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During human walking, mechanical energy transfers between segments via joints. Joint
mechanics of the human body are coordinated with each other to adapt to speed
change. The aim of this study is to analyze the functional behaviors of major joints during
walking, and how joints and segments alter walking speed during different periods
(collision, rebound, preload, and push-off) of stance phase. In this study, gait experiment
was performed with three different self-selected speeds. Mechanical works of joints and
segments were determined with collected data. Joint function indices were calculated
based on net joint work. The results show that the primary functional behaviors of
joints would not change with altering walking speed, but the function indices might
be changed slightly (e.g., strut functions decrease with increasing walking speed). Waist
acts as strut during stance phase and contributes to keep stability during collision when
walking faster. Knee of stance leg does not contribute to altering walking speed. Hip and
ankle absorb more mechanical energy to buffer the strike during collision with increasing
walking speed. What is more, hip and ankle generate more energy during push-off with
greater motion to push distal segments forward with increasing walking speed. Ankle
also produces more mechanical energy during push-off to compensate the increased
heel-strike collision of contralateral leg during faster walking. Thus, human may utilize
the cooperation of hip and ankle during collision and push-off to alter walking speed.
These findings indicate that speed change in walking leads to fundamental changes to
joint mechanics.

Keywords: human walking, biomechanics, speed, energy flow, joint function

INTRODUCTION

Human walking is one of the most significant activities with high efficiency and low metabolic cost
in daily living, benefiting from periodic energy generation and absorption (Gordon et al., 1980)
which is performed by muscle contractions and soft tissue deformations. Muscle mechanical work
(or power) is widely used to compare estimates of the work associated with walking (Cavagna and
Kaneko, 1977; Donelan et al., 2002), analyze energy transfer through body segments via joints
(Caldwell and Forrester, 1992), and evaluate locomotor efficiency (Winter, 1979). To maintain
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the walking speed, muscles would compensate mechanical energy
dissipation with producing positive mechanical work (Kuo et al.,
2005). In the literature, the mechanical work is widely analyzed
at joint and segment level to present net contributions from
muscles, tendons, and other tissues (Zelik et al., 2015).

Joint work changes in the human body are correctly identified
for variable speed tasks (Lugade et al., 2014). Different joints
may contribute differently to walking (Lee et al., 2008) and joint
parameters have strong influences in altering walking speed.
According to the conclusion from Farris and Sawicki (2012), the
main burst of positive work is performed by ankle at the end
of stance phase, which could be determined as push-off (Zelik
and Kuo, 2010). Ankle push-off mainly contributes to COM
acceleration with increasing speed and kinetic energy of trailing
leg (Zelik and Adamczyk, 2016). Sun et al. (2018) suggested that
increased sagittal ankle moment is the cause of increased walking
speed. Okita et al. (2014) presented that to increase walking
speed, human would rely on bilateral hip, ankle, and contralateral
knee to generate additional power. With increasing locomotion
speeds, the positive work produced by ankle during stance phase,
negative work absorbed by knee during swing phase, and positive
work produced by hip tend to increase (Ebrahimi et al., 2017;
Jin and Hahn, 2018). However, most of them considered the
stance phase as a whole, and few were focused on work changes
under more precise time period. A more detailed investigation is
needed to understand how the mechanical patterns in the joints
and segments are coordinated among different stance phases with
response to speed changes. Generally, the stance phase of walking
gait can be defined based on fluctuating regions of positive and
negative individual limb COM power as four different periods:
collision, rebound, preload, and push-off (Zelik and Kuo, 2010).
This study will try to answer how mechanical energy transfer
between segments via joints during four different periods of
stance phase with changed walking speed.

Joints make different functional contributions to achieve
demanded movements, and may reduce energy exchange that
could optimize walking economy when the speed changes. It
requires the elastic potential properties of the musculotendon
system to periodically absorb and generate energy in the stance
phase (Cavagna, 1977; Kuitunen et al., 2002; Kuhman and
Hurt, 2019). Dickinson (2000) described four basic functional
behaviors perform (strut, spring, motor, and damper) based
on the mechanical work. Generally, transmitting the forces by
muscles during locomotion could be considered as strut, storing,
and releasing energy as spring, generating positive power as
motor, and absorbing energy as damper. The stance leg acts
as strut during walking to reduce total work production in the
human body (Cavagna et al., 1976). The lower limb joints serve
different functional roles when the walking speed changes, e.g.,
motor-like function of the ankle and hip would be amplified
with increasing speed (Qiao and Jindrich, 2016). However, it is
unclear whether the functional behaviors would change during
different periods of stance phase (collision, rebound, preload, and
push-off) or not.

In this paper, we aim to investigate the joint level mechanics
and functional behaviors interaction during walking to further
understand the energy flow and joint function when the speeds

change. We provide a separate analysis of stance phase joint
power and work, providing a more detailed study about joint
function of the human body in four different phases of walking
across a range of speeds (slow, normal, and fast). A 3D motion
capture system integrated with a force plate array was used
to measure the kinematic and kinetic data. The mechanical
power and work of the joints and segments were calculated
based on inverse dynamic analysis. The function indices were
characterized from the joint moments and joint work. Statistical
analysis has been conducted to evaluate the difference of joint
and segment work among altered walking speed, as well as the
change of functional behaviors in different phases. Besides, we
hypothesized that ankle contributes the most during push-off to
alter walking speed. This study would advance the understanding
of speed-related joint level mechanics and functional interactions
in the human body during walking, which could benefit
rehabilitation engineering and the bionic designs of assistive
devices such as exoskeleton.

MATERIALS AND METHODS

Gait Measurement
Six healthy adults with no previous medical history of bone or
joint injury (N = 6, all males; age 26.67 ± 2.69 years; weight
84.25± 15.04 kg; height 1.76± 0.07 m; mean± SD) participated
in this study. These subjects were previously provided written
informed consent before participation and all the experiments
were approved by the ethical committee of the university. The
whole procedure was in accordance to the World Medical
Association Declaration of Helsinki. They were asked to walk
on a 10-meter-long walkway under three different self-selected
speeds: fast (1.82 ± 0.36 m/s), normal (1.51 ± 0.32 m/s), and
slow (1.25 ± 0.27 m/s). The walking speed was defined as the
stride length divided by time, where the stride length was the
displacement of the foot origin from one heel-strike to the next
heel-strike. Each speed was measured 10 times to ensure that
representative walking data were recorded and used in all the
analysis. Kinematic data was collected at 200 Hz using a six-
infrared camera motion capture system (Vantage Normal V8,
Vicon, United Kingdom), and ground reaction force/moment
data were recorded at 1,000 Hz by using a three-force plate array
(Type 9281E, Kistler, Switzerland).

The human body was divided into 13 rigid segments (head,
torso, pelvis, upper arms, forearms, thighs, shanks, and feet).
A group of specially designed thermoplastic plates (Ren et al.,
2005) were attached to the segments, each with a cluster of four
reflective markers. The head marker cluster was hold by a helmet.
The plastic plate holding the pelvis marker cluster has been firmly
fixed by an elastic hip belt. Plastic plates and the helmet reduce the
relative movement between the markers on a segment, thereby
improving the accuracy of the measured data (Angeloni et al.,
1993; Garling et al., 2007).

The anatomical landmarks were located from a series of static
calibration procedures by using a calibration wand and reflective
markers. The calibration markers were then removed before
walking tests according to the calibrated anatomical system
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technique (Cappozzo et al., 1995). The functional approach
(Cappozzo, 1984; Gamage and Lasenby, 2002) was used to
determine the hip joint center. Other joint centers were defined
based on anatomical landmarks.

Calculation of Joint and Segment Energy
Kinematic and kinetic data were processed by general motion
analysis system (GMAS), a MATLAB based package for 3D
motion analysis (Ren et al., 2008). With after-processed data,
gait parameters such as joint angular velocity and moment
are determined. Joint power can be determined with net joint
moment (M) and joint angular velocity (Ñ) (Winter, 2009) as
Pj = M · Ñ(1). Segmental power can be described as the sum of
joint translational power (Pt) and muscle rotational power (Pr)
at distal and proximal ends (Kautz et al., 1994; Guo et al., 2003)
as Ps = Pt,d + Pr,d + Pt,p + Pr,p (2), where the subscript t is
joint translational power, r is muscle rotational power, d is the
distal end and p is the proximal end of the segment. For example,
Pt,d means the translational power of the distal segment. Joint
translational power equals the dot product of resultant joint force
(Fj) and joint translational velocity (v) as Pt = Fj · v (3). Muscle
rotational power equals the dot product of net joint moment (M)
and segmental angular velocity (Ñs) as Pr = M · Ñs (4). What is
more, the mechanical work produced by joints and mechanical
energy change in segments are calculated with integration of joint
and segmental power in selected periods (Equation 5).

W =
∫ t2

t1
Pdt (5)

For example, the mechanical work produced by the femur was
calculated as,

Wfemur =
∫ t2
t1

(
Pt,hip + Pr,hip + Pt,knee + Pr,knee

)
dt

=
∫ t2
t1

(
Fhip · νhip +Mhip · ωfemur + Fknee · νknee

+Mknee · ωfemur
)
dt

(6)

Calculation of Joint Function Indices
As described by Qiao and Jindrich (2016) and Lai et al. (2019),
joint functional behaviors could be characterized as strut-,
spring-, motor-, and damper-like based on the mechanical work.
In this study, stance phase is divided into four parts: collision,
rebound, preload and push-off. Functional indexing analysis was
separately conducted based on the mechanical work produced by
joints during four different phases.

The strut index equals the ratio of joint mechanical work over
moment impulse to determine the joint stiffness (Equation 6).
The strut index is great when high moments occur with little
movement and little energy fluctuation.

strut index = max

(
1−

(t2 − t1)
∫ t2
t1

∣∣Pjoint∣∣ dt∫ t2
t1

∣∣Mjointdt
∣∣ , 0

)
× 100%

(7)
The spring index involves energy absorption during compression
(defined as flexion) and energy return during thrust (defined as
extension) (Equation 7). The mechanical energy is considered

as potentially involved in spring-like behavior as the minimum
of negative work during compression and positive work during
thrust.

spring index =
2·min

(∣∣∣W−compression

∣∣∣,∣∣W+thrust∣∣)∣∣W+Total∣∣+∣∣W+Total∣∣
×
(
100%− strut index

) (8)

The motor index describes positive work that is not performed
via spring-like behavior during different phases (Equation 8).

motor index =
∣∣W+Total∣∣−min

(∣∣∣W−compression

∣∣∣,∣∣W+thrust∣∣)∣∣W−Total∣∣+∣∣W+Total∣∣
×
(
100%− strut index

) (9)

The damper index is calculated to measure negative work that is
not stored for spring-like behavior (Equation 9).

damper index =
∣∣W−Total∣∣−min

(∣∣∣W−compression

∣∣∣,∣∣W+thrust∣∣)∣∣W−Total∣∣+∣∣W+Total∣∣
×
(
100%− strut index

) (10)

Statistical Analysis
The statistical analysis was performed to evaluate whether
joint/segmental mechanical work and functional behaviors
change with different speeds from slow to fast walk using SPSS
20.0 software (IBM, Armonk, NY, United States). For each
condition, means and standard errors of joint and segmental
work as well as joint functional indices in four different
phases were calculated across all subjects and trials. They were
then analyzed separately by using the analysis of variance
(ANOVA) with repeated measurements based on a linear mixed
model approach considering intra- and inter-subject variability
(random effects: subjects and trials; fixed effects: walking speed;
significance level p = 0.05). For post hoc processing, we used
Fisher’s least significant difference (LSD) multiple comparison
based on the least-squared means to compare speed conditions
with each other in order to investigate which walking speed
exacted a significant change in joint/segmental work and joint
functional behaviors.

RESULTS

Joint Power and Work
The results from Table 1 and Figure 1 present how the
mechanical work produced by joints change with walking speed.
The positive work produced by waist during collision increases
approximately 64% from slow to fast walk. The negative work
from waist during rebound increases 42% from slow to fast
walk. However, the mechanical works produced by waist during
preload and push-off do not show significant relevance to
walking speed. During the whole stance phase, the positive
work from waist increases 66% and negative work absorbed
by waist increases 55% from slow to fast walk. The negative
work absorbed by hip during collision increases 55% and the
positive work during push-off increases 30% from slow to fast
walk. During the whole stance phase, the positive work produced
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TABLE 1 | Mechanical work produced by joints during different phases.

Joint Speed Collision work Rebound work Preload work Push-off work Average power Positive work Negative work

Waist Fast 0.023 ± 0.004a
−0.017 ± 0.003a

−0.015 ± 0.002a 0.014 ± 0.003a 0.012 ± 0.011a 0.053 ± 0.003a
−0.048 ± 0.007a

Normal 0.018 ± 0.004b
−0.012 ± 0.003b

−0.016 ± 0.002a 0.014 ± 0.003a 0.008 ± 0.011a 0.043 ± 0.003b
−0.038 ± 0.007b

Slow 0.014 ± 0.004b
−0.012 ± 0.003b

−0.015 ± 0.002a 0.013 ± 0.003a 0.003 ± 0.110a 0.032 ± 0.004c
−0.031 ± 0.007c

Hip Fast −0.110 ± 0.021a 0.020 ± 0.028a
−0.086 ± 0.028a 0.131 ± 0.027a 0.289 ± 0.084a 0.380 ± 0.025a

−0.202 ± 0.033a

Normal −0.082 ± 0.023a,b 0.001 ± 0.029a
−0.095 ± 0.029a 0.133 ± 0.028a 0.214 ± 0.092a 0.321 ± 0.028b

−0.193 ± 0.036a

Slow −0.071 ± 0.024b 0.011 ± 0.030a
−0.068 ± 0.030a 0.099 ± 0.028b 0.192 ± 0.098a 0.258 ± 0.030c

−0.140 ± 0.038a

Knee Fast 0.069 ± 0.017a 0.062 ± 0.020a
−0.002 ± 0.007a

−0.163 ± 0.017a
−0.074 ± 0.041a 0.233 ± 0.027a

−0.269 ± 0.021a

Normal 0.075 ± 0.020a 0.055 ± 0.021a 0.006 ± 0.007a,b
−0.182 ± 0.020a

−0.067 ± 0.046a 0.192 ± 0.028b
−0.239 ± 0.025a

Slow 0.076 ± 0.021a 0.047 ± 0.022a 0.012 ± 0.007b
−0.161 ± 0.022a

−0.03 ± 0.050a 0.171 ± 0.028b
−0.199 ± 0.027a

Ankle Fast −0.052 ± 0.012a
−0.035 ± 0.004a

−0.030 ± 0.026a 0.362 ± 0.018a 0.445 ± 0.070a 0.399 ± 0.021a
−0.151 ± 0.026a

Normal −0.026 ± 0.013b
−0.035 ± 0.005a

−0.055 ± 0.026a,b 0.264 ± 0.022b 0.272 ± 0.073b 0.314 ± 0.025b
−0.153 ± 0.027a

Slow −0.024 ± 0.013b
−0.032 ± 0.005a

−0.075 ± 0.027b 0.279 ± 0.024b 0.224 ± 0.074b 0.316 ± 0.027b
−0.165 ± 0.028a

Data are mean ± SD. for all the trials across all the subjects. Different letters mean that the variable in a column differs significantly with each other (p < 0.05).
This table contains the mechanical work produced by each joint during collision, rebound, preload, and push-off. The average power presents the average value of joint
power during whole stance phase. The positive and negative work present the positive mechanical work and negative mechanical work produced by each joint during
whole stance phase.

FIGURE 1 | Mechanical works of joints during stance phase. It illustrates the mechanical work produced by each joint during collision (A), rebound (B), preload (D),
and push-off (E), as well as the positive (C) and negative (F) mechanical work produced by each joint during the whole stance phase. Bars depict mean; N = 6; error
bars, SD.

by hip increases 47% from slow to fast walk. However, the
mechanical works during rebound and preload do not show
significant relevance to walking speed. As for the mechanical
work produced by knee during stance phase, the positive work

increases 36% from slow to fast walking speed. The positive work
during preload decreases 50% from slow to normal walking,
but knee absorbs negative work under fast walking speed. The
negative work absorbed by ankle increases 117% during collision
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from slow to fast walk but decreases 60% during preload. The
positive work produced by ankle during push-off increases 30%
from slow to fast walk. In addition, the positive work produced
by ankle increases 26% during the whole stance phase from
slow to fast walk.

Segmental Power and Work
Table 2 and Figure 2 show the changes of segmental mechanical
work with changed walking speed. From slow to fast walk, the
positive work applied to torso during stance phase increases
17%, and the mechanical energy released by pelvis increases 59%
during preload. During slow walk, pelvis absorbs energy during
push-off, however, it releases 238% more mechanical energy
during push-off under fast walk than normal walk. During stance
phase, pelvis releases 66% more energy from slow to fast walk.
The positive mechanical work transferred to foot during push-off
increases 11% from slow to fast walk.

Joint Function Indices
Here, the joint indices under normal walking were used to
demonstrate the change of joint functional behaviors during
stance phases, while the variation trend of joint indices under
the other two speeds are similar (Figure 3 and Supplementary
Table 1). For the waist, the strut functions during rebound
(93.3%) and preload (92.5%) are larger than collision (89.6%)
and push-off (90.4%), the motor-like functions during collision
(8.7%) and push-off (6.7%) are larger than rebound (0.3%)
and preload (0.3%), and the damper-like functions during
rebound (6.4%) and preload (7%) are larger than collision
(1.1%) and push-off (1.1%). The strut index of hip decreases
from collision (89.6%) to rebound (62.6%), then increases

during preload (86.5%), and decreases during push-off (78%).
The motor-like function of hip increases from collision
(4.1%) to rebound (31.5%), then decreases during preload
(2.7%), and increases during push-off (20.9%). The damper-
like function of hip increases from collision (6.3%) to preload
(10.8%) but decreases during push-off (0.9%). For the knee,
the strut index increases from collision (75.1%) to preload
(91.7%) but decreases during push-off (50.3%), the motor
index decreases from collision (20.6%) to push-off (3.7), and
the damper index increases from preload (3.4%) to push-off
(46%). Regarding the ankle, the strut index increases from
collision (76.8%) to preload (90.6%) but decreases during
push-off (61%), the motor index decreases from collision
(7.8%) to preload (1.8%) but increases during push-off (37.8%),
and the damper index decreases from collision (14.6%) to
push-off (1.2%).

Moreover, Figure 4 and Table 3 depict the relevance
of joint indices to walking speed. Increasing walking speed
involves increased waist’s motor-like function during collision
and damper-like function during push-off, but decreased strut-
like function. During collision, motor-like function of hip
is amplified with increased walking speed. Also, walking
speed boost involves growing motor-like function of hip but
decreasing strut-like function during push-off. With walking
speed being increased, the damper-like function of knee during
collision and preload increases, but the strut-like function
decreases during all the subphases except for push-off. During
collision, damper-like function of ankle increases but motor-
like function decreases with increasing walking. Contrarily,
during push-off, damper-like function decreases but motor-like
function increases.

TABLE 2 | Mechanical energy change of segments during different phases.

Segment Speed Collision work Rebound work Preload work Push-off work Average power Positive work Negative work

Torso Fast −0.097 ± 0.035a
−0.247 ± 0.026a 0.154 ± 0.014a 0.120 ± 0.021a

−0.119 ± 0.041a 0.499 ± 0.031a
−0.572 ± 0.038a

Normal −0.114 ± 0.036a
−0.201 ± 0.026b 0.162 ± 0.016a 0.071 ± 0.025a

−0.136 ± 0.044a 0.436 ± 0.032b
−0.520 ± 0.039b

Slow −0.083 ± 0.037a
−0.173 ± 0.027b 0.130 ± 0.017a 0.073 ± 0.026a

−0.088 ± 0.045a 0.425 ± 0.033b
−0.480 ± 0.040b

Pelvis Fast 0.022 ± 0.054a 0.030 ± 0.032a 0.299 ± 0.025a 0.179 ± 0.058a 0.942 ± 0.107a 0.759 ± 0.055a
−0.236 ± 0.027a

Normal 0.061 ± 0.057a 0.020 ± 0.035a 0.251 ± 0.027b 0.053 ± 0.061b 0.626 ± 0.112b 0.572 ± 0.057b
−0.186 ± 0.033a

Slow 0.091 ± 0.059a 0.004 ± 0.036a 0.188 ± 0.028c
−0.055 ± 0.063c 0.360 ± 0.114c 0.456 ± 0.059c

−0.222 ± 0.034a

Femur Fast 0.685 ± 0.190a 0.410 ± 0.074a
−0.340 ± 0.117a

−0.589 ± 0.195a 0.158 ± 0.214a 1.610 ± 0.237a
−1.469 ± 0.321a

Normal 0.522 ± 0.207a 0.317 ± 0.077a
−0.245 ± 0.140a

−0.469 ± 0.217a 0.145 ± 0.252a 1.190 ± 0.259a
−1.098 ± 0.357a

Slow 0.540 ± 0.225a 0.318 ± 0.081a
−0.232 ± 0.162a

−0.507 ± 0.237a 0.110 ± 0.290a 1.164 ± 0.282a
−1.101 ± 0.394a

Tibia Fast 0.564 ± 0.181a 0.356 ± 0.199a 0.307 ± 0.064a 0.476 ± 0.078a 2.004 ± 0.249a 1.820 ± 0.313a
−0.623 ± 0.346a

Normal 0.368 ± 0.204a 0.147 ± 0.230a 0.241 ± 0.074a 0.402 ± 0.089a 1.677 ± 0.285a 1.192 ± 0.390a
−0.209 ± 0.402a

Slow 0.346 ± 0.214a 0.189 ± 0.243a 0.194 ± 0.078a 0.387 ± 0.094a 1.387 ± 0.301a 1.037 ± 0.414a
−0.262 ± 0.424a

Foot Fast −0.024 ± 0.016a 0.031 ± 0.005a 0.368 ± 0.094a 1.266 ± 0.062a 2.567 ± 0.293a 1.988 ± 0.191a
−0.462 ± 0.291a

Normal −0.003 ± 0.018a 0.024 ± 0.007a 0.262 ± 0.114a 1.184 ± 0.068a,b 2.283 ± 0.320a,b 1.537 ± 0.239a
−0.140 ± 0.333a

Slow −0.004 ± 0.020a 0.014 ± 0.007a 0.212 ± 0.126a 1.139 ± 0.073b 1.828 ± 0.330b 1.392 ± 0.253a
−0.214 ± 0.351a

Data are mean ± SD. for all the trials across all the subjects. Different letters mean that the variable in a column differs significantly with each other (p < 0.05).
This table contains the mechanical energy change of each segment during collision, rebound, preload, and push-off. The average power presents the average value of
segment power during whole stance phase. The positive and negative work present the positive mechanical work and negative mechanical work applied to each segment
during whole stance phase.
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FIGURE 2 | Mechanical energy change of segments during stance phase. It demonstrates the mechanical energy change in each segment during collision (A),
rebound (B), preload (D), and push-off (E), as well as the positive (C) and negative (F) mechanical work applied to each segment during the whole stance phase.
Bars depict mean; N = 6; error bars, SD.

DISCUSSION

The Primary Functional Behaviors of
Joints Would Not Change With Walking
Speed
Qiao and Jindrich (2016) presented that primary functional
behavior of joint could be determined with the most proportional
function index. In this study, the primary functional behaviors
of joints are strut-like function during different phases, which
appear some differences with previously reported by Qiao and
Jindrich (2016). They indicated that hip acted as motor and
ankle acted as spring during human walking. These discrepancies
are mainly caused from different calculating time periods and
terms. We performed separate calculation during four subphases
of stance phase and included the energy from all three degree of
freedoms (but only flexion-extension in the previous study).

Besides, slight changes occur in function indices with different
walking speed. Kuhman and Hurt (2019) suggested that joints’
functional behaviors during walking, especially for knee and
ankle, were different under changed walking speed. The results in
this study show that, strut function of knee during collision and
push-off decreases with growing walking speed (seen in Table 3).
Also, increasing walking speed leads to increased damper index
of knee but decreased damper index of ankle during preload.

However, strut indices are still the most proportional among
them. Thus, during changed walking speed, there is no substantial
change in functional behaviors of different phases.

Waist and Knee Did Not Involve Altering
Walking Speed but Waist Provided
Stability During Collision With Increasing
Speed
During the rebound, preload and push-off, the strut indices of
waist are larger than 88%. The mechanical energy produced
by waist is much less than that of the other joints during
whole stance phase. Accordingly, it can be concluded that
waist mainly acts as strut during stance phase. Moreover,
mechanical energy generation and dissipation of waist mainly
occur during collision. Previous researches (Donelan et al., 2004;
Schulz et al., 2005) presented that waist played an important
role in active lateral stabilization. Therefore, mechanical energy
generation and dissipation of waist may be utilized to keep
stability during collision. The negative mechanical works from
waist during collision is enlarged with increasing walking speed,
suggesting that the muscle group surrounding waist absorbs more
mechanical energy to keep stability during collision under faster
walking. As the inputted energy from waist to pelvis decreases
with increasing walking speed, meanwhile the outputted energy
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FIGURE 3 | Functional behaviors of joints during different phases across three walking speeds. N = 6; mean ± SD. were depicted. CL, collision; RB, rebound; PL,
preload; PO, push-off.

from torso to waist does not show significant change with
speed, the increased mechanical energy absorbed by waist is
mainly from pelvis during collision. It suggests that pelvis helps
to keep stability with absorbing less energy during collision
when walking faster.

During different speed walking, the strut-like function of waist
during push-off decreases with increasing walking speed, same
as the strut-like function of knee during collision and push-
off. Jeon et al. (2020) revealed that decreased leg stiffness was
associated with greater displacement of leg movement. Therefore,
the change of waist and knee strut function may lead greater
leg movement during collision and push-off when walking
speed is raised up.

However, the mechanical work produced by waist and knee
do not show significantly relevance to altering walking speed.
According to Qiao and Jindrich (2016), joint work’s changes
are mainly associated with joint angular displacement changes,
not moment. Therefore, angular displacement of waist and
knee may not change significantly with walking speed. Greater
leg movement would be associated with hip and ankle. This
is supported by the finding from Okita et al. (2014) that
altering walking speed relies on contralateral knee. Jin and
Hahn (2018) also suggested that more negative work would be
absorbed by knee during swing phase with increasing locomotion

speed. Therefore, knee of stance leg does not contribute to
altering walking speed.

Hip Transformed More Energy From
Damper at Collision to Motor at Push-Off
With Increasing Speed Due to Translation
Work Change of Pelvis and Femur
Regarding hip joint functional behaviors, we observe that
only motor-like function during collision is enhanced with
increasing walking speed. The results of hip power reveal that the
mechanical work produced by hip during collision and push-off
increases significantly under faster walking speed. A similar result
was presented by Arnold et al. (2013) that the greatest positive
work increases occurred at hip and ankle. Another finding in this
study is that during collision, the mechanical energy absorbed
by hip increases 55% from slow to fast walk. During collision,
the human body absorbs negative work to buffer the stride.
Hip contributes more to buffering the stride under increasing
walking speed. As human walking is not all hard work (Zelik
and Kuo, 2010), the contributions of hip may be mainly from
muscle group surrounding hip and soft tissue between pelvis and
thigh. Besides, the mechanical energy generated by hip increases
30% during push-off from slow to fast walk, suggesting that
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FIGURE 4 | The functional indices of joints during different phases across three walking speeds. N = 6; means were depicted.

the muscle group surrounding hip produces more mechanical
energy to push pelvis forward by increasing angular motion.
This is supported by the inference above and the conclusions
of previous researches (Ogihara et al., 2010; Yang et al., 2019;
Okudaira et al., 2020).

During segmental mechanical work calculation, the
translational and rotational work at both ends of segments
are determined (Supplementary Table 2). We observe that the
mechanical energy absorbed from hip to pelvis and femur due
to translational work during collision grows 26% from slow to
fast walk. Meanwhile, the mechanical energy released to hip
from pelvis and thigh due to translational work during push-off
increases 29% from slow to fast walk. In addition to the greater
angular motion, hip transfers more energy from joint reaction
forces during collision and push-off when walking faster. It could
also be observed that more mechanical energy is inputted to
pelvis from hip under faster walking during push-off. Therefore,
hip transfers more energy to pelvis for forward propulsion
during push-off.

In conclusion, hip works as damper during collision but as
motor during push-off, and transfers more energy with increasing
speed due to the translational work change of pelvis and femur.
The increased angular motion and mechanical energy of hip
during push-off involve faster walking speed.

Ankle Contributes the Most During
Push-Off to Push Shank Faster During
Walking
From the previous researches (Cofré et al., 2011; Williams and
Schache, 2016; Browne and Franz, 2018; Uematsu et al., 2018),
ankle produces positive work during stance phase, which could be
regarded as motor-like function. However, some studies regarded
ankle as principle spring during walking (Lee et al., 2008; Qiao
and Jindrich, 2016; Kuhman and Hurt, 2019). In this study,
according to the functional behaviors and produced mechanical
work of ankle during different phases, we show that ankle
is dissipating mechanical energy during the first three phases
(collision, rebound, and preload) and releasing mechanical
energy during push-off. Moreover, the released mechanical work
is larger than the sum of absorbed mechanical work. The results
indicate that ankle works as motor to generate mechanical energy
during push-off and as spring to store and release energy during
the whole stance phase (Figure 1).

Specifically, ankle absorbed 117% more work during collision
from slow to fast walk. It reveals that the muscle group
surrounding ankle along with soft tissue between shank and foot
absorb more mechanical energy during stride with increasing
walking speed. As the amplitudes of vertical ground reaction
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TABLE 3 | The functional indices of joints during different phases across three walking speeds.

Collision Preload

Joint Speed Strut Spring Motor Damper Joint Speed Strut Spring Motor Damper

Waist Fast 81.7 ± 2.7a 0.2 ± 0.2a 9.7 ± 1.0a 8.4 ± 3.0a Waist Fast 89.5 ± 1.9a 2.3 ± 0.1a 0.0 ± 0.1a 8.2 ± 1.0a

Normal 87.1 ± 3.4a 0.4 ± 0.3a 8.5 ± 1.4a 4.0 ± 3.5a Normal 92.4 ± 2.2a 0.2 ± 0.1a 0.3 ± 0.1a 7.1 ± 1.0a

Slow 88.9 ± 3.5a 0.2 ± 0.2a 6.2 ± 1.4a,b 4.7 ± 3.6a Slow 92.4 ± 2.4a 0.1 ± 0.2a 0.2 ± 0.1a 7.3 ± 1.0a

Hip Fast 80.8 ± 3.0a 0.2 ± 0.1a 5.0 ± 0.7a 14.0 ± 2.9a Hip Fast 84.3 ± 2.6a 2.3 ± 0.0a 1.5 ± 0.8a 11.9 ± 1.6a

Normal 88.4 ± 3.7a 0.1 ± 0.2a 2.9 ± 0.9b 8.6 ± 3.5a Normal 85.2 ± 3.0a 1.7 ± 0.0a 1.9 ± 0.9a 11.2 ± 1.8a

Slow 86.8 ± 4.6a 0.0 ± 0.2a 1.8 ± 1.1b 11.4 ± 4.3a Slow 86.8 ± 3.1a 0.9+0.0a 1.9 ± 0.9a 10.4 ± 1.9a

Knee Fast 66.7 ± 2.9a 0.4 ± 0.3a 20.6 ± 2.7a 12.3 ± 2.3a Knee Fast 86.6 ± 2.3a 2.4 ± 0.2a 5.6 ± 1.1a 5.4 ± 0.9a

Normal 74.9 ± 3.5b 0.2 ± 0.2a 19.8 ± 3.4a 5.1 ± 2.8b Normal 89.9 ± 2.4b 1.8 ± 0.3a 4.8 ± 1.2a 3.5 ± 1.0b

Slow 76.5 ± 4.4b 0.5 ± 0.4a 18.3 ± 4.5a 4.7 ± 3.8b Slow 88 ± 2.4a,b 2.1 ± 0.3a 7.1 ± 1.3a 2.8 ± 1.1b

Ankle Fast 71.9 ± 2.4a 1.3 ± 0.3a 4.3 ± 1.1a 22.5 ± 3.2a Ankle Fast 89.0 ± 2.3a 2.0 ± 0.0a 1.9 ± 0.9a 7.1 ± 2.9a

Normal 76.8 ± 3.1a 1.0 ± 0.3a 7.4 ± 1.2b 14.8 ± 3.8b Normal 90.5 ± 2.7a 0.1 ± 0.0a 1.6 ± 0.9a 7.8 ± 3a,b

Slow 74.1 ± 4.1a 1.0 ± 0.3a 6.2 ± 1.4a,b 18.7 ± 4.8a,b Slow 89.5 ± 2.8a 0.1 ± 0.0a 1.6 ± 0.9a 8.8 ± 0.3b

Rebound Push-off

Joint Speed Strut Spring Motor Damper Joint Speed Strut Spring Motor Damper

Waist Fast 92.5 ± 1.0a 0.1 ± 0.0a 0.3 ± 0.2a 7.1 ± 1.1a Waist Fast 88.3 ± 0.8a 2.5 ± 0.9a 7.2 ± 1.2a 2.0 ± 0.4a

Normal 93.4 ± 1.1a 0.1 ± 0.0a 0.3 ± 0.2a 6.2 ± 1.1a Normal 90.1 ± 0.9b 2.1 ± 1.0a 6.8 ± 1.2a 1.0 ± 0.5b

Slow 93.2 ± 1.1a 0.0 ± 0.0a 0.2 ± 0.2a 6.6 ± 1.2a Slow 91.9 ± 0.9c 1.2 ± 1.0a 6.2 ± 1.3a 0.7 ± 0.5c

Hip Fast 57.8 ± 6.6a 0.0 ± 0.0a 35.8 ± 6.8a 6.4 ± 3.3a Hip Fast 76.60 ± 1.50a 1.4 ± 1.2a 20.2 ± 0.23a 1.8 ± 0.8a

Normal 61.5 ± 6.9a 0.1 ± 0.0a 32.1 ± 7.3a 6.3 ± 3.7a Normal 79.20 ± 1.70a 0.5 ± 1.2a 19.0 ± 2.4a 1.3 ± 0.9a

Slow 65.9 ± 7.1a 0.1 ± 0.0a 28.5 ± 7.6a 5.5 ± 3.9a Slow 80.40 ± 0.18a 0.8 ± 1.2a 18.3 ± 2.5a 0.5 ± 0.9a

Knee Fast 83.7 ± 3.1a 0.2 ± 0.0a 13.8 ± 3.2a 2.3 ± 0.8a Knee Fast 49.1 ± 3.4a 0.0 ± 0.0a 7.6 ± 2.1a 43.3 ± 3.1a

Normal 86.0 ± 3.2a 0.1 ± 0.1a 12.5 ± 3.3a 1.4 ± 0.8a Normal 51.3 ± 3.7a,b 0.1 ± 0.0a 5.4 ± 2.2a,b 43.2 ± 3.6a

Slow 88.1 ± 3.2b 0.2 ± 0.0a 10.9 ± 3.3a 0.8 ± 0.9a Slow 53.2 ± 3.8b 0.1 ± 0.0a 4.0 ± 2.3b 42.7 ± 3.8a

Ankle Fast 91.30 ± 1.20a 0.0 ± 0.0a 0.3 ± 0.2a 8.40 ± 0.13a Ankle Fast 56.1 ± 2.6a 0.4 ± 0.0a 43.2 ± 2.7a 0.3 ± 0.3a

Normal 90.70 ± 0.13a 0.1 ± 0.0a 0.5 ± 0.2a 8.70 ± 1.40a Normal 60.6 ± 2.9a 0.1 ± 0.0a 38.2 ± 3.0a 1.1 ± 0.4a

Slow 91.70 ± 1.40a 0.0 ± 0.0a 0.2 ± 0.3a 8.10 ± 1.40a Slow 61.5 ± 3.1a 0.1 ± 0.0a 38.4 ± 3.1a 0.0 ± 0.0a

Data are mean ± SD. for all the trials across all the subjects. Different letters mean that the variable in a column differs significantly with each other (p < 0.05).

forces are larger in fast walk (Sun et al., 2018), the increased
mechanical energy absorbed by muscle group and soft tissue
surrounding hip and ankle may be generated from higher
ground reaction forces. Ankle absorbs 60% less work during
preload from slow to fast walk. During preload elastic energy
is stored in the soft tissue, and subsequently released to
generate positive external mechanical work (Donelan et al.,
2002). Therefore, there are less energy stored during preload
and released during push-off with increasing speed, which may
be caused by shorter period of preload. During push-off, ankle
produces 30% more positive work from slow to fast walk. As
the stored energy during preload decreases with increasing speed,
more than 30% positive mechanical work is generated by muscle
group surrounding ankle. Push-off can compensate and reduce
amount of heel-strike collision (Sánchez et al., 2019). Thus,
the increased mechanical work produced by ankle during push-
off with greater movement may be utilized to push shank forward
harder and compensate the increased heel-strike collision of
contralateral leg.

The results of calculated segmental work (Table 2 and
Figure 2) show that foot contributes to walking with absorbing

energy mainly during push-off, supported by previous studies
(Safaeepour et al., 2014; Ebrahimi et al., 2017; Welte et al.,
2018). Moreover, the mechanical work applied to foot increases
during push-off when walking speed being increased. Meanwhile,
Hedrick et al. (2019) characterized that the foot and ankle
synthesize the force, displacement, and work distal to the shank.
Thus, when walking speed being increased, ankle and foot
cooperate to push shank faster.

CONCLUSION

By calculating and statistically analyzing the joint and segmental
work along with the functional behaviors of joints, we found
that speed changing during walking is a cooperative work of
different joints, especially hip and ankle. Waist mainly works
on stabilization during collision under different walking speed.
Knee of stance leg does not contribute to altering walking speed.
The muscle group and soft tissue surrounding hip and ankle
absorb more mechanical energy from higher ground reaction
forces during heel-strike. Furthermore, hip and ankle generate
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more mechanical energy with greater motion during push-off
to push distal segments forward with increasing walking speed.
Ankle generates more mechanical energy during push-off to
compensate the increased heel-strike collision of contralateral
leg during faster walking. Overall, the hypothesis provided at
the beginning can be confirmed and improved to that both
hip and ankle contribute to altering walking speed during
collision and push-off.
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