used in urology
(Barbagli et al., 2017) for pathologies resulting in a compromised
or missing urethral epithelium, which leads to urinary/sexual
problems and social discomfort. Hypospadias is one of them and
is the most diffused congenital anomaly in men with an incidence
rate of 3–7 out of 1,000 new-born babies; it is defined as an
incomplete urethral canalization that determines a subsequent
fusion of urethral folds during gestation promoted by androgens
(Shen et al., 2016).

The human urethra epithelium renews every 3–6 months in
physiologic condition (Vaegler et al., 2015). Urothelium turnover
suggests the presence of progenitor cells localized in the basal
layer, where basal cells express Bmi1 and p63, the latter is
one of the main proteins involved in urothelium development
and is considered an epithelial stem cell marker (Pechriggl
et al., 2013; Gandhi et al., 2014; Corradini et al., 2016). CK5 is
exclusively expressed in basal cells as well as CK17, which might
be involved in urethral malformations and its role as stem cell
marker is still to be understood (Pechriggl et al., 2013). A panel
of keratins completed urethral epithelium characterization in
the different layers (De Graaf et al., 2017; Sceberras et al.,
2020). The first regenerative medicine approach was undertaken
in 1990 (Romagnoli et al., 1990): two patients with proximal
hypospadias were treated using an epithelium cultivated in vitro
from autologous urethral cells. Three years later (Romagnoli
et al., 1993), a similar approach was used to treat eight hypospadic
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patients with urethral epithelium cultivated in vitro and then
mounted on a polytetrafluoroethylene (Gore-Tex) tube.

Later, Atala et al. (1999) used a bladder acellular matrix from
cadaveric donors as a scaffold to replace the missing urethra.

Other tissue engineering approaches have been carried out
using acellular dermis as a substrate for urothelial cells harvested
from bladder washing (Fossum et al., 2012).

None of the many regenerative approaches proposed,
however, reached the minimal requirements to become a routine
procedure in clinical practice, highlighting the need to further
develop the technology.

Currently, the best approaches to treat hypospadias in
pediatric patients (Manzoni et al., 2004) rely on several surgical
techniques based on the severity of the pathological condition
(Xiao et al., 2014). Many of these techniques use a full-thickness
oral mucosa graft to replace the missing urethra. The first oral
mucosa application for hypospadias treatment was reported
by Humby and Higgins (1941). However, the full thickness
tissue withdrawal is associated with oral complications such
as pain, persistent difficulty in mouth opening, changes in
salivary function, and a morbidity rate of 3–4% at donor site
(Markiewicz et al., 2008).

To date, the number of recurrences in pediatric patients is
significant (Cimador et al., 2013) and is emphasized by the high
number of adults suffering from complications due to failed
hypospadias treatment (Barbagli et al., 2010).

To reduce the disadvantages of the aforementioned
approaches, new products for urethral reconstruction in
hypospadias are needed, including standardized, biocompatible,
and biodegradable scaffolds. The use of autologous cells, possibly
derived from small and non-invasive oral mucosal biopsies, can
reduce adverse events (Barbagli and Lazzeri, 2015; Corradini
et al., 2016). The maintenance of a sufficient number of stem cells
essential for long-term tissue regeneration (Sceberras et al., 2020)
and their manufacturing under well-defined culture conditions
would improve the clinical outcome. Finally, any new approach
should be tested for safety and be able to provide conclusive
results for clinical application, including a well-characterized,
homogeneous selection of patients.

In a different urological disorder, Ram-Liebig and colleagues
in 2015 provided an interesting example of a new tissue-
engineered oral mucosa graft (Ram-Liebig et al., 2015).
A small autologous oral mucosa biopsy was obtained from the
patients, the extracted cells were cultured on a biocompatible
scaffold and applied to patients (Ram-Liebig et al., 2017).
The product, approved in Germany and commercialized as
MukoCell R©, showed a significant efficacy (84%) in treated
patients (Barbagli et al., 2018).

SALIVARY GLANDS

The salivary glands (SGs), anatomically connected with the
oral mucosa, are essential structures responsible for saliva
production. This fluid is mainly involved in fundamental
functions such as digestion, regeneration of oral and esophageal
mucosa, and protection from bacterial infection and dental
caries (Khan et al., 2020). Many pathological conditions such

as infections, autoimmune diseases (e.g., Sjogren’s syndrome),
metabolic disorders or consequences of radiation therapy (RT)
targeting head and neck cancers can drastically damage SGs,
with severe repercussions for patients’ quality of life. Until now,
no determined therapeutic approaches are available to treat
salivary dysfunctions like xerostomia (dry mouth syndrome);
hence current treatments are mainly symptomatic. For this
reason, there are many ongoing studies aimed at developing novel
regenerative strategies.

The SG presents several progenitor populations that are
able to regenerate the tissue, depending on the extent and
the location of the damage (Porcheri and Mitsiadis, 2019),
as highlighted by studies mainly based on animal models.
Among the many putative molecular markers investigated
to identify the SG stem-progenitor cells, c-kit, SOX2, CK5
and ASCL3 seem to have a major role. C-kit + cells can
proliferate and differentiate in vivo and in vitro and, more
importantly, to restore the salivary secretion when transplanted
in murine irradiated SGs (Lombaert et al., 2008a). Analogously,
the expression of the transcription factor ASCL3 seems to
regenerate both acinar and ductal cells (Bullard et al., 2008).
However, when ASCL3 is ablated, the SG appear smaller
than the control but retain the presence of a population of
CK-5 + basal progenitor cells, highlighting a compensatory
mechanism among different stem-progenitor populations (Arany
et al., 2011). Finally, a subset of SOX2-expressing acinar cells
(SG secreting cells) was found to replace acinar cells after
SG irradiation through a SOX2 nerve-dependent mechanism
(Emmerson et al., 2018).

Currently, the regenerative strategies aimed at restoring
the SG function include cell-based therapy, gene-therapy and
bioengineering strategies. Among cell-based therapies, starting
from 2008, Coppes’s group demonstrated the ability of rodent
SG-specific epithelial cell transplantation to restore SG after RT
(Lombaert et al., 2008a; Nanduri et al., 2013). These cells can
be safely cryopreserved for an extended period (Nanduri et al.,
2013), and their stem cell pool can be enriched (Nanduri et al.,
2013). Preliminary results in humans, derived from the isolation
and expansion of SG stem-progenitor cells, would suggest a
similar restoring ability. However, further studies are needed
to verify the clinical applicability of these stem-progenitor cells
(Feng et al., 2009; Pringle et al., 2016).

Different cell therapy approaches involve the use of non-
epithelial cell types to activate regenerative mechanisms on
residual SG after RT or recreate the surrounding environment.
Among them, human adipose-derived mesenchymal stem cells
(hAdMSCs) have shown to reduce cell apoptosis and tissue
fibrosis and differentiate in SG endothelial cells (Kojima et al.,
2011; Lim et al., 2013). Moreover, in 2017, the first in man double-
blinded, Phase I/II Clinical Trial was performed to evaluate safety
and feasibility of this type of cells to treat radiation-induced
xerostomia (no results yet) (Grønhøj et al., 2017). Similarly, Bone
Marrow (BM)-derived cells were found to increase microvessel
density and enhance saliva secretions by inducing epithelial
repair (Lombaert et al., 2008b).

Besides cell-based therapy, promising results came from gene
therapy with adenoviral vectors to deliver hAQP1 and KGF genes.
Notably, the administration of hAQP1 gene in irradiated parotid
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glands led to an increase in saliva production in 5 out of 11 treated
patients, who maintained stable results up to 5 years (Baum et al.,
2012; Alevizos et al., 2017). Instead, the administration of KGF
genes in mice before irradiation prevents salivary hypofunction
with no effect on tumor growth, suggesting a putative future
clinical application (Zheng et al., 2011).

Finally, bioengineering and TE strategies are under evaluation
for the regeneration of damaged SGs. Despite a plethora of
different substrates tested, the optimal scaffold for in vivo SG
regeneration has not yet been identified (Mitroulia et al., 2019).
Nevertheless, a promising proof-of-concept for regenerative
organ replacement comes from bioengineering, as in 2013,
Ogawa and colleagues demonstrated the regeneration of an
utterly functional SG through the orthotopic implantation in
mice, of a bioengineered SG germ. The bioengineered graft went
through successful morphogenesis; it perfectly integrated with
the recipient salivary duct and exerted the main SG functions
(Ogawa et al., 2013).

In conclusion, until now, no SG regeneration strategies have
yet become a real therapeutic alternative for the patient suffering
from xerostomia, despite the progress obtained in the last years.
Since most of the studies are based on animal models, further
work is needed to validate the results in humans.

THE AIRWAYS

In contrast to the previously described epidermal, corneal and
mucosal human epithelia, an effective approach to reconstruct
the airway epithelium has not yet been clinically established.
Some of the problems that limit airway regeneration include
difficulties observed by several groups to effectively grow primary
human respiratory epithelial cells (Widdicombe et al., 2005;
Walters et al., 2013; Butler et al., 2016) to maintain the stem
cell pool and their potential to regenerate all specialized cell
types, as well as the reconstruction of a long, full-thickness
respiratory tract.

In addition, the airway structure and its epithelium drastically
change from the nasal cavities to the alveoli, and different
stem/progenitor cells populations have been proposed for the
various respiratory tracts, mainly relying on lineage tracing
experiments and airway injury models (Basil et al., 2020; Parekh
et al., 2020). The basal cells, characterized by the expression
of CK5 and CK14 and the transcription factor p63, have been
identified as the primary multipotent stem cells population of
the tracheobronchial pseudostratified epithelium due to their
capacity to self-renew and differentiate into the supra-basal
cell types (Rock et al., 2009; Rock et al., 2010). Deep into
distal airways, SCGB1A1 + club cells act as progenitors for the
goblet and ciliated cells (Zuo et al., 2018; Parekh et al., 2020).
Following an injury, these cells can also dedifferentiate acquiring
a basal cell morphology and regenerate alveolar type I and II
cells (Barkauskas et al., 2013; Tata et al., 2013). Meanwhile, the
regeneration of the alveolar epithelium depends on the presence
of cuboidal alveolar type II SFTPC + cells (AT2) which can self-
renew and give rise to the gas-exchanging AT1 cells (Barkauskas
et al., 2013) other than secrete surfactants proteins.

The complexity of the several compartments of the
respiratory system highlights the necessity to consider a
specific reconstructive approach for each district.

A wide range of approaches has been tested for tracheal
and main bronchi reconstructions. The clinical use of synthetic
prosthesis is characterized by high morbidity and mortality, so
that solid substitutes are no longer considered suitable for long-
term tracheal replacement, and the use of porous prosthesis is
limited to laryngeal replacement (Etienne et al., 2018).

Decellularized aortic and tracheal allografts are biocompatible
and do not require immunosuppression, although their clinical
applications are characterized by a high number of re-
interventions and high morbidity. Indeed, the absence of
a continuous respiratory epithelium and poor mechanical
properties require stent application with increased risks of
chronic inflammation, infection, and damage to the surrounding
tissues (Etienne et al., 2018).

With regard to the tissue engineering strategies, in 2008,
the first bioengineered trachea was implanted in a patient
affected by severe bronchomalacia (Macchiarini et al., 2008), and
despite the complications, other subjects were treated with a
similar therapeutic approach (Hamilton et al., 2015). However,
morbidity and a high rate of lethality were observed during the
follow-up period (Gonfiotti et al., 2014; Elliott et al., 2017). The
recurrence of stenosis, infections, and inflammation within the
transplanted bioengineered constructs was- linked to the lack of
correct vascularization and epithelialization (Pepper et al., 2019;
Niermeyer et al., 2020). Previous studies have highlighted the
need for appropriate preclinical data to optimize the scaffold,
for the identification and culture of all cell types to manufacture
grafts, and the lack of studies on the interactions between cells
and cell-scaffolds (Niermeyer et al., 2020).

THE INTESTINE

The inner epithelium of the human intestine, with a surface
of > 30m2, is the second-largest tissue of our body (Gehart
and Clevers, 2019). It is involved simultaneously in two main
functions: metabolites absorption and barrier protection against
potentially noxious microorganisms or environmental insults. It
undergoes continuous mechanical stress that causes the death
of 1011 intestinal epithelial cells every day (Barker, 2014): the
life-time of a mature intestinal epithelial cell is therefore very
short (3–5 days) (Darwich et al., 2014). This elevated cell loss
is compensated by a high self-renewal rate, triggered by a stem
cell population residing within invaginations of the intestinal
epithelial wall, the crypts. The crypt is composed of continuously
dividing crypt base columnar cells (CBCs), interspaced with
Paneth cells, an essential source of niche factors. The CBCs
have been identified through several markers, including Lgr5,
Ascl2, Prom1, Olfm4 and Smoc2 (Kim et al., 2017). In addition
to the CBC, another population of quiescent reserve stem cells
has been identified at position + 4 from the bottom of the
crypt and is characterized by Bmi1, Tert, Hopx and Lrig1
(Gehart and Clevers, 2019). The stem cells give rise to the
transient amplifying cells that rapidly divide and become mature,
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while being pushed out from the crypt to reach the villus’ tip,
where they eventually undergo apoptosis, exfoliating into the
lumen. Six types of mature intestinal cells can be distinguished
in absorptive (enterocytes and M cell) and secretory (goblet,
Paneth, enteroendocrine and tuft cell, the latter involved in
immune regulation).

The high regenerative capacity of this epithelium, with stem
cells able to self-renew constantly throughout life, makes this
tissue ideal for regenerative medicine approaches. At the same
time, however, the continuous proliferation of intestinal stem
cells accumulates mutations that can promote cancer growth.
The most effective treatments for cancers remain nowadays
radiotherapy and chemotherapy, even though they induce severe
damages to the normal tissues and their side effects are more
evident in rapidly renewing tissues such as hematopoietic
system and gastrointestinal tract (Yu, 2013). Lgr5+ CBC are
particularly susceptible to radiation, and they are replenished by
reserve stem cells, which appears to be radioresistant given their
quiescence (Kim et al., 2017). Although intestinal cells, following
irradiation, showed high plasticity in regenerating the epithelium,
the administration of mesenchymal stem cells demonstrated a
reduction in the inflammatory response, facilitating epithelial
regeneration (Qi et al., 2020).

The intestine is very difficult to regenerate due to its complex
structure, pH conditions and its enteric nervous associated
motility. Use of decellularised extracellular matrix scaffolds
shows promises in regenerating the intestinal trait in preclinical
studies, even though they promoted substantial contractions
upon implantation (Hussey et al., 2017).

The breakthrough in intestinal regeneration has been
developing intestinal organoids (Sato et al., 2009). Lgr5+ cells in
organoids guarantee the self-renewal of these “mini-guts,” which
can exert both digestive and absorptive functions. Intestinal
organoids have been used to study cancer progression and
mutagenesis (Drost et al., 2015; van de Wetering et al., 2015;
Fumagalli et al., 2017) and study CFTR function in cystic
fibrosis (Dekkers et al., 2016). A recent study demonstrated for
the first time the success obtained following transplantation of
human colon organoids into receiving mice (Sugimoto et al.,
2018). Human intestinal organoids could be instrumental for
developing novel approaches in regenerative medicine with the
aid of a phenotypic landscape (Shin et al., 2019; Lukonin et al.,
2020) to understand signaling pathway and biomaterials to
favor implantation.

DISCUSSION

The number of attempts involving epithelial regeneration clearly
shows that these tissues’ absence represents a huge medical
problem (Kucharzewski et al., 2019; Table 1). Even a partial
disruption of the epithelial tissues, the most common being a
penetrating infection, dramatically increases the likelihood of
health impairment and illustrates the importance of epithelia
in body functions.

It is worth noting that humans can live after partial
heart impairment, with limited pancreatic activity or partial

brain loss, but not with a partial absence of epithelia in any
part of the body. As signaling and secretory tissues, these
barriers are associated with a critical immunosurveillance,
making the therapeutic use of allogenic tissues, only
a temporary solution under immunosuppression or a
wound dressing.

The cornea has been considered a typical exception, as
an immune-privileged site. However, this is not entirely true
(Henderson et al., 2001; Inomata et al., 2020). Indeed, human
corneal endothelial cells are a potential target of immune attack
after corneal transplantation, and the limbus, containing corneal
stem and progenitor cells, are vascularized and immunoreactive
to allogeneic components (Lahdou et al., 2013).

The importance of immunological reactions can be related to
the use of allogeneic or xenogenic cells from some matrix sources,
as well as to the inflammatory reactions driven by some materials
used for tissue regeneration. This was the case with tracheal and
many urethral or intestine scaffolds, which produced significant
adverse reactions in in vivo studies.

The introduction of a fully biocompatible support, such as
fibrin glue or amniotic membrane, resulted in a significant
improvement of different processes: avoided the shrinking of the
epithelium, thus enabling the coverage of large wound surfaces in
a short time, in addition to safe long-distance transport.

The easy access to some epithelia does not guarantee the
development of successful clinical applications (Figure 2).
However, the accessibility to epithelia has been the starting point
for much research in the field. The knowledge achieved has laid
the groundwork for some very effective treatments for several
pathologies, such as burns, skin pigmentation disorders, ocular
defects, and some genetic conditions (Figure 2).

Additional progress will come from multidisciplinary
interactions, providing different perspectives and different
solutions supporting treatments’ efficiency. Examples can be
the development of alternative diagnostic methods aimed at the
precise grading of some pathologies, the pharmaco-toxicology
of drugs on cultured tissues or in the whole treatment, the
functionalization/patterning of surfaces by nanotechnology,
and the analysis of predictive markers for responses to the
therapeutic interventions.

Many conclusions can be drawn from these different
applications: altogether, these experiences suggest several
improvements for the therapeutic use of advanced therapy
medicinal products. Without being exhaustive, the list of
problems includes the need for standardization, which is
common to most therapies. The non-homogeneous selection of
pathologies included in the preliminary clinical trials produced
significant intra- and inter-pathology heterogeneity, associated
with differences in the corresponding microenvironments and
significantly contributed to variable cell behavior. Within these
microenvironments, the extracellular matrix and paracrine
signaling can profoundly influence the way cells engraft, grow,
differentiate, or persist.

Additional common issues were the incomplete cell
characterization of the cultured tissues and some lack of
comparison with their in vivo counterparts, frequently impairing
the clinical outcome and related evaluations. Therefore, a more
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TABLE 1 | Summary of published clinical applications involving autologous cultured epithelia engraftment.

Epithelium
regeneration
from

Condition Total patients treated Follow up
(years)

Countries
involved

First clinical
application

Differences
related to

Skin Burns < 1000 < 5 US, EU, Japan and
others

O’Connor et al.,
1981

Vitiligo > 100 < 5 US, EU, India,
Turkey

Falabella et al.,
1989

JEB < 10 > 5 EU Mavilio et al., 2006

Cornea LSCD < 1000 ∼ 10 EU, Japan, US,
India, Taiwan, Iran

Pellegrini et al.,
1997

Oral Mucosa LSCD > 100 > 10 Japan, EU, Taiwan,
India, Thailand,
Iran, South Korea,
China, Malaysia

Nakamura et al.,
2004

Urethral Strictures ∼ 100 < 5 EU Ram-Liebig et al.,
2015

Airways Stenosis, cancer < 10 ∼ 5 EU Macchiarini et al.,
2008

Carriers, feeder
layers, cell source,
serum, hormones,
growth factors,
culture medium, air
lifting, matrices, cell
types

JEB, junctional epidermolysis bullosa; LSCD, limbal stem cells deficiency.

FIGURE 2 | Graphic representation of the distance between research and routine clinical application of the described epithelia. Designed by PoweredTemplate.

exhaustive cell characterization, together with specific stem cell
identification, are instrumental for self-renewal and long-term
tissue maintenance.

The nature of stem cells could change under homeostatic
conditions or during tissue repair. The essential characteristics
of the stem cells, like the specific location and marker
expression, quiescence, asymmetric division, and unidirectional
differentiation, do not apply to all tissues, as shown in the
airways. In a pragmatic vision, the focus on the search for
stem cells should move from their physical identification

to their function, meaning the tissue ability to restore all
cell types, over the life-time. Preclinical and clinical studies
must support the validation of the selected markers for
their role in these adult stem cells’ structural and functional
regeneration capabilities.

The standardization of methods does not mean having one
single procedure; rather, it means that scientific experts would
define the available golden standard time by time, by selecting
the most characterized and safe method from a scientific and
regulatory perspective.
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This approach would enable bridging new methods to
the golden standard, as the most characterized procedure,
to highlight different cell/tissue behavior and define the best
risk/benefit ratio. Agreements on methods and controls should
also be based on long-term follow-up data of previous
treatments, which implies a shift from estimating probabilities
to relying on certainties, without censuring the possibility
of medical innovation (Sugarman et al., 2018). The World
Medical Association in the declaration of Helsinki, literally
reported: “in the treatment of an individual patient, where
proven interventions do not exist, or other known interventions
have been ineffective, the physician, after seeking expert
advice, with informed consent from the patient or a legally
authorized representative, may use an unproven intervention
if, in the physician’s judgment, it offers hope of saving life, re-
establishing health, or alleviating suffering.” This intervention
should subsequently be made the object of research, designed to
evaluate its safety and efficacy. In all cases, new information must
be recorded and, where appropriate, made publicly available (The
World Medical Association Inc, 2008).
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