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Pulmonary diseases, driven by pollution, industrial farming, vaping, and the infamous
COVID-19 pandemic, lead morbidity and mortality rates worldwide. Computational
biomechanical models can enhance predictive capabilities to understand fundamental
lung physiology; however, such investigations are hindered by the lung’s complex and
hierarchical structure, and the lack of mechanical experiments linking the load-bearing
organ-level response to local behaviors. In this study we address these impedances by
introducing a novel reduced-order surface model of the lung, combining the response of
the intricate bronchial network, parenchymal tissue, and visceral pleura. The inverse finite
element analysis (IFEA) framework is developed using 3-D digital image correlation (DIC)
from experimentally measured non-contact strains and displacements from an ex-vivo
porcine lung specimen for the first time. A custom-designed inflation device is employed to
uniquely correlate the multiscale classical pressure-volume bulk breathing measures to
local-level deformation topologies and principal expansion directions. Optimal material
parameters are found by minimizing the error between experimental and simulation-based
lung surface displacement values, using both classes of gradient-based and gradient-free
optimization algorithms and by developing an adjoint formulation for efficiency. The
heterogeneous and anisotropic characteristics of pulmonary breathing are represented
using various hyperelastic continuum formulations to divulge compound material
parameters and evaluate the best performing model. While accounting for tissue
anisotropy with fibers assumed along medial-lateral direction did not benefit model
calibration, allowing for regional material heterogeneity enabled accurate reconstruction
of lung deformations when compared to the homogeneous model. The proof-of-concept
framework established here can be readily applied to investigate the impact of assorted
organ-level ventilation strategies on local pulmonary force and strain distributions, and to
further explore how diseased states may alter the load-bearing material behavior of the
lung. In the age of a respiratory pandemic, advancing our understanding of lung
biomechanics is more pressing than ever before.
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INTRODUCTION

Respiratory diseases and disorders, such as asthma, emphysema,
bronchitis, pulmonary fibrosis, and lung cancer, collectively lead
as the global cause of morbidity and mortality (Centers for
Disease Control and Prevention, 2015; Eskandari et al., 2018).
These pulmonary illnesses impose strenuous social and economic
burdens, as seen with the recent lung-damaging COVID-19
outbreak (Atkeson, 2020). The acute and progressive
pathological inflammation and bronchoconstriction of the lung
obstruct and restrict airflow and oxygenation, inducing altered
mechanical properties (Suki and Bates, 2011; Eskandari et al.,
2016). This mechanical remodeling is multiscale, spanning the
destruction of alveolar sac elasticity in emphysema (Suki et al.,
2003), the over stiffening of the parenchymal tissue in pulmonary
fibrosis (Faffe and Zin, 2009), and the constriction and collapse of
airways in asthma (Bai and Knight, 2005; Eskandari et al., 2015;
Maghsoudi-Ganjeh et al., 2021). Thus, the hierarchical and
complex structure of the lung highlights the importance of
mechanics in respiratory health (Tawhai and Bates, 2011;
Eskandari et al., 2013).

Despite the growing body of literature on pulmonary
mechanics, the multiscale and multiphysics link between the
global pressure-volume behavior of the lung and the local-level
tissue deformation remains largely unexplored. There has been
notable progress to characterize the lung at the organ scale
through classical pressure-volume curves and at the tissue
level using indentation and uniaxial tensile tests (Lai-Fook
et al., 1976; Zeng et al., 1987; Fung, 1988; Eskandari et al.,
2018); however these investigations remain siloed at
disconnected scales. Amalgamating these multiphysics and
multiscale behaviors is central to understanding lung disease
mechanisms, predicting disease progression, and mitigating
ventilator-induced-lung-injuries (VILI) to eliminate tissue over
stretching (volutrauma) and stressing (barotrauma) (Dreyfuss
and Saumon, 1998; Vlahakis et al., 1999; Arora et al., 2017; Arora
et al., 2021). Unless an atlas for pulmonary kinetics and
kinematics can be established, current ventilation protocols
will continue to be subject to trial and error approaches and
hindered from advancements despite exigent demands instilled
by a worldwide pandemic (The Acute Respiratory Distress
Syndrome Network, 2000; Amato et al., 2015).

Advancements in biologically-oriented digital image
correlation (DIC) techniques have facilitated quantifying the
mechanical connections between organ-level breathing and
local tissue behavior for fast, large, and non-linear
deformations. DIC is a common full-field, non-contact
deformation characterization technique originally applied on
inert structures (Chu et al., 1985), and has now been
enhanced to study the behavior of intricate biological tissues,
such as the cornea (Boyce et al., 2008), arteries (Sutton et al.,
2008), knees (Mallett and Arruda, 2017), and most recently, the
lung (Mariano et al., 2020). In this method, sequential images of a

specimen’s speckled surface undergoing loading are used to
obtain the topological displacement field (Chu et al., 1985).
While DIC describes the kinematics, inverse finite element
analysis (IFEA) can be employed to divulge the kinetics. IFEA
yields specimen mechanical properties by minimizing the error
between the displacements predicted by the Finite Element (FE)
model and those measured via experiment (Birzle et al., 2019).

Here we construct the first in-silico IFEA structural
representation of the whole lung as informed and validated
from DIC resulting from applied evolutionary pressure-volume
loading controlled by a custom-designed breathing apparatus
(Mariano et al., 2020; Sattari et al., 2020). Based on the obtained
surface geometry and deformation map of the inflating lung, a
corresponding reduced-order 3-D FE model is constructed using
membrane elements undergoing the same experimental lung
pressures. Various constitutive models are explored, including
homogeneous isotropic hyperelastic, homogeneous anisotropic
hyperelastic, and heterogeneous isotropic linear-elastic
materials (Mooney, 1940; Holzapfel et al., 2000). The
parameters of the multiple FE models are calibrated
through a fully automated IFEA framework. Both classes of
derivative-based and gradient-free optimization algorithms
are implemented to predict the material response by
minimizing the error between model-predicted and DIC-
recorded displacements of the external surface of the lung.
The set of calibrated material parameters, along with local and
heterogeneous deformation results of the in-silico lung, are
presented, model performances are compared, and future
applications are discussed.

MATERIALS AND METHODS

Digital Image Correlation and
Pressure-Volume Experiments
Previously established extensive experimental DIC protocols and
pressure-volume tests were utilized for the ex-vivo specimen tests
conducted here and will be briefly summarized (Mariano et al.,
2020; Sattari et al., 2020). Fresh porcine lungs from an abattoir
were obtained (50 kg female domestic York farm minipigs,
Institutional Animal Care and Use Committee approval not
required) and a plastic tube was inserted through the trachea
to fully inflate the lung using an airline pressure system. A generic
exfoliator pad dipped in quick-drying white enamel paint (rust-
oleum) was used to create speckles (Mariano et al., 2020). The
specimen was loaded into our custom pressure-volume apparatus
for controlled inflation tests; this device consisted of two pistons
(a source and a response), a transparent tank, and a computerized
controller system (Sattari et al., 2020). 900 ml of air was applied to
the lung, and the real-time continuous pressure and actual
volumetric deformation of the lung (less than the applied
volume due to the compression of air) was measured. As in
previous studies, a preload of 5 cmH2O was used as the reference
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state. A rate of 15 breaths-per-minute was used and the specimen
was preconditioned three times to generate reproducible cycles
and the fourth inflation response was analyzed.

The 3-D stereoscopic DIC system (ARAMIS 12M, Trilion
Quality Systems) consisted of two optical cameras hovering over
the transparent tank, which recorded the dynamic deformation of
the lung at 10 Hz. For a measuring volume of 375 × 295 ×
295 mm, the calculated displacement measurement accuracy was
0.10875 mm (Jones and Iadicola, 2018). The images were
analyzed following standard DIC techniques to calculate the
displacement and strain of the exterior surface of the lung
relative to its uninflated state (Chu et al., 1985; Jones and
Iadicola, 2018) and are extensively detailed in Mariano et al.,
2020. Figure 1A showed the DIC strain map corresponding to
the peak pressure-volume inflation stage. Figure 1B showed
the corresponding pressure-volume curve obtained from the
inflation. Based on this curve and the inflation rate, the
pressure-time amplitude curve (Figure 1C) was extracted and
applied to the FE model as the loading step.

Inverse Finite Element Analysis Overview
The FE models were calibrated using the measured DIC
displacement of the ex-vivo lung. The algorithm (shown in
Figure 2) minimized the error by finding the optimal values
for unknown free material parameters. The inverse FE model
leveraged several known parameters: the surface geometry of the
lung from the uninflated stage obtained after three
preconditioning inflation-deflation cycles, the experimentally
measured pressure-time graph, and the DIC displacement field
of the lung surface. However, the type of constitutive model and
corresponding material parameters were unknown; these model
attributes were left to be determined by the optimization
algorithms. Before applying the model to the actual lung, we
verified that when applied on a simpler geometry with known
deformation field and material properties the model is able to
recover the given material parameters successfully.

Various constitutive relations were examined. The material
parameters were initialized from several distinct starting points
and the solution was generated multiple times to ensure
mathematical robustness. The error was calculated based on
the normalized squared sum of residuals. Material properties
were perturbed to calculate the sensitivity of the error, which
informed the alternate directions adopted by the optimization
algorithm. This incremental procedure was repeated to
progressively minimize the error until a pre-defined
convergence criterion was met (change in the error less than
10−6 of the initial value). Given the nonlinear lung pressure profile
(Figure 1C), the displacement error was evaluated at several
increments evenly spaced out throughout the inflation cycle and
not just at the full inflation point.

Finite Element Model Organization
The built-in stereo camera DIC system was used to capture the
exterior surface of the lung. The obtained geometry was
tessellated with 3-D triangular elements averaging 1 mm in
size. The DIC system could only detect and analyze the visible
portion of the lung lobes (Figure 1). The raw data from the
original DIC geometry was not suitable for the FE simulation as it
contained some elements with poor isoperimetric quality and
sharp surface discontinuities. To improve the mesh quality,

FIGURE 1 | (A) The right lung lobe was selected for analysis and DIC
strains are shown. (B) The pressure-volume data of the stabilized inflation
cycle was used to extract the (C) pressure-time data applied to the FE model.
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MeshLab (ISTI-CNR, Italy) was used to smoothen the surface
while preserving the original surface features (Cignoni et al.,
2008). Two fine and coarse meshed models, with ∼5,000 and 457
elements respectively, were exported as STL files which were then
converted to Abaqus input files using the built-in script plugin
(Dassault Systems, Providence, RI, United States). The fine and
coarse meshes were used to study the cases corresponding to
homogeneous and heterogeneous material models, respectively.
This approach reduced the number of unknown material
parameters in the heterogeneous case and was necessary to
substantially decrease the IFEA computational cost. After
confirming the mesh resolution was sufficient, both meshed
models were discretized using 3-D membrane elements
(M3D3). The recorded DIC experimental displacement values
of the nodes sitting on the perimeter of the surface geometry were
applied as displacement boundary conditions to the FEmodels; as
such, while the geometry of the model represented the visible
portions of the lung lobes, the role of the adjacent tissue was
represented through the application of these periphery nodal
displacements (as opposed to traditional boundary conditions).
The thickness of membrane elements were set to 1.0 mm.

One-to-one experimental to FEmodel nodal correspondence was
created for error calculations by probing the displacement from
∼7,000 evenly distributed points across the surface. During the
multiple inflation stages, where the displacement error between

the FE model and DIC nodes were to be calculated, there is not
a one-to-one correspondence between FE model nodes and DIC
probe points. Therefore, interpolationmust be used to find FEmodel
nodes corresponding to the DIC probe points so that the error could
be computed. An interpolation technique was used, utilizing theDIC
displacements and coordinates of the probe points to train the
k-nearest-neighbor algorithm (Altman, 1992). The performance of
the interpolationmodel was evaluated using 10-fold cross validation,
confirming the accuracy was above 0.95. The number of nearest
neighbors k was set to be five. The interpolation technique was
implemented using two Python scripts: one to access nodal
coordinates from Abaqus, and one to perform interpolation.

The FE model was solved using Abaqus dynamic implicit
solution scheme by subjecting the model to the experimental lung
pressure values at five deformation stages (Figure 1C). Nonlinear
geometry formulation was utilized, and the displacement and
strains were analyzed. In order to significantly accelerate the IFEA
process, all the scripts were parallel-coded such that multiple FE
simulations were running simultaneously in batch mode.

Constitutive Models
The best performing constitutive model was not known a priori.
We investigated three different material model cases to consider
homogeneity versus regional heterogeneity, preferential
orientation using an anisotropic versus isotropic response, and

FIGURE 2 | The overall algorithm for the IFEA framework implementation. The model started with an initial estimate for the material parameters, then the
optimization algorithm incrementally moved forward toward the optimal solution by minimizing the displacement error between model predictions and DIC
measurements. In this workflow, u refers to the nodal displacement, σ is the Cauchy stress, ε is the technical strain.
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the linear versus nonlinear cases to determine optimal
constitutive parameters as detailed below. It was important to
note the reduced-order nature of the model meant the parameters
of these constitutive models were not simply the material
properties of the lung; rather they are a pseudo-material
model, represented as a projected, averaged surface response
of tissue or compound material parameters of the
parenchyma, airways, and pleura layer consolidated together.

Homogeneous Isotropic Hyperelastic Case
Here the compressible Mooney-Rivlin hyperelastic model (Mooney,
1940) with the strain energy density defined as W � C10(�I1 − 3) +
C01(�I2 − 3) + 1

D1
(J − 1)2 was used. �I1, �I2 were the first and second

invariants of the deviatoric deformation tensor, Jwas the Jacobian of
deformation gradient F, and C10, C01 , and D1 were the three
unknown material parameters. The stress-stretch curve of this
model can span strain-hardening and strain-softening behaviors,
depending on the relative values of thematerial parameters, allowing
a versatile IFEA framework.

Homogenous Anisotropic Hyperelastic Case
The Holzapfel-Gasser-Ogden (HGO) formulation (Holzapfel
et al., 2000) with the strain energy density defined as W �
Wiso +Waniso was used here. Wiso and Wanisowere defined as
Wiso � C10(�I1 − 3) + 1

D (J
2−1
2 − ln J) and

Waniso � k1
2k2

[exp k2[k(�I1 − 3) + (1 − 3k)(�I4 − 1)]2 −1]}{ . The
five unknown material parameters were C10, D, k1, k2 and k.
The three strain-representing kinematic variables were �I1, �I4,
and J. In this formulation �I1 was the first invariant of the
deviatoric deformation tensor. In addition, �I4 was the pseudo-
invariant of �C and a0⊗a0 where �C � J−2/3C followed the
multiplicative decomposition of the deformation gradient F
and the deformation tensor C � FTF. The vector a0 was a unit
vector field defining the fiber direction in the undeformed
configuration. J was the Jacobian of deformation gradient F. �I4
represented the squared of the stretch ratio of the material fiber
λ in the direction of the fiber family defined by a0. The degree
of preferential alignment of the fiber family governing
anisotropy was controlled by the dispersion parameter
k ∈ [0, 1/3], where 0 indicated the family of fibers were fully
aligned and 1/3 indicated a completely random distribution of
the fiber family (reducing to isotropic form). For each element
in the mesh, the local z-direction was the outward normal to
the element surface, the local y-direction was specified in the
anterior-posterior direction, and the local x-direction was
subsequently determined based on the right-hand sign
convention for Cartesian coordinates. Given that strains
were smaller in the medial-lateral direction, a0 was aligned
with the defined local x-direction for each element. It should be
noted that even though we define x-axis for the main fiber
directions, since the parameter k is left free to be determined by
the optimization engine, the true fiber directions are not
strictly fixed in the model.

Heterogeneous Isotropic Linear-Elastic Case
In this case we considered a linear elastic isotropic material
model (Eskandari and Kuhl, 2015) with Young’s modulus E

and Poisson’s ratio υ. The regional heterogeneity of this model
meant each element of the mesh had its own two parameters
that were found by the optimization algorithm. The shear
modulus μ of each element was then calculated using μ � E

2(1+])
and regionally mapped onto the lung surface.

Optimization Algorithms for Extracting
Material Parameters
Gradient-based optimization algorithms are prone to returning
local optima in the neighborhood of the initial search point, while
the derivative-free optimization algorithms, such as meta-
heuristic algorithms, are more likely to return the global
optimal solution instead (Nocedal and Stephen, 2006).
Therefore, two broad classes of gradient-based and gradient-
free optimization algorithms were implemented to improve
global optimum acquisition. In the gradient-based approach,
the trust-region-reflective (TRR) algorithm (Steihaug, 1983),
available in Matlab lsqnonlin function (The MathWorks Inc.,
MA, United States), was used for the two homo/iso/hyper and
homo/aniso/hyper cases; and the sequential-quadratic-
programming (SQP) algorithm (Boggs and Tolle, 1995),
available in Matlab fmincon function, was used for the hetero/
iso/linear-elastic case. As for the gradient-free approach, we
implemented our own version of the particle swarm
optimization (PSO) algorithm (Kennedy and Eberhart, 1995)
in a Matlab script. This provided more flexibility to impose
custom constraints on our problem, such as bounds on the
position and velocity of particles, which may not be done so
freely in the built-in Matlab PSO algorithm. The IFEA
processes in both approaches were fully automated by
conjoining Matlab, Abaqus, and Python. To help avoid local
optima, the TRR and SQP algorithms were run from several
randomly selected initial estimate points within the search
space as given in Table 1 and Table 2. As a verification step, we
applied the IFEA framework to a test case model with a simpler
geometry and known deformation field and material
parameters. We confirmed that the optimization pipeline
was indeed successful in recovering the pre-known material
parameters.

The Adjoint Method to Calculate the Objective
Functional Gradient
In this study, the adjoint method was used to calculate the
gradient for the hetero/iso/linear-elastic case given that the
total number of unknown material parameters for this case was
much greater than that of the homo/iso/hyper (three
parameters) and homo/aniso/hyper (five parameters) cases;
In the former case there were 457 elements and two material
unknowns at each element, which rendered the total number of
unknown parameters to 914. If the classical objective function
gradient with finite difference methods were used, each
iteration of the optimization algorithm for the hetero/iso/
linear-elastic forward elasticity problem would have to be
solved 914 × 2 � 1828 times based on the central difference
method to approximate the sensitivity of the objective
function. As such, the optimization algorithm would be
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rendered prohibitively expensive and therefore, adjoint
methods for optimization were utilized (Oberai et al., 2003).
This effective method required solving the problem only twice;
once for the forward elasticity problem and once for the
adjoint problem.

The derivation of the adjoint method to formulate our IFEA
problem employed the objective functional below, (with the
predefined measure of error between simulation and experiment):

Π � Π(u, p), (1)

where Π was the objective functional, vector u was the global
displacement vector, and p was the set of unknown material
parameters. Note that uwas dependent on the p because knowing
the material parameters allowed us to run the forward elasticity
problem and solve for the nodal displacements. Therefore, the
dependence of Π to p was implicit. The size of the vectors u and
p were u: M × 1 and p: N × 1, whereM was the total degrees of
the freedom of the FE model. Specifically, our mesh had 263
nodes where each node has three translational degrees of
freedom (no rotational degrees), and therefore,
M � 263 × 3 � 789. The size of vector p for 457 meshed
elements with two unknown material parameters E and ]
was N � 2 × 457 � 914. Since Π represented a measure of
error, it took the following form:

Π � 1
2
× ∑

nmax loading

n�1

����(usim
n − uexpn )���� + ρ(p), (2)

where the first term was the L-2 norm of the error, and the
second term as a regularization parameter to tackle the ill-

posed aspect of the inverse problem (Isakov, 2017). One
popular choice for ρ could be ρ � α

2 p, where α was a
regularization parameter selected to be a very small
number (10−6) selected based on the theory of residues
(Tikhonov et al., 2013). The regularization was only
applied to the heterogeneous model with the gradient-
based optimization. In our case, n max loading referred to
the five time points at which the error was calculated through
the full inflation path.

The derivative of Π for the optimization algorithm was
defined as:

dΠ � (zΠ
zp

)
T

dp + (zΠ
zu

)
T

(zu
zp

). (3)

The values for zΠ
zp and zΠ

zu were known given their
explicit definition in Eq. 1. In order to get the term zu

zp , the
forward elasticity problem had to be solved since in general we do
not have an analytical relation between u and p. The forward
elasticity problem was cast into the following standard discretized
format obtained from the FE model:

K(p)u � f(p), (4)

whereK: M ×Mwas the global stiffness matrix, and f : M × 1 was
the global load vector. From there the partial derivative of Eq.
4 was:

(zK
zp

)u + K(p)(zu
zp

) � zf
zp

, (5)

TABLE 1 | Sets of initial estimates and converged optimal material parameters for the homo/iso/hyper case. In order to avoid local minimum, the optimization routine was
repeated from seven different starting points.

Initial material parameters Optimal material parameters

Run # C10 (kPa) [1–200] C01 (kPa) [1–200] D1(×10−4) kPa−1 [10−4–10−2] C10 (kPa) C01 (kPa) D1 (×10−4) kPa−1

1 25 10 5 136.2 1.0 13.2
2 10 20 15 136.6 1.0 13.5
3 100 42 61 136.6 1.0 13.5
4 172 18 32 136.9 1.0 13.6
5 10 90 80 136.1 1.0 13.2
6 50 50 50 136.7 1.0 13.6
7 200 150 90 136.5 1.0 13.4

TABLE 2 | Sets of initial estimates and converged optimal material parameters for the homo/aniso/hyper case. In order to avoid local minimum, the optimization routine was
repeated from seven different starting points.

Initial material parameters Optimal material parameters

Run # C10 (kPa) [1–200] D (×10−4) kPa−1 [10−4–10−2] K1 (kPa) [1–200] K2 [0–1] κ [0–0.33] C10 D (×10−4) K1 K2 κ

1 18 42 8 0.30 0.11 116.5 42 1.0 0.05 0.33
2 51 28 14 0.70 0.05 116.6 28 1.0 0.24 0.33
3 80 12 100 0.45 0.2 116.2 12 1.0 0.09 0.33
4 150 10 76 0.62 0.3 116.0 10 1.0 0.13 0.33
5 7 100 35 0.90 0.17 116.3 100 1.0 0.15 0.33
6 180 63 22 0.10 0.17 116.5 63 1.0 0.07 0.33
7 100 50 150 0.18 0.25 116.5 50 1.0 0.13 0.33
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where

zu
zp

� K−1(p)[zf
zp

− (zK
zp

)u],
or in the index notation

zu
zp i � K−1(p)[zf

zp i − (zK
zp i)u].

Substituting zu
zp back into Eq. 3 yielded

dΠ
dpi

� zΠ
zp i + (zΠ

zu
)

T

K−1(p)[zf
zp i − (zK

zp i)u]. (6)

The only problematic term was zΠ
zu because it required solving

the forward elasticity problem each time a small change was made
to our unknown parameter pi. To address this issue, we wrote

λT � (zΠ
zu

)
T

K−1(p),
where λ was named the adjoint variable. Rearranging yielded

KT(p)λ � zΠ
zu

Note that zΠ
zu � usim − uexpfrom the definition, and KT � K

from the symmetry of stiffness matrix. Therefore, to solve the
adjoint equation, we applied the difference between the
simulation and experiment displacements to drive the forward
elasticity problem. Having solved for λ, the gradient was
written as

dπ
dpi

� zΠ
zp i − λT [(zK

zp i)u − zf
zp i], (7)

where λ acted as a Lagrange multiplier. For our simpler case with
no regularization (zΠzp i � 0) and the external load being
independent of the unknown material properties (zfzp i � 0), the
derivative of the objective functional was simplified to

dπ
dpi

� −λT [(zK
zp i)u]. (8)

To calculate this simplified objective functional gradient, the
FE problem was solved two times: one was the forward elasticity
problem to obtain u, and the second one was to solve the adjoint
set of equations to get λ. To obtain the term zK

zp i, we slightly
perturbed the material property pi and collected the assembled
stiffness matrix by using the matrix generation procedure
available in Abaqus.

Particle Swarm Optimization Algorithm
In this well-known algorithm (Kennedy and Eberhart, 1995) a
random population of nPop particles was initially generated. Each
particle was basically a point in our search space for the optimal
material properties. For example, in the homo/iso/hyper case, the
position of each particle was defined by its value of C10, C01,and
D1 randomly drawn from a specified range given in Table 1. The

FE model for each particle was solved and the corresponding
error was evaluated. In order to update the position of the
particles toward the location of the global minima, the velocity
of each particle was updated based on:

v � [w × v] + [c1 × rand()(pbest − ppresent)] + [c2
× rand()(globalbest − ppresent)]. (9)

This determined the direction along which the value of the
material properties was to be changed (i.e., increased or
decreased). In Eq. 9, w was a damping factor which reduced
the momentum of the particles as they iteratively progressed
towards finding the global optima (Kennedy and Eberhart, 1995);
it started from 1.0 and was multiplied by a constant of 0.99 after
each iteration. The parameters c1 and c2 controlled the local and
global search weights, respectively. pbest and ppresent referred to
the best score (smallest error) of a given particle throughout the
whole iterations passed thus far and the one within the current
iteration, respectively. The parameter globalbest referred to the
best score of the overall population. The particles position was
then updated by adding the calculated velocity to the current
position. FE simulations were then performed for the whole batch
of particles in an iterative fashion until the optimization
algorithm converged.

In implementing the PSO algorithm, it was important to
impose proper upper and lower bounds on the velocity and
position vectors of each particle to avoid local minima or
particles getting stuck in the neighborhood of each other or
worse yet, on the boundaries (Kennedy and Eberhart, 1995).
Prior to updating the position vectors using Eq. 9, any element of
the velocity vector that had values above vMax or below vMin
were set to vMax or vMin, respectively. Then we checked for the
position vectors: if a particle’s position was beyond the limits
defined by the range [varMin, varMax], we checked its velocity
vector; if it was pointing outside the position bound (meaning
adding the velocity to the position would have resulted in the
particle position landing outside of its permitted range), velocity
component was set to zero, and the particle position was set to the
corresponding upper or lower bound. The parameters c1 and c2 in
Eq. 9were set to be 2.0 (Kennedy and Eberhart, 1995). The ranges
for particle velocity ([vMin, vMax]) were set as [−5, 5] for the
homo/iso/hyper and homo/aniso/hyper cases, and as [−40, 40]
for the hetero/iso/linear-elastic case. The parameter nPop was set
as 24, 48, and 1,000 for the homo/hyper/iso, homo/aniso/hyper,
and hetero/iso/linear-elastic cases, respectively. These
hyperparameters maintained a wide parameter value range,
helped the algorithm converge better, and were tuned based
on our preliminary sensitivity analysis studies.

RESULTS

The Interpolated Deformation and Strain
Measures of the Lung
The experimental displacement values were imposed on the FE
model using the generic homo/iso/hyper case to confirm the
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validity of the interpolation technique and the strain orientations
against the DIC system calculations. The data matched nearly
identically for each of the five inflation stages (0.4, 0.8, 1.2, 1.6,
and 2.0 s) as shown in Figure 3, and was subsequently used in
the optimization scheme. The motion of the lung during
inspiration was substantially inhomogeneous: the anterior
region of the lobe exhibited the greatest distention and
pronounced aeration (as much as 25 mm). The imposed
displacements at the nodes along the lobe perimeter were
also non-zero and were interpolated to represent the actual
boundary conditions of the deforming surface properly. The
maximum and minimum in-plane principal strains (major
and minor strains) obtained at the full inflation stage were
shown in Figure 3B and Figure 3C, valuing no more than 0.5
and 0.15, respectively. The major strain predominantly
aligned with the medial-lateral direction while the minor
strain was preferentially aligned with the anterior-posterior
direction.

The Optimized Compound Material
Properties of the Lung
The set of optimal material properties for the homo/iso/hyper
and homo/aniso/hyper cases, and for a wide array of starting
points, was listed in Tables 1, 2, respectively. The three material

properties’ average ±standard deviation for the homo/iso/hyper
was C10 � 136.5 ± 0.25kPa, C01 � 1.0 ± 0.0kPa, and
D1 � (13.43 ± 0.16) × 10−4kPa−1. The calculated shear and

FIGURE 3 | DICmeasured displacements data, extracted at ∼7,000 evenly distributed points across the parenchymal surface were interpolated and applied to the
FE model. (A) Displacement magnitude contour maps corresponding to five increments of 20% inflation steps. Anterior regions of the lung exhibited the largest
distensions. Vector field map of major (B) and minor (C) strains were obtained from imposing interpolated DIC displacements to the model.

FIGURE 4 | The shear modulus map obtained for the hetero/iso/linear-
elastic case obtained from (A) the gradient-based and (B) derivative-free
optimization algorithms. Both methods consistently demonstrated strong
heterogeneity in the tissue elasticity distribution across the lung surface.
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FIGURE 5 | Comparison between the displacement (A–C) and major strain (D–F) of the DIC and IFEA with either homogeneous and heterogeneous material
models. The computed displacement and strain contours of the heterogeneous model agreed with the DIC data better than the homogeneous model. The
heterogeneous model results are based on the SQP algorithm, and the PSO algorithm yielded similar results.

FIGURE 6 | The displacement error (Cartesian components) of the IFEA predictions assuming (A) heterogeneous and (B) homogeneous material models. The
errors for the heterogenous model were consistently smaller. SQP algorithm shown for the heterogeneous model error and the PSO algorithm yielded similar results.
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bulk moduli were μ0 � 2(C10 + C01) � 275kPa, and
K0 � 2

D1
� 1.5MPa, respectively. The parameter C01, which

controlled the contribution of �I2, consistently converged to its
allowed lower bound of 1.0 kPa and was two order of magnitudes
smaller than C10. The smallness of C01 in comparison to C10
indicates that the strain energy function is largely controlled by the
stretch response of the tissue and not the distortion part. In ventilating
the lung, the DIC strains also suggested that shear strains were
minimal. Another consequence of C01 being very small is that the
stress-strain curve would start to look less nonlinear.

The optimal set of material properties calculated for the homo/
aniso/hyper case for seven optimization runs was
C10 � 116.4 ± 0.2kPa, D � (43.6 ± 29.2) × 10−4kPa−1,
k1 � 1.0 ± 0.0kPa, k2 � 0.12 ± 0.06, and κ � 0.33 ± 0.0
(Table 2). The shear modulus was μ0 � 2(C10) � 233 kPa,
comparable to the 275 kPa obtained for the previous homo/
iso/hyper case.

While the three material parameters C10, k1, and κ converged
to their optimal values, the model did not depend on D and k2.
The anisotropic hyperelastic formulation in Abaqus ignores the
compressibility coefficient and therefore, the objective function
was simply insensitive to this parameter and D remained
unchanged (Abaqus: Theory Manual, 2011). Conversely, k2,
which was a dimensionless parameter exponentially
controlling the contribution of the fibers in the overall strain
energy function, did not yield a specific value because κ always
converged to 0.33 and effectively zeroed out the anisotropic part
of the strain energy density function. Therefore, k2, contributing
to the anisotropic term, did not converge to a meaningful value
because it played no role in the strain density function. Despite
accounting for anisotropic lung behavior, the inverse
optimization framework found no anisotropic advantage over
the isotropic model. Given this observation, the homo/aniso/
hyper case was not pursued further, and the considered models
were limited to the homo/iso/hyper and hetero/iso/linear-
elastic cases.

For the hetero/iso/linear-elastic case, we plotted the shear
modulus map of the lung shown in Figure 4. In both SQP
and PSO optimization schemes, the resulting spatial
distribution of the shear modulus exhibited strong
heterogeneity. The value for shear and bulk moduli was
108–312 kPa and 144 kPa–17.2 MPa, respectively, with the
tissue softening from the posterior to anterior regions of the lobe.

The displacements and strains measured by DIC and
predicted by the homogeneous and heterogeneous IFEA model

were shown in Figure 5. The predictions of the heterogeneous
model better matched the DIC displacement fields compared to
that of the homogenous model. The overinflation of the lung at
the anterior region was particularly well predicted by the
heterogeneous model (Figure 5B).

The three components of displacement errors (percent
normalized with respect of the maximum tissue displacement)
for homogeneous and heterogeneous cases were shown in
Figure 6. The errors for the heterogeneous case were
consistently smaller than that of the homogeneous case and
greatest in the z-direction (i.e., the direction at which DIC
camera overlooked the lung), likely corresponding to the
largest displacement values also being in the z-direction.

The overall IFEA settings and results of the two optimization
algorithms applied to the homo/iso/hyper and hetero/iso/linear-
elastic cases were summarized in Table 3. The homogeneous
isotropic model returned an average error of 2.3 mm for both
gradient-based and non-gradient-based optimization schemes.
The average error for the heterogeneous lung model was
consistently smaller than the homogeneous case; the PSO
algorithm resulted in a slightly smaller error compared to the
SQP algorithm (1.3 vs. 1.6 mm). The relative computational cost
(CPU time normalized with respect to the fastest case) and
number of iterations to reach the optimal solution were also
given; the PSO algorithms for the homo/iso/hyper and hetero/iso/
linear-elastic models were the fastest and most expensive
simulations, respectively.

DISCUSSION

While a one-to-one comparison between our reduced-order
model and extracted pulmonary tissue specimen measures is
impractical, we strived to compare the compound material
parameters (averaging shear modulus of hundreds of kPa in
all three constitutive models) with the reported ranges for
parenchyma, airway, and pleura layer individual component
responses (Tables 1, 2 and Figure 4). Our shear modulus
values, representing the combined parenchyma, airway, and
pleura layer materials, are greater than those of isolated lung
parenchyma (0.17–0.27 kPa) and the alveolar wall (1.74 kPa),
comparatively estimated by converting the previously reported
elastic modulus with an assumed Poisson ratio of 0.43 (Lai-Fook
et al., 1976; Cavalcante et al., 2005). Similarly converting the
reported 10–70 kPa elastic moduli of isolated airway specimens

TABLE 3 | General IFEA settings and results.

Homo/Iso/Hyper Hetero/Iso/Linear-elastic

Gradient-based optimization Error (mm) 2.3 1.6
Relative cost 2.7 3.1
Algorithm TRR SQP
Iterations 17 7

Non-gradient-based optimization Error (mm) 2.3 1.3
Relative cost 1.0 68.0
Algorithm PSO PSO
Iterations 30 77
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(Eskandari et al., 2019) yields airway shear modulus range of
3.5–25 kPa, also less than our combined shear modulus results.
Conversely, the encapsulating visceral pleura layer is
approximated to have a shear modulus of ∼200 kPa at low
stretch ratios (Humphrey et al., 1986), similar to our values.

The ratio between the bulk and shear modulus (often used to
gage material compressibility) was nearly 5.5 for the homo/iso/
hyper case, and 0.5 for the hetero/iso/linear-elastic case. This is
significantly less than incompressible materials (with a ratio
greater than 1,000) and justifies the use of the compressible
material model, as previously suggested (Birzle and Wall,
2019). Our model suggests that lung elasticity is not
distributed evenly across the regions, but that the shear
moduli is smallest in the anterior region (Figure 4),
corresponding to the location of maximum deformation.
While literature substantiating this tissue heterogeneity across
the organ is not yet available, regionally extracted tissue subjected
to tensile or indentation tests can enable future comparisons.

Using this reduced-order model of the lung, our optimization
scheme finds the anisotropic material model can be interchanged
with an isotropic representation (since κ � 0.33) and still
sufficiently capture the experimental displacements. While this
finding is bound to the model limitation and calls for further
experimental works to validate, it still can be substantiated given
the isotropic material behavior of the parenchyma (Fung, 1988)
where collagen and elastin fibers are randomly oriented (Toshima
et al., 2004). However, the major strains were found to
predominantly align with the medial-lateral direction while the
minor strains were preferentially aligned with the anterior-
posterior direction (Figure 3); this indicates that the spatial
patterns and strain orientations were possibly a result of the
geometry and loading of the lung more so than the anisotropic
nature of the tissue material itself. An alternative hypothesis is the
embedded monopodial main bronchial airway, which delivers
oxygen from the anterior to posterior region and is twice as compliant
circumferentially than axially, enables greater stretch in the medial-
lateral direction (Sattari and Eskandari, 2020). Therefore, it is
plausible that larger collagen-enriched airways may contribute to
the anisotropic strain distribution in the lung to a great extent.
Including a model mapping of the major airway pathways may help
further differentiate the tissuematrix versus the effect of the structural
reinforcement. This hypothesis will be explored further in upcoming
mice and human lung experiments with differing bronchial
branching patterns and collateral ventilation compared to the pig.

This reduced-order in-silico model of the lung facilitates a
novel and much-needed class of inverse modeling approaches for
the respiratory system. Current pulmonary biomechanical
models of the lung can be categorized into two classes: 1)
models primarily based on in-vivo kinematics data obtained
from computed tomography (CT) or magnetic resonance
(MR) images (Al-Mayah et al., 2010; Eom et al., 2010; Li
et al., 2013; Ilegbusi et al., 2016; Ladjal et al., 2021), and 2)
classic models idealizing the lung as single/multi resistive
compartments calibrated with pressure-volume data (Bates,
2009). While these methods have been quite insightful, their
shortcomings have motivated the novel approach put forward in
this study. For instance, CT- and MR-based models (class 1)

utilize convoluted and tedious deformable image registration
(DIR), further challenged by the lack of a universal ground truth
of lung nodules which necessitates expert-determined anatomical
landmark detection and hinders model validation (Sotiras et al.,
2013; Sarrut et al., 2017). Additionally, compartmentalized models
(class 2) describe global bulk elastance and resistance behaviors and
neglect the intricate multiscale architecture of the lung, omitting the
local heterogeneities and strain risers responsible for inflammation
and damage (Vlahakis et al., 1999; Gattinoni et al., 2003). The
absence of controllable testing parameters and continuous measures
in-vivo limits basic lung kinetic and kinematic investigations, such as
exploring the role of ventilation volume and rate, and contrasting
physiological negative-versus artificial positive-pressure ventilation
(Eskandari et al., 2021). Our ex-vivo informed in-silico approach can
readily establish the mechanical science of breathing by merging
detailed data acquisition with computational predictions.

Forging a bridge between tissue-scale kinematics and organ-
level kinetics facilitates fundamental explorations of multiscale
characterization and inaugurates several applications.
Generalizing and informing the model with multiple lung data
sets and complete inhalation and exhalation breathing pressures
can empower surgical planning strategies based on minimizing
changes in strain patterns from lobectomies, segmentectomies,
and wedge resections to preoperatively improve patient outcomes
instead of postoperative evaluations (Charloux and Quoix, 2017).
Extending this framework to include diseased lungs categories,
such as fibrosis or asthma, will enable regional tissue remodeling
detection studies to discover load- and deformation-based
pathological deviations to guide therapies, as inspired by
similar FE-based models of the lung being used to better
aerosol deposition in asthmatic patients (Wall et al., 2010;
Soni and Aliabadi, 2013) and optimal radiation therapy
(Werner et al., 2009; Ilegbusi et al., 2016). Furthermore, this
model has potential applications for the design of ventilators:
many didactic (Anderson et al., 2009) or clinical ventilators
(Zuckerberg et al., 2020) contain a lung-replicating rubber
bladder or elastic balloon component with mechanical
properties that are not physiologically representative. Our FE
lung membrane-like model and optimized material properties
can enhance the design resemblance of these ventilator systems to
improve patient care.

This study has several limitations. Firstly, one animal was used
to demonstrate this IFEA framework and therefore, statistically
conclusive results regarding the material property values are not
warranted. Second, while the optimization algorithms minimized
the error, the final error was still not completely vanished; this
indicates lung-specific constitutive models are needed to better
replicate the DIC measurements, as concluded by earlier works
(Eskandari et al., 2019). Third, while DIC allows continuous and
evolutionary behaviors of the lung to be examined whereas digital
volume correlation techniques are at discrete snapshots (Arora
et al., 2021), DIC can only access the lung surface and the internal
structure of the lung and the volumetric strain distributions are
not represented; a potential enhancement to this technique could
be the use of mirrors and prisms to collect multi-angled views.
Fourth, the framework is built on ex-vivo setting, hence the predicted
material properties are likely to be influenced by the deformation

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org October 2021 | Volume 9 | Article 68477811

Maghsoudi-Ganjeh et al. Inverse Finite Element Lung Model

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


and kinetics of the ribcage and diaphragm. Fifth, the anisotropic
formulation implemented in the FE-package used in this study does
not take into account the compressibility aspect of plane-stress
elements, such as membrane elements in our model and assumes
constant volume instead while still allowing for reduction in the
element thickness due to in-plane deformations. Thus, the
compressibility coefficient (parameter D in the HGO model) is
not optimized by the IFEA framework. New implementation of the
HGO formulation that do indeed account for the compressibility are
needed to further investigate the effects of this limitation and provide
insight into the compressibility of the anisotropic model. Lastly, for
simplicity and computational time considerations, the
heterogeneous model was a linear model whereas a nonlinear
model might result in a better calibrated model.

CONCLUSION

This study establishes a computational model representing local
lung kinetics by associating global organ-level pressures and
volumes to tissue-level kinematics. This is achieved by
developing a novel lung application IFEA framework informed
and verified by ex-vivo continuous DIC measurements from a
porcine lung controlled via a custom-designed respiration
apparatus. The resulting FE model introduces a model
constructed solely from the geometry and deformation of its
external surface as a result of the applied inflation load. This in-
silico reduced-order pulmonary surrogate consolidates complex
lung tissues (i.e., the visceral pleura, bulk parenchymal tissue, and
the airway tree) into a simplified 3-D surface model, yielding
compound material properties of a membrane representative of
pressure-deformation features of the lung. Furthermore, the
heterogeneous lung elasticity map presented in this study
empowers new avenues to improve characterization of
diseased states by enabling region-specific assessments of

mechanical remodeling, such as variations in tissue elasticity,
thus far critically absent in the field.
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