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Space travel is an extreme experience even for the astronaut who has received extensive
basic training in various fields, from aeronautics to engineering, from medicine to physics
and biology. Microgravity puts a strain on members of space crews, both physically and
mentally: short-term or long-term travel in orbit the International Space Station may have
serious repercussions on the human body, which may undergo physiological changes
affecting almost all organs and systems, particularly at the muscular, cardiovascular and
bone compartments. This review aims to highlight recent studies describing damages of
human body induced by the space environment for microgravity, and radiation. All novel
conditions, to ally unknown to the Darwinian selection strategies on Earth, to which we
should add the psychological stress that astronauts suffer due to the inevitable forced
cohabitation in claustrophobic environments, the deprivation from their affections and
the need to adapt to a new lifestyle with molecular changes due to the confinement. In
this context, significant nutritional deficiencies with consequent molecular mechanism
changes in the cells that induce to the onset of physiological and cognitive impairment
have been considered.

Keywords: microgravity, energy intake, life-style, nutrition, spaceflight

INTRODUCTION

The space environment induces cellular and molecular changes with consequents damages in
different organs and tissues of astronauts. Due to the complexity of the space environment it is really
difficult to distinguish damages induced by gravity, those induced by radiation and those caused by
confinement. Therefore, simulated microgravity experiments are really useful for discriminating
the causes of damage. It is worth considering that numerous studies conducted in space have
focused attention on the absence of gravity. The effects of microgravity on humans, animals, plants,
and objects in spacecrafts are evident at a macroscopic level, when they float freely within the
cabin. But a vast variety of effects invisible to the naked eye have been described at the cellular and
molecular levels that induce disorders in different astronaut systems. During the first few hours
of flight, it is quite common for the astronauts to experience multiple symptoms of the so-called
Space Adaptation Syndrome, especially in the course of their first mission ever. The most common
of those symptoms include nausea and vomiting, diarrhea, dizziness, headache, lethargy and
general malaise, frequently culminating with the manifestation of a marked lack of appetite which
may last for several days from the beginning of the mission (Kornilova and Kozlovskaya, 2003).
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This, combined with other factors such as the deleterious
effect of radiation on the body, the less-than-optimal quality
of food and the altered perception of smells and flavors,
contribute to establishing an inadequate energy intake, which
may then lead to the manifestation of the most significant
side effects of long-term weightlessness, such as muscle atrophy
and deterioration of the skeleton, and thyroid dysfunction
(Albi et al, 2017). Furthermore, the redistribution of body
fluids to the upper portion of the body which causes the
“moon face” aspect, a slowdown in the functionality of the
cardiovascular system and blood flow, a reduction of red blood
cells, neuro-immuno-endocrine-metabolic interaction disorders
(Strollo et al, 2018). Although most of these effects may
quickly recede upon return to Earth, they may nevertheless
affect the health and performance of the crewmembers due to
the changes of molecular mechanisms in the cells. Operational
improvements and biomedical countermeasures have been used
over time to limit molecular changes and consequently improve
the health of astronauts (Crucian et al., 2020). However, many
molecular mechanisms induced by the space environment are
still unexplored and research in the field is rapidly expanding.

Impact of Space Environment on Health

The space environment is responsible for damages in different
organs and tissues due to microgravity and radiation (Stein
and Leskiw, 2000). The main pathogenetic mechanism is the
oxidative stress. It is known that on Earth, body cells are
constantly subjected to the action of Reactive Oxygen Species
(ROS) which are produced as a result of both cellular metabolism
and exposure to external agents such as X rays, UV, pollution,
cigarette smoke, etc. Usually, ROS production is balanced by
the activation of specific biochemical detoxification systems. If
high levels of ROS are produced, cell damage is proportionally
induced. Exposure to space environment is associated with
increased oxidative stress on membrane lipids, proteins, and
specifically on DNA which might cause permanent damage in
the genetic code of tissues and cells, leading to cell death and
cancer (Tominaga et al., 2004). Yatagai et al. (2019) proposed
that interaction between microgravity and space radiation targets
many molecular mechanisms in addiction to ROS signal as DNA
repair, replication, transcription, gene and protein expression.

Humans

Astronauts who participated in long-term missions aboard the
ISS were exposed to multiple stress factors with repercussions on
cardiovascular health (Table 1). In fact, changes in gravitational
forces, alteration of physical activity patterns and metabolic
stress factors were associated with increased blood concentrations
of markers indicative of vascular growth, inflammation and
oxidative stress, which have a negative impact on the structural
and functional aspects of the vascular system, such as accelerated
stiffening of the arterial walls and subsequent development of
arteriosclerosis in association with insulin resistance (Hughson
et al., 2016). A relevant study on the effect of microgravity in
cardiovascular system during long stay in space was performed
in two homozygous American astronauts, Mark and Scott
Kelly (Garrett-Bakelman et al., 2019). While Mark remained

TABLE 1 | Main experiments conducted in space environment. In yellow, in vivo
experiments; in green, in vitro experiments.

Space Environment

Vessels Arteriosclerosis (Hughson et al., 2016: Garrett-Bakelman
et al., 2019)

Heart change in shape (May et al., 2014)

Bone Increased activity of osteoclasts and the decreased activity of
osteoblasts (Stavnichuk et al., 2020)
fractures and osteoporosis (Grimm et al., 2016)

muscle loss of muscle mass (Stein and Blanc, 2011)
Muscle fatigue and pain, weakness and lack of movement
coordination (Fitts et al., 2000).

Blood-brain change of blood-brain barrier integrity (Mao et al., 2020)

barrier

Brain

Decreased resistance to infections (Sonnenfeld, 2003)

Immune system

Drug response
thyroid gland

Changed pharmacological response (Moskaleva et al., 2015)
Change in structure/function (Masini et al., 2012)

Increase and delocalization of Galectin 3 (Albi et al., 2014a)
Change in sphingomyelinase and sphingomyelin-synthase
activity (Albi et al., 2012)

Delocalization of thyroid stimulating hormone receptor (Albi
et al., 2012)

Microbiome change in mice (LaPelusa et al., 2021)

Relation with intra-abdominal hypertension (Kirkpatrick et al.,
2020)

on Earth, Scott spent nearly a year (342 days) aboard the
ISS. The study compared physiological, genetic and behavioral
parameters of two twins, aiming to evaluate the changes of
the cardiovascular system and the probability of arteriosclerosis
onset, by ultrasound examination of their arteries. During
the mission, and immediately after Scott’s return to Earth, a
thickening of the carotid artery was observed, also confirmed
by the increase in biological markers of inflammation, such as
the inflammatory cytokine IL-Ira. Fortunately, most of these
cardiovascular changes returned to normal within approximately
6 months. In addition, doctor James Thomas has shown that
after 6 months in space the astronauts heart typically become
more spheroidal in shape, possibly because it worked less harshly
in microgravity conditions (May et al, 2014). The team of
NASA researchers led by Thomas taught astronauts to take
images of their heart, using ultrasonic equipment installed on
the ISS, before, during and after the mission. Data showed that
in the absence of gravity the astronaut’s heart became more
spherical by 9.4%, a transformation similar to what researchers
had predicted in the past, using mathematical models. However,
this phenomenon seemed to be temporary as, upon returning
to Earth, the hear quickly regained its original elongated shape
(May et al., 2014).

The space environment also affects bone structure and
function. Bones play different roles, from supporting body
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weight to mineral reserves, acid-base homeostasis and bone
marrow containment and protection. These functions are all
affected by microgravity (Stavnichuk et al., 2020). In physiological
conditions on Earth, the osteoclast activity with consequent
bone resorption and the osteoblast activity with consequent
bone tissue production are balanced. Bone loss occurs during
spaceflight, due to the combined effect of the increased activity of
osteoclasts and the decreased activity of osteoblasts, resulting in
negative calcium balance and consequent bone loss (Stavnichuk
et al., 2020). Calcium is thus released into the bloodstream and
urine, increasing the risk of kidney stone formation (Stavnichuk
et al, 2020). The calcium release from the bone suppresses
the parathyroid hormone (PTH) with consequent reduction of
vitamin D3 activation in the kidney. Low level of activated
vitamin D3 (1,25-dihydroxyvitamin D3) is in turn responsible
for the reduction in calcium absorption at the gastrointestinal
level. Notably, short and long term space missions might
significantly increase astronaut’s health risks in term of fractures
or osteoporosis (Grimm et al., 2016).

Moreover, spaceflight missions induce the loss of body mass.
Most muscle loss, representing a relevant contribution in such
loss, generally occurs in the early mission stages, during the
critical adaptation period of the human body to microgravity.
After spending several months in space, the loss of muscle
mass can be significant, in the order of 2.4%/100 mission
days (Stein and Blanc, 2011). As in microgravity conditions
movements generally require minimal effort, the limited use of
force causes the muscle to lose mass, volume and efficiency,
particularly in the lower limbs (Stein and Blanc, 2011). Such
changes may represent a problem upon returning to Earth as
the structurally modified muscles require more energy, to the
point that even maintaining the upright position may be difficult.
The recovery time on Earth is proportional to the length of the
flight, so astronauts inevitably have to undergo very rigorous
physical training sessions before, during and after the flight (Fitts
et al., 2000). Astronauts returning from even short space flights,
may experience muscle fatigue and pain, weakness and lack of
movement coordination (Fitts et al., 2000).

Animals

Mice involved in experiments conducted during space mission
suffered from a stressful condition that was responsible for
the alteration of the blood-brain barrier integrity (Mao et al.,
2020; Table 1). Morover, Sonnenfeld (2003) reported that
spaceflight results in decreased resistance to infection in animals.
Interestingly, significant changes in the members of cytochrome
P450 superfamily such as CYP2C29, CYP2El, and CYP1A2,
involved in drug metabolism, were detected in mice after
spaceflights indicating a modified pharmacological response
(Moskaleva et al., 2015). In a truly unique experiment of
longest stay of mice on board of the International Space
Station (ISS, 91 days) inside the “Mouse Drawer System,
a facility built by “Thales Alenia Space” for the “Agenzia
Spaziale Italiana,” Masini et al. (2012) demonstrated a change
of structure/function of thyroid gland (Masini et al, 2012).
The thyroid gland presented also changes in the expression
and localization of Galectin-3, indicating the thyroid cell

transformation (Albietal., 2014b). Moreover, in the thyroid
tissue it was evident an overexpression of enzymes for
sphingomyelin metabolism such as sphingomyelinase and
sphingomyelin-synthase and, of thyroid stimulating hormone
receptor (Albi et al., 2012). It is relevant that these results were
opposite to those obtained in hypergravity condition (Albi et al.,
2014a) and different from changes induced by UV radiation
exposure (Albi et al, 2009). Interestingly, a change in an
elevated microbiome alpha diversity and an altered microbial
community structure were reported in mice after a 37-day
spaceflight onboard the ISS (LaPelusa et al., 2021). In a recent
review by Kirkpatrick et al. (2020), the evidence from animal
models indicating that intra-abdominal hypertension affects the
intestinal microbiota in space missions is reported.

Cells

Studies of cell cultures in space require specific devices
considering cell adaptation and reaction to space environment
(Table 1). For example, endothelial cells form aggregate due
to enhanced collagen and laminin (Kriiger et al, 2019),
pluripotent stem cell-derived cardiomyocytes Ca handling
change in structure-function (Wnorowski et al., 2019) and,
myelin-producing cells induce pathologic deviations in space
flight (Povvsheva and Chelyshev, 2016). Morevover, it has been
demonstrated that proliferating thyroid cells behave as quiescent
cells in the International Space Station after undergoing change
in sphingolipid metabolism (Albi et al., 2010).

Changes of Molecular Mechanisms
Induced by Simulated Microgravity

The effects of microgravity on intracellular molecular
mechanisms are more easily studied with simulated microgravity

than with real microgravity during spaceflights in both animals
and cells (Table 2).

Animals

In simulated microgravity, alterations in the nitric oxide
synthase signaling mechanism is responsible for vasodilation of
cerebral arteries with increase in cerebral vascular resistance and
reductions in cerebral perfusion in mice (Prisby et al., 2006).
Several lines of evidence suggested that, in addition to vascular
remodeling, microgravity induces cardiac remodeling, including
atrophy and dysfunction, that is related to: (1) abnormal
intracellular Ca regulation consequent to the ryanodine receptor
phosphorylation (Respress et al., 2014) that is responsible for
arrythmias; (2) action of calpain on p47 P"** phosphorylation via
ERK1/2 and p38 pathways that induces myocardial abnormalities
(Liang et al., 2020). Interestingly, Ling et al. (2018) reported that
casein kinase-2 interacting protein-1 (CKIP-1) is a suppressor of
cardiac remodeling under microgravity.

Cells

Simulated microgravity can potentiate the effects of H,O, on
ROS production, apoptosis, and DNA damage in mouse
embryonic stem cells (Ran et al., 2016). Moreover, it delays the
rejoining of double-strand breaks and increase the genotoxic
effects induced by ROS after radiation treatment in human
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TABLE 2 | Main experiments conducted in simulated microgravity. In yellow,
in vivo experiments; in green, in vitro experiments.

Simulated microgravity

Heart Arrhythmias (Respress et al., 2014)
Myocardial abnormalities (Liang et al., 2020) casein kinase-2
interacting protein-1 (CKIP-1) as a
Suppressor of cardiac remodeling under microgravity (Ling et al.,
2018)

Bone

Muscle

Brain Change of cerebral perfusion (Prisby et al., 2006).

immune system

Embryonic
stem cells

lymphocytes (Mognato et al., 2009). Also changes of protein
content and function of the mitochondria, ribosomes, and
endoplasmic reticulum of rat neonatal cardiomyocytes have been
reported (Feger et al., 2016). Hatzistergos et al., 2018 described as
impairment of neural crest-derived cardiac cells with consequent
alterations in neurogenesis.

Siamwala et al. (2010) demonstrated that microgravity
modulates endothelial actin rearrangements with releasing nitric
oxide by causing vascular endothelium remodeling. In support,
White et al. (2010) reported that changes in vasoresponsiveness
under microgravity is due to endothelial-dependent nitric
oxide /cGMP pathway.

Interestingly, in  microgravity, rapamycin induces
transcriptional activation of blood-derived stem cells towards
osteogenic differentiation by influencing bone formation
(Gambacurta et al., 2019). Moreover, due to the delay of
microvascular endothelial cell growth and the release of a high
amounts of matrix metalloproteases type 2 and interleukin-6, the
growth of osteoblasts is retarded and their osteogenic activity
is impaired (Cazzaniga et al., 2014). Also miR-494 is correlated
with a decrease in osteogenesis due to a marked reduction in
osteoblast differentiation genes (Qin et al., 2019).

The muscular symptomatology is linked to a remodeling of
the skeletal muscle (Tarasova et al., 2020) linked to an adaptation
of Ca signaling pathways by the regulation of the ryanodine
receptor subtype 1 expression (Dabertrand etal.,2012). This

perturbation can be preventing by treating cells with thapsigargin
that hinders the segregation of calcium ions in the mitochondria
and in the sarco/endoplasmic reticula (Calzia et al., 2020).
Moreover, microgravity was found to deregulate skeletal
muscle stem/progenitor cells pool due to inhibition of the
TRAF6/ERK pathway with consequent Pax7 down-expression
(Hosoyama et al., 2017).

EFFECT OF MICROGRAVITY ON
ENERGY BALANCE

Space Environment

There is accumulating evidence supporting the relevance of
balancing total energy intake and energy expenditure during
space missions (Figure 1). If the food energy intake is
not adequate to the physiological demands, the high energy
expenditure may lead to a negative energy balance (Stein, 2013).
Adequate energy intake is certainly the most important aspect
of astronauts nutrition. During spaceflight history it was not
always possible to reach optimal quantitative standards relating
to the physiological energy demands of crewmembers. Lower
energy inputs compared to the requirements may be attributed
not only to the food availability and palatability, but also to
the individual changes in taste and aroma perception, which
often occur during flight missions. This is possibly caused by
the body fluids redistribution with a significant shift towards
the upper part of the body, causing swelling of the face and
paranasal sinuses.

This may induce molecular changes in sensory cells with
alteration of taste and smell resulting in reduced food cravings.
However, the astronauts’ energy intake abroad the ISS has
been progressively increased over the years, in line with better
food palatability achieved through the improvement of food
preparation and preservation techniques and through significant
reformulations of space food products. These factors, together
with our improved notions on food and nutrition, developed
in parallel with the evolution of space exploration and thanks
to the contribution from numerous crew members, lead us to
the present situation. It is a fact that many astronauts of the
ISS daily assume their correct energy supply, thus managing to
counterbalance, for the most part at least, their loss of body mass
(Smith et al., 2005). Most recently, molecular mechanisms have
been clarified. Changes in gastrointestinal functions have been
also observed during flight due to the redistribution of body fluids
in combination with a reduced fluids and dietary intake suffering.
Consequently, a decrease in the gastrointestinal motility with
manifest altered secretion of gastric acid, of the rhythmic
contractions of the stomach and intestines with impairment of
gastric emptying.

In addition to all of the above, frequently astronauts are
affected by motion sickness. All this negatively interferes with
the health and well-being of the astronauts, mainly during the
first days of the mission, as motion sickness typically disappear
after the first few days, albeit the reduced dietary intake may
extend even beyond the first week (Smith et al., 2005). Often
astronauts have a dietary preference for carbohydrates rather
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FIGURE 1 | Molecular mechanisms of negative energy balance of astronauts in space environment. Microgravity induces a redistribution of body fluids with
consequences on different molecular mechanisms in including intestinal system, sense organs and nerve center of hunger. The consequent negative energy balance
is responsible for the disorders of different systems including muscle and bone leading to loss of body mass.

stress with
altered desire for food

than fats. This phenomenon seems to be due to a physiological
response to stress characterized by an increase in the brain
levels of tryptophan, a precursor of serotonin which may be
classified as an anorexic agent (Da Silva et al., 2002). Clinical
studies and laboratory tests clearly indicate that food intake and
body weight loss in microgravity conditions are regulated by
a complex mechanism of neuroendocrine changes, such as the
levels of leptin, an anorexigenic hormone secreted by the adipose
tissue that increases satiety and reduces food intake (Smith
et al., 2001). Bergouignan et al. (2016) reported an increase
in plasma concentration of Glucagon-like peptide-1 (GLP-1), a
satiety hormone produced by the intestine which slows gastric
emptying by increasing the sense of satiety and reducing the
appetite by acting directly on the central nervous system. In
addition, no variations in the plasma concentration of ghrelin,
an orexigenic hormone produced by the stomach, were found
(Lane et al,, 2013). In overall, these fluctuations in plasma
hormone concentrations influence molecular mechanisms of
hunger regulation in the nervous system cells that contribute to
the reduction of appetite. Consequences related to a long-term
low calorie intake lead to an impairment of the functionality
of body systems above reported. In addiction, a specific
consequence is the impairment of the cognitive functions, which
could significantly compromise the astronaut’s ability to carry
out their work and performance in orbit (Mammarella, 2020).
Malnutrition in the space environment is still under investigation
and discussion. In numerous studies, conflicting results have
already been reported (Lang et al, 2017). Smith et al. (2005)

found an inadequate intake of minerals (calcium, potassium,
and sodium) and of oligo-elements (iron) together with
deficiencies in vitamins K and D. Then, Zwart et al. (2011)
indicated that the vitamin K turnover is unchanged in space.
Considering the defect of microbioma in space environment
above reported,its involvement in nutrient deficiency might be
relevant in space biomedicine.

Simulated Microgravity

Most recently, molecular mechanisms have been clarified. In
microgravity condition, the intestinal mucosal cells are destroyed
due to up-regulation of pro-apoptotic protein Bax and down-
regulation of anti-apoptotic protein Bcl2 (Jin et al, 2018).
Intestinal barrier dysfunction is also mediated by myosin light
chain kinase (Wang S. et al, 2020). Atiakshin et al. (2019)
reported a change of fibrous structure of extracellular matrix of
the connective tissue of the digestive system organs. Moreover,
weightlessness influences the intestinal metabolomic profile
and, a strong relation between dysbiosis and altered glucose
metabolism-related genes in the hind limb-unloading mouse
model was described (Jin et al., 2019; Wang et al., 2019).

Nutrients to Counteract Spaceflight

Damages

Obviously, specific nutrients are useful to counteract damages
induced by microgravity as discussed above (oxidative stress,
cardiovascular system, bone, muscle, etc.). To at least contain
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the increase in oxidative stress severity during space missions,
it would be important to increase the dietary intake of many
food antioxidants, in particular vitamins and minerals, such as
vitamin E, vitamin A, vitamin C, omega-3 fatty acids, copper,
zinc, manganese, selenium and iron (Sacheck and Blumberg,
2001). The combination of dietary defenses and endogenous
antioxidants production, seems to play a significant protective
role against oxidative damages (Gao and Chilibeck, 2020).
Protection from cardiovascular problems may be obtained with
low-glycemic index diets because bed rest reportedly induces
glucose intolerance (Wang X. P. et al., 2020). As regards to
bone damages, particular attention was paid to vitamin D3.
As this particular vitamin cannot be endogenously synthesized
due to lack of UV exposure, the decrease in vitamin D3
serum concentration is a serious concern for space exploration
missions, particularly long-term. However, it has been reported
that dietary intake of vitamin D3 in the form of supplements
is not the answer to microgravity-mediated bone density loss
since, if administered in large doses, vitamin D3 may induce
hypercalcemia, kidney stones, and irreversible calcification of soft
tissues (Vieth, 1999). It has been extensively demonstrated that
microgravity impacts the proteome in humans with consequent
changes in various biological processes such as angiogenesis,
apoptosis, cell adhesion, migration, proliferation, stress response,
and signal transduction (Strauch et al, 2019). In thyroid
cells, microgravity changes the expression and localization of
the specific protein Galectin-3 (Albi et al., 2014b) and also
induces the overexpression of enzymes such as sphingomyelinase
and sphingomyelin-synthase and of the thyroid stimulating
hormone receptor (Albi et al, 2012), the opposite to what
happens in hypergravity (Albi et al., 2014a) and different from
changes induced by radiation exposure (Albi et al., 2009). In
overall, significant protein remodeling is induced specifically
by microgravity.

DISCUSSION

Exposure to space environment is not without risk, both
during and after the actual exposure. Since the first missions
accomplished the last century many and considerable advances
have been made both in the medical and nutritional fields, as well
as in technological research. Thus, the study of the relationship
between damage induced by the spatial environment in the
cardio-circulatory, bone and muscular system together to the
stress condition due to the confinement and the alteration of the
energy balance due to alterations of the gastrointestinal system,
alteration of the sense organs and nutritional deficits represents
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