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Establishing an appropriate disease model that mimics the complexities of human
cardiovascular disease is critical for evaluating the clinical efficacy and translation
success. The multifaceted and complex nature of human ischemic heart disease
is difficult to recapitulate in animal models. This difficulty is often compounded
by the methodological biases introduced in animal studies. Considerable variations
across animal species, modifications made in surgical procedures, and inadequate
randomization, sample size calculation, blinding, and heterogeneity of animal models
used often produce preclinical cardiovascular research that looks promising but
is irreproducible and not translatable. Moreover, many published papers are not
transparent enough for other investigators to verify the feasibility of the studies and the
therapeutics’ efficacy. Unfortunately, successful translation of these innovative therapies
in such a closed and biased research is difficult. This review discusses some challenges
in current preclinical myocardial infarction research, focusing on the following three
major inhibitors for its successful translation: Inappropriate disease model, frequent
modifications to surgical procedures, and insufficient reporting transparency.

Keywords: myocardial infarction, heart failure, large animal models, large animal surgery, preclinical, translational
research, review

INTRODUCTION

Cardiovascular diseases (CVDs) are devastating health problems worldwide; they accounted for
18.6 million deaths globally in 2019, which amounted to an increase of 17.1% since 2010 (Virani
et al., 2021). Myocardial ischemia is the most prevalent cause of death within the spectrum
of cardiovascular illnesses. Myocardial ischemia occurs when blood flow to the myocardium
is obstructed by a partial or complete blockage of the coronary artery due to plaque buildup
(atherosclerosis). Coronary artery narrowing and plaque rupture causes insufficient oxygen delivery
to the myocardium, causing myocardial infarction (MI). The American Heart Association estimates
that a new MI case is diagnosed every 40 s in the United States (Virani et al., 2021). Over the past
several decades, the pathophysiological mechanisms driving these cardiovascular complications
have extensively been studied in animal models, resulting in the development of numerous
interventional and pharmacological treatments (Nicolini and Gherli, 2009).
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Various therapeutic strategies have been proposed to mitigate
the risk of myocardial infarction with cardioprotective effects in
preclinical studies, but only a few have shown positive clinical
study results (Bolli et al., 2004; Kloner, 2013). Ischemic remote,
pre-, per-, or post-conditioning (i.e., a series of alternating
intervals of brief ischemia and reperfusion) and pharmacological
manipulation have been extensively studied over the last
30 years to treat acute myocardial infarction with many positive
conclusions and discoveries of many pharmacological targets in
preclinical settings (Heusch, 2015). However, most of the clinical
outcomes remain mixed or statistically underpowered (Heusch,
2013; Kloner, 2013; Hausenloy and Yellon, 2016; Giustino and
Dangas, 2017). For example, reperfusion therapy, often coupled
with the administration of adjunctive therapies, has shown
to reduce infarct size in animal models of acute myocardial
infarction (AMI) and improve left ventricular function; however,
it has failed to show similar effects in human AMI patients,
potentially due to significant discrepancies between different
preclinical animal models and clinical situations (Cannon, 2005;
Dirksen et al., 2007; Miura and Miki, 2008; Trankle et al., 2016).

Several cardiac repair strategies have been recently developed
with promising preclinical results but also with little translational
success. One strategy is the direct injection of cells or
biomimetic scaffolds made of polymers with cells, growth factors,
or cytokines (Ungerleider and Christman, 2014). However,
the grafted cells directly injected through a needle into the
myocardium easily aggregate and undergo necrosis, and they are
poorly localized on the myocardium of interest, thus limiting the
efficacy of the therapy (Menasché, 2018). The tissue engineering
using biomaterial scaffolds is limited due to their questionable
immuno- or bio-compatibility and bio-functionality (Christman
and Lee, 2006; Guo et al., 2020). As an alternative, scaffold-
free stem cell sheet treatment has been developed with increased
cell engraftment and survival on the host myocardium and
promising therapeutic effects in animal studies (Shudo et al.,
2011, 2013, 2014), but there are not yet many clinical studies to
date (Miyagawa et al., 2017).

Despite the disagreement over the optimal cell type,
cell counts, cell delivery methods, and unknown therapeutic
mechanisms, stem cell therapies seem to demonstrate some
degree of therapeutic improvements in terms of reduced ischemic
injury size or improved left ventricular function in MI animal
models in preclinical studies (Laflamme et al., 2007; Wang et al.,
2009; Wolf et al., 2009; Shudo et al., 2011; Lu et al., 2012; Okura
et al., 2012; Li et al., 2013; Chong et al., 2014; Zhao et al., 2014;
Alestalo et al., 2015; Haller et al., 2015; Suzuki et al., 2016; Kim
et al., 2017; Sharp et al., 2017; Lim et al., 2018; Crisostomo et al.,
2019; Ishida et al., 2019; Romagnuolo et al., 2019; Sun et al., 2020).
Nevertheless, the promising results of many preclinical studies on
cell therapies have not been successfully replicated in randomized
clinical trials (Janssens et al., 2006; Lunde et al., 2006; Penicka
et al., 2007; Makkar et al., 2012; Perin et al., 2012; Gao et al.,
2013; Quyyumi et al., 2017; Wollert et al., 2017). According to the
review of articles on PubMed (preclinical) and ClinicalTrials.Gov
(clinical research), no regenerative medicine was commercialized
between 2008 and 2014, and only about 50 cell therapies and eight
gene therapies moved onto the clinical phase, although there had

been approximately 800 preclinical studies per year (Ungerleider
and Christman, 2014). The frequent failure to translate the
cardio-protective and regenerative therapeutics from the bench
to the bedside has been attributed to the large gap between
animal models and humans and inadequate preclinical study
design (Bolli et al., 2004; Kloner and Rezkalla, 2004; Downey
and Cohen, 2009; Hausenloy et al., 2010; Ludman et al., 2010;
Heusch, 2017). There is a growing concern over the safety and
efficacy of regenerative therapeutics, which many researchers
have determined to be due to low internal and external validities
in preclinical animal research (Ioannidis, 2005, 2016; Bracken,
2009; van der Worp et al., 2010; Hooijmans and Ritskes-Hoitinga,
2013; Steele et al., 2017; Pound and Ritskes-Hoitinga, 2018;
Voelkl et al., 2018; Lüscher, 2019; Ferreira et al., 2020). This
review addresses the issues prevalent in preclinical MI research,
which hinder the successful therapeutic translation of promising
treatment strategies. The review proceeds by discussing (1) the
obstacles in building a representative animal model for MI
studies, (2) factors limiting the scientific rigor in the MI study
design, and (3) suggestions for improving the relevance of
preclinical MI studies.

REVIEW

Suitability of Animal Models for Human
MI
A major hurdle in clinical translation from bench to bedside for
MI therapies is the difficulty in creating a representative disease
model. Modeling MI induced heart failure (HF) that resembles
human cardiac conditions is challenging because human MI
develops as a result of the interplay of many causes over time
and is often complicated by comorbidity and polypharmacy
(Pound and Ritskes-Hoitinga, 2018). A wide range of comorbid
health conditions, such as epilepsy, smoking, alcoholism, cancer,
diabetes, and rheumatoid arthritis, are known to remarkably
affect MI fatality (Quintana et al., 2018). The incidence of HF
caused by MI is often age- and gender-biased, with higher rates in
men than women and in the elderly than young adults (Savarese
and Lund, 2017; Virani et al., 2021). Specific racial and ethnic
populations, especially minority groups, are at a considerable
risk of developing MI, which may lead to death (Graham, 2015,
2016; Virani et al., 2021). However, many animal studies have
failed to reflect the heterogeneity observed in the patients with
MI. The animal models currently used in the laboratory settings
tend to be relatively homogeneous, young, and healthy, with no
genetic predisposition or underlying medical conditions (van der
Worp et al., 2010; Pound and Ritskes-Hoitinga, 2018). Many
preclinical studies induce MI through direct ligation of coronary
artery, which does not represent the natural pathophysiology of
atherosclerosis that develops over life time in humans (Getz and
Reardon, 2012; Gao et al., 2016; Lee et al., 2017). Different species
are used to recapitulate the pathogenesis of MI with its own
advantages and disadvantages. Small animal models (rodents)
are widely used in MI studies for their practical benefits, such
as small body size, easy pre-/post-care, low maintenance cost,
shorter generation time, and well-defined genetics. However,
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small animals have limitations in that their anatomy and cardiac
kinetics are fundamentally different from those of humans. For
example, rodent hearts function at very high heart rates (HRs),
with their resting HR being more than five times higher than
in humans. Their small body and organ sizes and short lifespan
require expression of different genes related to action potential
properties and contractile kinetics in ventricular cardiomyocytes
(CMs) (Locher et al., 2009; Milani-Nejad and Janssen, 2014).
For example, their ventricular CMs predominately express fast
α-myosin heavy chain (MHC) (>94–100%), whereas human LV
cardiomyocytes (CMs) predominately expresses slow β-MHC
(>90–95%), thus resulting in differential cardiac contractile
and kinetic responses to cardiac dysfunction (Milani-Nejad and
Janssen, 2014). These differences in cardiac parameters may lead
to different results of cell therapy experiments across different
animal models. For example, Laflamme et al. (2007) observed
frequent arrhythmias in non-human primates and pigs following
transplantation of embryonic stem cell-derived cardiomyocytes,
but not in rats, possibly because rats’ high heart rate could mask
arrhythmias (Chong et al., 2014; Romagnuolo et al., 2019).

Small animals’ body and organ sizes make it even more
challenging to mimic the natural pathophysiology of human
atherosclerosis and thus MI. The gradual occlusion of the
coronary artery can be established in animal models by
using interventional operation using various materials, such as
Ameroid Constrictors (Shudo et al., 2011; Potz et al., 2018;
Ishida et al., 2019). However, small animals’ heart is too small
to correctly identify each vasculature, which is tricky to occlude
using these materials. The most feasible way to induce MI in small
animals is the permanent ligation of the coronary artery using
a suture loop, but the etiology is different from that naturally
occurring MI in humans in this case. Even though there have
been attempts to model atherosclerosis in transgenic or high fat-
fed rodents, rodents rarely develop atherosclerosis in coronary
arteries but readily in the aortic root probably due to their
rapid heart rate and blood flow and often in the absence of
complications seen in human MI patients such as thrombosis
(Getz and Reardon, 2012; Gao et al., 2016; Lee et al., 2017).

Besides, small animals’ cardiac anatomy and physiology make
it challenging to visualize and quantify the spatial distribution of
blood flow and assess microvascular histomorphology following
MI (Krueger et al., 2013; Liu et al., 2020). To overcome these
technical difficulties, some new imaging technologies have been
developed to improve spatial resolution, such as the Imaging
Cryomicrotome (Krueger et al., 2013), micro-PET/CT hybrid
systems (Gargiulo et al., 2012), and magnetic resonance (MR)
tagging (Epstein et al., 2002; Thomas et al., 2004). Researchers
must consider these fundamental differences in anatomy and
cardiac kinetics across species when interpreting the animal
study results as they give rise to different phenotypes between
humans with genetic predispositions and transgenic animal
models that recapitulate the diseases (Riehle and Bauersachs,
2019). Consideration of available options for post-operative
evaluation must be made when choosing an animal model
as well. Large animals, such as swine and sheep, which are
anatomically and physiologically closer to the humans, are used
to minimize these phenotypic differences between humans and

animal models. In MI research, it is essential to correctly identify
the perfusion and coronary collateral circulation systems in the
animal of choice, as the variations in these structures across
animals can significantly affect the early and progressive response
to ischemia (Harken et al., 1981; Hill and Iaizzo, 2009). In this
regard, swine and ovine models are preferred to smaller animals,
such as rodents and canines, as their coronary arterial structure
and scant collateral arteries resemble those of humans, which
allows for the creation of predictable infarct size at a preferred
location in the myocardium (Dixon and Spinale, 2009; Nguyen
and Wu, 2015). Moreover, swine, sheep, and human myocardia
share high degrees of similarities in cardiac kinetics (Milani-
Nejad and Janssen, 2014) and healing characteristics following
injury (Lelovas et al., 2014). A domestic sheep is ideal in size for
clinical imaging modalities (such as MRI and CT) and medical
devices (such as pacemakers and stents) designed for the humans
(Ribitsch et al., 2020).

However, there are several disadvantages of using large animal
models, which can eventually limit the reproducibility of the
research. Some of the factors that discourage their use in research
are the high cost required for performing the experiments,
housing/maintenance and care, and lower acceptance as model
animals by society (Freedman et al., 2015; Camacho et al.,
2016; Spannbauer et al., 2019). The public’s growing concern
about the welfare of research animals, especially companion
animals such as dogs and cats, has led to more stringent laws,
policies, and guidelines, limiting their prevalent use in research
(National Research Council (Us) Committee on Scientific and
Humane Issues in the Use of Random Source Dogs and
Cats in Research, 2009). Additionally, swine, especially the
Yorkshire pigs, dramatically gain weight in adulthood, which
complicates long-term follow-up and makes it an unsuitable
model for chronic IHF studies (Schuleri et al., 2008; Tohyama and
Kobayashi, 2019). Anesthetized swine of MI models often display
high mortality rates due to fatal arrhythmia, such as ventricular
fibrillation, during or shortly after the coronary artery occlusion
or ischemia (Halkos et al., 2008; Lim et al., 2018), which may
introduce sample size bias and confound experimental results.
Table 1 shows a comparative analysis of different animal models
commonly used in MI studies.

No single animal model can sufficiently answer every question
raised in the field of cardiovascular research. Different species
as animal models for MI studies may vary in size, anatomical
structure, and genetic and phenotypic expression, and have their
own advantages and disadvantages. Because of the heterogeneity
and multimorbidity observed in patients with MI, animal
models in the preclinical studies are considered by some as too
remote to be applicable in translational efforts. Some researchers
emphasize the use of human-based research methods, such
as the use of human-induced pluripotent stem cells (iPSCs),
cardiac organoids, and cardiovascular “organs-on-chips” (Ribas
et al., 2016; Pound and Ritskes-Hoitinga, 2018; Richards et al.,
2020). However, it is undeniable that there is no adequate
substitute for animal models that allow us to systematically
examine how the entire body systems respond to a disease. The
ideal approach to preclinical studies would be to use multiple,
complementary animal models, and human-based models to
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TABLE 1 | Comparison of central cardiovascular systems in small and large animals used in MI study.

Animal *Body weight (kg) *HR (rpm)
*BP (mmHg)

**Coronary
anatomy

**Collaterals ***Advantages/
Similarities
to human

***Disadvantages/
Dissimilarities to
human

Mouse/Rat
(Rodents)

Mouse:
0.02–0.063

Rat:
0.225–0.52

Mouse:
• HR: 310–840
• SBP:113–160
• DBP: 81–11
Rat:
• RHR: 250–493
• SBP: 84–184
• DBP: 58–145

• Distinct septal
coronary artery
coursing along the
right interventricular
septum and a left
coronary artery

→ Result in different
regionality of
infarction compared
with human and
large animals

• Have collateral
arteries

→ Vessel occlusion
does not cause a
complete cessation
of circulation
• Mice – Collateral

extent varies widely
within the species
primarily due to
variation at a single
genetic locus

• Transgenic models
readily available
(e.g.,
atherosclerosis
model)
• Express proteins

with similar
functions and roles
as those in humans
• Lower cost for

maintenance
• Similar

electrophysiological
characteristics and
calcium transport

• Most remote from
human contractile
function due to
small size and short
lifespan
• Visualization and

histological
assessment are
difficult due to the
small coronary
arteries
• Hearts function at

very high HRs
• Ventricular CMs

predominately
express fast
α-MHC
(>94–100%)

Rabbit 1–6 • HR: 130–300
• SBP: 90–130
• DBP: 60–90

• Left dominance
• The LCx is larger

and supplies a
much greater
portion of the
myocardium than
does LAD

• Have little innate
coronary collateral
flow

• Less expensive
than other large
animal models
• Transgenic models

available
• Similar

electrophysiological
characteristics and
calcium transport

• Their kinetics of
cardiac contraction
and relaxation are
still very faster than
those of humans
• Different and

inconsistent
coronary artery
systems
• Not always

considered as large
animal
• Less reported

studies than other
species
• No tricuspid valve

Dog (Canine) 7–16 • HR: 70–160
• SBP: 95–136
• DBP: 43–66

• Left dominance • Variable and
extensive
preexisting
collateral epicardial
circulation which
can supply as
much as 40% of
the blood flow after
the occlusion of a
coronary artery

• Similar
electrophysiological
characteristics and
calcium transport
• Similar excitation-

contraction
coupling processes
• Similar ventricular

activation sequence

• Difficult to obtain
the necessary
approval for using
canines as an
animal model
• Extensive collateral

circulation in
myocardium

→ Cannot create
consistent degrees
of MI

→ Different ischemic
patterns than other
large mammalians

→ Delivers blood flow
preferentially to the
epicardial tissue,
thus at the greater
vulnerability of the
endocardium to
necrosis and the
phenomenon of the
“wave front of cell
death”

(Continued)
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TABLE 1 | Continued

Animal *Body weight (kg) *HR (rpm)
*BP (mmHg)

**Coronary anatomy **Collaterals ***Advantages/
Similarities
to human

***Disadvantages/
Dissimilarities to
human

Sheep
(ovine)

20–160 • HR: 60–120
• SBP: ∼90–115
• DBP: ∼100

• Left dominance • Have little innate
coronary collateral
flow

• Scant collateral arteries,
allowing to produce a
predictable infarct size

• Costly experiment
and maintenance
• High risk of

arrhythmia,
including fibrillation,
with little
provocation
• Dissimilar coronary

anatomy
• Difficult to perform

non-invasive due to
thoracic and
gastrointestinal
anatomy
• High risk of

arrhythmia,
including fibrillation
• High risk of

infection

Pig
(swine/Porcine)

200–300 • HR: 50–116
• SBP: 135–150
• DBP: –

• Right dominance
• Like human, left

coronary artery larger in
diameter, and longer
than the right coronary
artery

• Scant innate
collateral arteries,
primarily localized
to the mid
myocardium and
subendocardium
(little collateral
blood flow)

• Myocardial
excitation-contraction
coupling
• In vivo contractile and

relaxation kinetics
• Similar coronary anatomy

and gross anatomical
structure to humans
• Similar cardiac output to

humans
• Scant collateral arteries,

allowing to produce a
predictable infarct size
• Resistant to infections and

relatively rapid healing after
surgery

• Costly experiment
and maintenance
• High risk of

arrhythmia,
including fibrillation,
with little
provocation
• Different ventricular

activation sequence
is different due to
different distribution
of Purkinje fibers
• Heart-to-body ratio

decreases with
aging

→ Gain weight
dramatically in their
adulthood, thus not
suitable for
long-term study
• Brief diastole

makes them prone
to coronary
insufficiency and
increase sensitivity
and decrease
specificity the
effects of drugs or
treatment

Miniature
Pig (mini
swine)

32–68 • HR: ∼ 56
• SBP: 122 ± 16
• DBP: 88 ± 10

• Right dominance
• The posterior

descending artery arise
from right coronary
artery

• Have little coronary
collateral flow

• Similar heart-to-body
weight ratio
• Similar coronary artery

distribution
• Cardiac anatomy,

metabolism,
electrophysiology –
comparable to man
• Relatively smaller body size

than large pig, even at full
sexual maturity

→ Offer experimental control
and reproducibility due to
manageable size

• Similar to large pig
(above)

(Continued)
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TABLE 1 | Continued

Animal *Body weight (kg) *HR (rpm)
*BP (mmHg)

**Coronary anatomy **Collaterals ***Advantages/
Similarities
to human

***Disadvantages/
Dissimilarities to
human

Human 50–86 • HR: 60–100
• SBP: 115–135
• DBP: 60–80

• Right dominance
• Left coronary artery

larger in diameter and
longer than the right
coronary artery

• Minimal preexisting
collaterals

*Cardiovascular parameters (Body weight, HR, and BP) are retrieved from Stubhan et al. (2008); Bode et al. (2010), Gandolfi et al. (2011); Milani-Nejad and Janssen
(2014).
**The characteristics of coronary and collateral artery anatomy are adapted from Blair (1961); Spadaro et al. (1980), Weaver et al. (1986); Maxwell et al. (1987), Kamimura
et al. (1996); Podesser et al. (1997), Hearse (2000); Kumar et al. (2005), Dixon and Spinale (2009); Lelovas et al. (2014).
***Other characteristics are adapted from Harken et al. (1981); Khan (1984), Hearse (2000); Nunoya et al. (2007), Dixon and Spinale (2009); Milani-Nejad and Janssen
(2014), Morrissey et al. (2017); Stricker-Krongrad et al. (2017), Tang et al. (2018).
SBP, systolic blood pressure; DBP, diastolic blood pressure; LCx, left circumflex coronary artery; LAD, left anterior descending coronary artery; CM, cardiomyocyte.

utilize the advantages of strengths of each model and take
preventive measures to minimize bias in the experimental design
and data interpretation.

Seeing What We Want to See: Biased
Experiments in Animal Studies
Decelerate Reliable Clinical Translations
in MI Studies
A rapid technological advancement has dramatically improved
our understanding of human heart diseases and therapeutic
development; however, the translation of these findings has not
been keeping up with this trend (Ioannidis, 2005, 2016). This
review argues that two primary sources of this slow translation
are: (1) the lack of transparency in experimental design and
data assessment and (2) excessive variation in the protocols
for animal surgeries; both of these factors may have resulted
from the inherent technical difficulties in dealing with large
animal models. Compared to small animals, a higher degree of
financial, husbandry, and technical obstacles exist in large animal
studies, which often limit the study scale and lead to self-justified
modifications in the surgical protocols along with lack of internal
validity. Studies involving large animal models are expensive and
technically demanding as they require advanced surgical and
anesthetic techniques and materials. However, most published
papers do not report the precise and detailed protocols or
visual representations needed for other researchers to reproduce
the same animal model or verify the surgical procedure and
experimental results. The difficulty in finding a verifiable open
reference leads to poor experimental designs and varied animal
survival rates; this introduces sampling bias, which is especially
detrimental for small-scale studies involving large animal models.

Another source of bias is the flexibility in surgical procedures
for creating MI in animals. For example, the most common
method to induce acute MI is the permanent or catheter-
assisted temporary coronary artery occlusion with the left
anterior descending coronary artery (LAD) as the primary target
vasculature. The mortality rate from LAD occlusion is relatively
high, especially for large animals, as they are at a considerable
risk of developing ventricular fibrillation following MI (de Jong
et al., 2014; Mu et al., 2016; Lim et al., 2018). To avoid this

occurrence, the left circumflex artery (LCx) is often used as an
alternative target at the cost of inducing a smaller infarct at
a different location (Hirano et al., 2017; Cremer et al., 2019).
The substantial inconsistency in the occlusion site along these
two coronary arteries further complicates the MI studies. Some
segments of the LAD and LCx commonly targeted for occlusion
are as follows and can be found in Figure 1:

• The LAD “distal to” the 1st diagonal branch (Kraitchman
et al., 2003; Okura et al., 2012; Li et al., 2013; Sharp et al.,
2017).
• The “Mid”-LAD “just beyond” the 1st diagonal branch

(Lim et al., 2018).
• The “Mid-left” LAD “distal to” the 1st diagonal branch

(de Jong et al., 2014).
• The LAD “beyond” the 1st diagonal branch

(Wolf et al., 2009).
• The LAD “distal to” the 2nd diagonal branch (Rabbani

et al., 2008; Wang et al., 2009; Mu et al., 2016; Rabbani et al.,
2017).
• The “proximal” LCx (Timmers et al., 2011; Wang B. et al.,

2017).
• The 1st “marginal” branch of the LCx

(Gálvez-Montón et al., 2014).

Several other studies have not specified the exact location of
occluded segments of the LAD (Wolf et al., 2009; Crisostomo
et al., 2019) or LCx (van der Velden et al., 2004; Charles
et al., 2020). Without appropriate visual representation, this
inconsistent and vague language, such as “beyond” and “mid,”
leaves room for arbitrary interpretation and changes in the
surgical procedures, potentially leading to varied experimental
outcomes. One study determined the site(s) and number of
ligatures based on the visual inspection of the LAD and LCx
branches in each ovine, in order to produce a consistent
anterolateral infarct size across different animals (Locatelli et al.,
2011) while many studies have not reported the infarct size
(Kraitchman et al., 2003; Zhao et al., 2014; Alestalo et al.,
2015; Haller et al., 2015; Kim et al., 2017; Lim et al., 2018;
Ishida et al., 2019).
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FIGURE 1 | Anatomy of coronary arteries of the heart (A) Left and right coronary trees; (B) Different occlusion targets (indicated in different colors) on the left
coronary artery.

Additionally, different surgical procedures for inducing
MI often create various degrees of ischemia via different
pathogenic mechanisms thus generating different MI models
(Table 2). For example, catheter-based occlusion is often
used as a non-invasive way to induce MI, but there is
a significant variation in the occlusion sites and durations
followed by reperfusion across different studies (Table 3).
Some studies using pig models have demonstrated that
the longer occlusion duration resulted in bigger infarct
sizes and more severe left ventricular dysfunction (Garcia-
Dorado et al., 1987; Ghugre et al., 2013; Thomas et al.,
2021). However, besides the occlusion site and duration, this
inconsistent infarct size and ventricular remodeling were likely
to be affected by the subsequent reperfusion. Myocardial
reperfusion using thrombolytic therapy or primary percutaneous
coronary intervention is a treatment option for human
MI patients. However, it is known that the reperfusion of
myocytes irreversibly injured by ischemia following coronary
occlusion may accelerate the necrotic process, a phenomenon
called “myocardial ischemia-reperfusion injury.” This could
consequently affect the infarct size and lead to adverse
cardiac remodeling (Braunwald and Kloner, 1985; Yellon and
Hausenloy, 2007; Hausenloy and Yellon, 2013; Acharya, 2020).
All these situational specifics of a surgical procedure as part
of MI preclinical study design (for example, method, site,
and duration of coronary artery occlusion, and presence
and duration of reperfusion following occlusion) potentially
limit the generalizability and reproducibility of scientific
results and likely contribute to the failure of subsequent
clinical trials.

Potential of Human-Based Models as an
Alternative for Animal Models?
Whether small or large, animal models cannot fully recapitulate
human CVD phenotypes, thus requiring new forms of human-
based experimentation. The tissue engineering community has
been developing in vitro and in silico CVD models for more
physiologically and clinically relevant readouts of CVDs (Savoji
et al., 2019). Human organs-on-chips are 3D microfluidic
cell culture devices that mimic the physical and mechanical
microenvironment of key organ systems and provide dynamic
vascular perfusion in vitro, which is difficult to achieve in 2D
cell culture (Ingber, 2018). This burgeoning biomimetic system
can incorporate patient-specific cell models, allowing the study of
pathophysiology and pharmacological responses unique to each
patient (Ingber, 2020; Wu et al., 2020).

However, an organ-on-a-chip is still limited in that although it
can capture distinct functional units of organ systems separately
(e.g., heart vs. liver), it cannot link each unit via vascular
channels (e.g., the hepatic portal system). “Multi” organ-on-
a-chip device may allow combining several cellular models
in a single chip; however, certain technical difficulties, such
as selecting a co-culture medium required for incorporating
multiple cell lineages and ensuring the correct sizing of
each organ, need to be resolved (Bovard and Sandoz, 2020).
However, this innovative in vitro model is still distant from a
complete replacement of animal studies because they cannot
mimic the complex nervous and immune systems of humans.
Thus, investigators, particularly those concerned with cognition,
behavior, immune responses, and pain management, still require
animal studies to systematically monitor disease progression
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TABLE 2 | Comparison of surgical procedures used to induce MI in large animal models.

MI induction methods Open-chest (or
surgical-based)
vs. Close-chest
(or catheter
based)

Advantages Disadvantages Studies

Coronary artery ligation Open-chest • Provides precise timing,
location and extent of the
coronary event due to direct
visualization and observation of
the procedure and targeted
area of infarct

• Invasive procedure
– Increased mortality and

complications
– Affects the whole balance of bodily

function and modifies local and
systemic immunological and
inflammatory responses
• The site of ligation of the vessel

varies (proximal, mid, or distal) in
studies, resulting in various degree
of ischemic injury and mortality rate
• The LAD occlusion often causes

ventricular fibrillation and sudden
death, especially in pigs (Muller
et al., 1988)

LAD ligation
(Krause et al., 2007; Wolf et al.,
2009; Chen et al., 2014; de Jong
et al., 2014; Zhao et al., 2014;
Haller et al., 2015; Lim et al., 2018)
LCx ligation
(van der Velden et al., 2004;
Timmers et al., 2011;
Gálvez-Montón et al., 2014; Wang
L. et al., 2017; Charles et al., 2020)

Ameroid constrictor or
hydraulic occluder

Open-chest or
close-chest

• Gradual occlusion mimics
chronic MI and enables the
development of the collateral
arterial supply

• May require invasive procedure Sjaastad et al., 2000; Shudo et al.,
2011; Potz et al., 2018; Ishida
et al., 2019

Cryoinjury Open-chest • Freezing-induced scar has
similar cellular patterns of
coagulation necrosis of MI – a
suitable model used to
demonstrate myocardial repair,
heart regeneration and cellular
remodeling using cellular
therapies

• Invasive procedure
• The pathophysiology of freezing

induced MI is different from other
methods because acute cell death
occurs following the cryoinjury
without concomitant ischemia
• Several applications are necessary

for large animal hearts and also due
to rapid defrosting of cryoprobe,
which makes it difficult to control
the size of infarction
• Difficult to induce transmural

infarction
• Less tested in large animals

Yang et al., 2010, 2012; Hirano
et al., 2017

Percutaneous intracoronary
embolization using various
insertion materials, followed
by reperfusion

Close-chest • Minimally invasive
• Resembles human course of

atherosclerotic disease
superimposed by thrombus
formation during MI event
• Various embolic agents
– Sponge foam/sponge

microspheres, coils,
polystyrene microspheres,
alcohol injection, balloon
catheter
• Clinically relevant as myocardial

reperfusion is performed in
human MI by fibrinolytic therapy
or Percutaneous Coronary
Intervention (PCI)
• Timely reperfusion of the

coronary artery after MI helps
salvage the viable myocardium,
limit infarct size, preserve LV
systolic function and prevent
the onset of heart failure

• Requires anticoagulant therapy to
prevent blood clot formation during
instrumentation
• Require anti-arrhythmic protocol to

prevent arrhythmia and ventricular
fibrillation
• Difficult to control the exact

location, length and duration of the
coronary artery occlusion and the
overall volume of myocardial
necrosis (Camacho et al., 2016)
• Requires advanced technical skills

and highly trained personnel to
manipulate the catheter for
deployment of the material for
embolization
• Inconsistent occlusion duration

across studies
• Reperfusion of an ischemic area

often results in myocardial cell
necrosis (or called reperfusion
injury)
• Just like coronary artery ligation,

mortality rate can vary depending
on the embolization sites (higher
mortality at the proximal site)

Sponge foam/sponge
microspheres
(Dariolli et al., 2014; Sun et al.,
2020)
Coils
(Watanabe et al., 1998; Li et al.,
2000; Makkar et al., 2005; Dib
et al., 2006)
Polystyrene microspheres
(Hanes et al., 2015; Suzuki et al.,
2016)
Ethyl alcohol injection
(Joudinaud et al., 2005; Rienzo
et al., 2020)
Balloon catheter
(Kraitchman et al., 2003; Price
et al., 2006; Wang et al., 2009; Lu
et al., 2012; Okura et al., 2012; Li
et al., 2013; de Jong et al., 2014;
Mu et al., 2016)

(Continued)
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TABLE 2 | Continued

MI induction methods Open-chest (or
surgical-based)
vs. Close-chest
(or catheter
based)

Advantages Disadvantages Studies

Chemical reagent e.g.,
isoproterenol

Closed-chest
Subcutaneously
intraperitoneally,
intravenously

• Non-invasive – can be injected
subcutaneously
intraperitoneally, or
intravenously
• Low mortality rate

• Indirect method – unable to
visualize the effects on the targeted
area during the procedure
• Different methods of administration

affect the drug metabolism and its
conversion into inactive metabolites
• Less tested in large animals

Kim et al., 2014; Lim et al., 2014

Comparison is adapted from Halim et al. (2018).

and develop corresponding therapeutic interventions. Animal
studies have been misinterpreted as poor predictors of clinical
study outcomes. This may be true merely because animals
and humans are inherently different, and the human body
and pathogenesis of CVDs and other diseases are far too
complicated to be replicated in other models. However, this
inherent difficulty should not be used as an excuse to adopt
a less rigorous but more convenient experimental design
and data interpretation. Although new technological advances
will allow us to adopt more disease-representative models,
the clinical study outcomes will still largely depend on
scientific rigor.

DISCUSSION

Despite increasing knowledge about the etiologies of MI and
relevant therapeutic strategies, the translational gap between
basic science and clinical research is widening. Lack of
experimental rigor and quality in preclinical research has been
accused as the main cause of slow translation of “promising”
preclinical results, and various issues regarding reproducibility
have been raised across different biomedical and social science
fields (Pound et al., 2004; Begley and Ioannidis, 2015).

In section “Suitability of Animal Models for Human MI,” we
discussed the importance of choosing a representative animal
model in preclinical studies and considering the differences
between different animal species and humans when interpreting
experimental data. Some researchers believe that the limited
opportunities to carry out studies based on large animal models
prevent them from testing their hypothesis more rigorously and
openly, justifying adjustments in an experimental design and
biased interpretations of study outcomes. Yet, the discordance
between animal-based preclinical and human-based clinical
studies is often attributed for the failures of clinical trials for
cardiovascular and other disease therapies (Pound et al., 2004;
Perel et al., 2007). Some human-based preclinical models have
been proposed as a complementary platform to overcome the
limitations of using an animal model. However, they will not
replace animal models entirely soon as discussed in section
“Potential of Human-Based Models as an Alternative for Animal
Models?” The difficulty of establishing the optimal animal model
prompts a periodic systematic review or meta-analysis of animal

studies (Sandercock and Roberts, 2002; Pound et al., 2004;
Hooijmans and Ritskes-Hoitinga, 2013). However, a systematic
review of studies with poor methodological quality is likely
to produce additional animal studies of similarly poor quality.
Instead, the preclinical, animal study quality must be scrutinized
at the original study design process and journals’ review process
at the time of submission.

In section “Seeing What We Want to See: Biased Experiments
in Animal Studies Decelerate Reliable Clinical Translations in
MI Studies,” we reviewed how the lack of standardized protocols
and transparency in preclinical MI studies involving animal
experiments could allow investigators too much flexibility in
their study design and data assessment, depriving “promising”
preclinical research results reproducibility and translational
power. Investigators often adopt a disease model that is remote
from what they intend to model and tend to report the
desired results that are harmonious with their hypothesis alone
(Baker, 2016). A standardized experimental method is critical for
ensuring reproducibility, but the lack of overall methodological
rigor in preclinical cardiovascular studies is prevalent, delaying
the translational process; this issue has called for a set of improved
reporting standards, more strict funding policies, and better
instructions for peer reviewer (Hooijmans et al., 2010; Hirst and
Altman, 2012; Henderson et al., 2013; Anon, 2013; Principles
and Guidelines for Reporting Preclinical Research and National
Institutes of Health (NIH), 2021).

Four elements of methodological quality of preclinical
research that critically determine its translational power
are randomization, sample size calculation, blinding, and
heterogeneity of animals used (i.e., strains, ages, and sexes)
(Henderson et al., 2013). A recently added critical element of
heterogeneity of animal models is environmental factors, which
suggests the benefit of multi-laboratory experiments (Richter
et al., 2009; Voelkl et al., 2018). Ramirez et al. (2017) found
that randomization was reported only in 21.8%, blinding in
32.7%, and sample size estimation in 2.3% of all preclinical
cardiovascular studies published in five leading cardiovascular
journals between July 2006 and June 2016 (Ramirez et al.,
2017). Similar or worse results are found in the review of
thirty-one systematic reviews of animal studies on treatments
for various diseases (Hirst et al., 2014; van Luijk et al., 2014).
Additionally, the quality of these study design elements has not
improved in all disease-specific studies, except for stroke research
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TABLE 3 | Variations in occlusion duration in catheter-based MI studies.

Large animal model MI induction method Occlusion location Occlusion duration Mortality rate due to
MI occlusion (during
or shortly after MI
induction)

Infarct size
(Untreated group)

Study

Farm pigs Cardiac catheterization
(carotid sheath and
coronary angioplasty
balloon)

LAD beyond the first
diagonal branch

60 min – – Kraitchman et al., 2003

Young Yorkshire pigs Percutaneous
transluminal
angiography (balloon
occlusion) followed by
reperfusion (after
anticoagulation)

LAD distal to the
second diagonal
branch

60 min Four died within first
60 min after coronary
occlusion due to
ventricular fibrillation

8.8 ± 2.1% Wang et al., 2009

Farm pigs Balloon
occlusion/reperfusion

LAD just distal to the
second largest diagonal
branch

60 min Six died within 3 days
after MI

5.3 ± 1.8% Price et al., 2006

Yorkshire-cross bred
pigs

Balloon catheter
occlusion-reperfusion

LAD just distal to the
second diagonal
branch

60 min Two died within the first
15 min of reperfusion
due to ventricular
arrhythmias

9.8 ± 1.1 Techiryan et al., 2018

Yorkshire pigs Angioplasty-induced
coronary artery
occlusion-reperfusion

Proximal LAD at the
level of the first or
second diagonal
branch

75 min 17% developed fatal
arrhythmias during
ischemia

8.1 ± 1.8% in Control Halkos et al., 2008

Chinese mini-pigs Acute MI –
percutaneous
transluminal
angiography (balloon
occlusion) followed by
reperfusion (after
anticoagulation)

LAD distal to the
second diagonal

90 min Four died due to
ventricular fibrillation
during occlusion
procedure

56% decreased after
ILK-MSC treatment
(P < 0.001) (<40%
decrease after
treatment of MSC
alone)

Mu et al., 2016

Landrace pigs Moderate acute MI by
inflation of an
angioplasty balloon

Left circumflex artery
occlusion
(posterolateral infarct)

90 min Two died of ventricular
fibrillation (VF) 1 day
post-MI

9.6 ± 1.3% de Jong et al., 2014

Yorkshire pigs Percutaneous balloon
dilation catheter

LAD distal to second
diagonal branch

• 45 min
• 90 min

– –
Result: More adverse
remodeling in the
90-min groups than
45-min groups

Ghugre et al., 2013

Yorkshire pigs Occlusion-reperfusion Mid LAD • 60 min
• 90 min

– – Thomas et al., 2021

(Continued)
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TABLE 3 | Continued

Large animal model MI induction method Occlusion location Occlusion duration Mortality rate due to
MI occlusion (during
or shortly after MI
induction)

Infarct size
(Untreated group)

Study

Large white pigs Occlusion-reperfusion Mid LAD • 30 min
• 45 min
• 60 min
• 90 min
• Permanent

One died from
ventricular fibrillation
during coronary
occlusion
One from 30 min group
and one from 60 min
group died the night
after the occlusion
One developed
malignant hyperthermia

LV mass:
• 30 min: 0.46 (0.42)%
• 45 min: 2.85 (1.14)%
• 60 min: 9.74 (1.65)%
• 90 min: 8.93 (1.37)%
• Permanent: 3.17

(1.17)%
Transmural extension:
• 30 min: 14.6 (11.4)%
• 45 min: 42.1 (12.9)%
• 60 min: 87.4 (6.6)%
• 90 min: 96.2 (3.2)%
• Permanent: 100 (0)%

Result: Infarct size and
the transmurality index
correlated exponentially
with the duration of the
occlusion

Garcia-Dorado et al.,
1987

Ovine (Sheep) Coronary artery
ischemia–reperfusion
Coronary occlusion
using a suture loop

Mid-second diagonal
branch

90 min One died of ventricular
fibrillation during the
ischemic period

– Dayan et al., 2016

Coopworth ewes
(Sheeps)

PTCA Balloon
occlusion-reperfusion
vs. Thrombogenic coil
embolization
(permanent)

Distal to the first
diagonal branch but
proximal to the second
diagonal branch

90 min (coil: 2 min) Two died of arrhythmia
within 4 min following
reperfusion
Coil embolization
group: Three died
30 min, 60 min, and
between 6 and 12 h
post-infarction

– Result: Restriction of
coronary artery
occlusion to 90 min
results in infarction, but
less LV dysfunction with
reduced early
remodeling, compared
with permanent
occlusion

Charles et al., 2000

Sheep Balloon
occlusion-reperfusion

Mid-LAD 90 min Phase 3: 34/68 sheep
died during infarct
induction due to
ventricular fibrillation
refractory to
defibrillation

18.4 ± 1.5% Houtgraaf et al., 2013
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(Hirst et al., 2014). From 1997 to 2007, the number of
cardiovascular papers and journals increased by 56.9 and
75.2%, respectively, yet 46% of original papers published in
cardiovascular journals in the same period were poorly cited
(with < = 5 citations in the 5 years following publication);
however, 44% of cardiovascular journals had more than three-
fourths of the journal’s content poorly cited at 5 years
(Ranasinghe et al., 2015). Interestingly, studies that employed
randomization, blinding, or sample size estimation were equally
cited in numbers as those that did not; however, studies that
included both males and females were less frequently cited,
suggesting that methodological rigor might have been overlooked
by cardiovascular researchers (Ramirez et al., 2017). This suggests
the need for strict enforcement of a comprehensive guideline
and requirements by journals and funding institutions to ensure
the rigor of animal studies and publication to the level of
human-involving, clinical studies, which consequently promotes
reproducibility and animal welfare (Hooijmans et al., 2010;
Carbone and Austin, 2016).

It is almost always impossible to control every aspect
of a scientific experiment and to perfectly mimic human
pathophysiology in a disease model. Consequently, any
experimental data are biased, and it is a matter of how biased they
are and whether researchers are aware of and report those biases
correctly. Additionally, the failure to reproduce or conflicting
data is not always a vice but could be a valuable resource
that potentially enriches biomedical research (Daugherty et al.,
2016). However, in translational medicine, reproducibility is the
ultimate goal, and this review article emphasizes there is much
room for improvements in preclinical study design and animal
models for MI research. Methodological rigors such as sample
randomization, consistent surgical procedures, blind analyses,
and greater sample statistical power are essential in animal
models of human CVDs or other diseases. Along with following
the correct procedures during research, transparent reporting of
experimental protocols and results is equally essential to improve
reproducibility, effectiveness, predictability, and safety of the
clinical studies.

Considering the economic and emotional cost of a clinical
trial and the exponentially growing number of published articles,

it may be much more cost-effective from the standpoint of the
entire population to maintain rigor and quality in the preclinical
study level with good practice and additional cost than to see
a series of “promising” preclinical study continuously failing in
clinical trials (Freedman et al., 2015). However, probably most
trained researchers may be well aware of these prerequisites
of successful translation mentioned above. The root cause of
the imbalance between the translational crisis and exponentially
growing research in the cardiovascular field might be the
competition for grants and positions (Baker, 2016). In this case,
more opportunities for quality training and mentorship within
research communities as well as a clear publication or funding
guideline by journals and funding institutions are proposed
(Begley and Ioannidis, 2015).

Yet, probably most trained researchers may be well aware of
these prerequisites of successful translation. The root cause of
the imbalance between the translational crisis and exponentially
growing research in cardiovascular field might be the competition
for grants and positions (Baker, 2016). In this case, more
opportunities for quality training and mentorship within research
communities in addition to a clear publication or funding
guideline by journals and funding institutions are proposed
(Begley and Ioannidis, 2015).
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