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13C metabolic flux analysis (MFA) has become an indispensable tool to measure

metabolic reaction rates (fluxes) in living organisms, having an increasingly diverse

range of applications. Here, the choice of the 13C labeled tracer composition makes

the difference between an information-rich experiment and an experiment with only

limited insights. To improve the chances for an informative labeling experiment, optimal

experimental design approaches have been devised for 13C-MFA, all relying on some

a priori knowledge about the actual fluxes. If such prior knowledge is unavailable,

e.g., for research organisms and producer strains, existing methods are left with a

chicken-and-egg problem. In this work, we present a general computational method,

termed robustified experimental design (R-ED), to guide the decision making about

suitable tracer choices when prior knowledge about the fluxes is lacking. Instead of

focusing on one mixture, optimal for specific flux values, we pursue a sampling based

approach and introduce a new design criterion, which characterizes the extent to which

mixtures are informative in view of all possible flux values. The R-ED workflow enables the

exploration of suitable tracer mixtures and provides full flexibility to trade off information

and cost metrics. The potential of the R-ED workflow is showcased by applying the

approach to the industrially relevant antibiotic producerStreptomyces clavuligerus, where

we suggest informative, yet economic labeling strategies.

Keywords: 13C-metabolic flux analysis, experimental design, isotope labeling experiments, Streptomyces

clavuligerus, robustification, information criteria

1. INTRODUCTION

Industrial biotechnology uses microorganisms as bio-factories for the production of a wide range
of valuable compounds, ranging from food and feed additives, over biofuels to pharmaceuticals.
The transition to a bio-based economy needs to establish sustainable yet economic processes with
chassis organisms that achieve maximal yield and productivity (Lee et al., 2012; Dai and Nielsen,
2015). To achieve this chief goal, metabolic engineering strategies seek to orchestrate the material
flows to transform resources efficiently to the target products (Stephanopoulos et al., 1998). In
metabolic engineering, “omics” technologies nowadays have a fixed place, shedding light on the
different molecular aspects of the cellular network. With the genome constituting the cellular
inventory, its capacity (transcriptomics, proteomics) together with the thermodynamic driving
force (metabolomics) determine the metabolic phenotype (fluxome). Hence, the knowledge of the

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2021.685323
http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2021.685323&domain=pdf&date_stamp=2021-06-22
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:k.noeh@fz-juelich.de
https://orcid.org/0000-0002-5407-2275
https://orcid.org/0000-0002-5383-3415
https://orcid.org/0000-0002-3217-4705
https://orcid.org/0000-0003-1013-5809
https://doi.org/10.3389/fbioe.2021.685323
https://www.frontiersin.org/articles/10.3389/fbioe.2021.685323/full


Beyß et al. Robustifying Tracer Design for 13C-MFA

fluxome, i.e., the set of all metabolic reaction rates (fluxes) in a
living cell, plays a primary role in explaining how the phenotype
and biological function actually manifests in a cell (Nielsen, 2003;
Sauer, 2006).

The leading method for the accurate quantification of in vivo
fluxes is 13Cmetabolic flux analysis (13C-MFA) (Wiechert, 2001).
13C-MFA uses mathematical modeling to infer the fluxes from
data gathered in isotope labeling experiments (ILEs), i.e., external
rate measurements and the labeling signatures of metabolic
intermediates, to produce a so-called metabolic flux map. Any
13C-MFA study starts with the question of how the ILE should
be configured so that the risk of producing non-informative
data, in terms of the desired fluxes, is minimized. This explains,
why in silico experimental design (ED) has a longstanding
tradition in 13C-MFA and has become a basic module in the
13C-MFA workflow (Möllney et al., 1999; Wiechert et al., 2001;
Antoniewicz, 2013). In practice, also resource considerations (in
terms of workforce, time, and money) play a non-negligible role
when configuring ILEs (Nöh et al., 2018). In particular, labeled
substrates are a substantial cost factor. With rare exceptions
(Rantanen et al., 2006; Nöh et al., 2018), ED efforts in 13C-MFA
have concentrated on the identification of the most informative
tracers for single (Möllney et al., 1999; Nöh and Wiechert, 2006;
Metallo et al., 2009) and multiple (Crown et al., 2016) ILEs. More
recently, also tracer costs have been considered (Bouvin et al.,
2015; Nöh et al., 2018).

Besides the budget, the decision about the ILE configuration
rests on information metrics that estimate the expected
information gain of the ILE. Several of these metrics have
been proposed in the statistical literature (Pukelsheim, 1993), all
relying on flux confidence intervals as determined by statistical
techniques such as linearized statistics (Wiechert et al., 1997)
or profile likelihoods (Antoniewicz et al., 2006). Either way, the
tracer design depends on an informed guess of the true fluxes,
which are, however, to be determined by the ILE. In practice,
such knowledge is not always at hand in the ILE planning stage,
e.g., in the case of new strains or unusual substrates. Clearly,
when in such situation the mathematical model describing the
input (substrate)—output (labeling) relation is highly non-linear
in the flux values, any approach conditioned on one single
flux guess risks rendering the design choice sub-optimal or
even meaningless. This leaves the field with a chicken-and-
egg dilemma.

In the situation of limited knowledge it is therefore warranted
to robustify the tracer design by making it less sensitive to
the assumed fluxes. One solution to this is to employ a multi-
experiment design strategy, where a sequence of ILEs is planned
using the acquired information from the previous experiments to
design the next ILE, therewith consecutively narrowing down the
flux ranges (Körkel et al., 2004). Unfortunately, this approach is
often impractical for 13C-MFA due to time and cost constraints.

Abbreviations: ARG, arginine; CA, clavulinic acid; ED, experimental design;
GC-MS, gas chromatography-mass spectrometry; GLYC, glycerol; HDF5,
hierarchical data format, version 5; ILE, isotope labeling experiment; MFA,
metabolic flux analysis; O-ED, optimal experimental design; R-ED, robustified
experimental design.

Another ED strategy to tackle the uncertainty in the fluxes is to
cast the design task into a worst-case formulation (Pronzato and
Walter, 1988; Asprey and Macchietto, 2002). Technically, such
approaches yield bi-level optimization problems to minimize
the maximal expected confidence region of the unknown fluxes,
which are typically difficult to treat (Hettich and Kortanek, 1993),
even when considering relaxed approximate formulations (Beyer
and Sendhoff, 2007). More importantly, even though worst-case
solutions deliver a guaranteed minimum of information under
all possible circumstances, these designs may be far from being
informative on average.

Here, we pursue a single-experiment approach that yields
tracer designs, which are immunized against the uncertainty
in the initial flux “guesstimates”. The methodology, called
robustified ED (R-ED), relies on flux space sampling to compute
design criteria for the whole range of possible fluxes. The sampled
EDs are then screened for best compromise solutions, where the
“best” design can be tailored a posteriori to account for new
circumstances or policy changes. Hence, instead of computing
a single best tracer mixture, an exploration-based decision
process is followed that allows to take practical constraints,
such as commercially available amounts of labeled species or
mixture complexity, into consideration once the set of EDs
is available. This enables to keep the design strategy flexible,
e.g., to switch between a design tailored to particular subsets
of fluxes or a design which targets as many as possible fluxes
simultaneously. To provide a generally applicable framework,
the R-ED workflow relies on 13C-MFA models specified in the
universal model description language FluxML (Beyß et al., 2019).
To facilitate easy adoption, the R-ED workflow is assembled
from standard computational 13C-MFA elements, being available
for example in the high-performance simulation software suite
13CFLUX2 (Weitzel et al., 2013). We showcase our approach
with Streptomyces clavuligerus, a clavulanic acid (CA) producing
bacterium of interest for pharmaceutical industries. For this
organism, metabolic models have been reconstructed, but a deep
characterization of the fluxome is yet lacking.

2. MATERIALS AND METHODS

2.1. Modeling, Evaluation, and Analysis
Frameworks
The 13C-MFA network model, including flux constraints,
extracellular rate and labeling measurements was specified
visually, following the workflow described in Nöh et al.
(2015), using the network editor and visualization software
Omix (Omix Visualization, Lennestadt, Germany, Droste et al.,
2011). The network model was formulated in the universal
flux modeling language FluxML (Beyß et al., 2019). The
FluxML model file served as input for the high-performance
13C-MFA simulation suite 13CFLUX2 (Weitzel et al., 2013),
with which all simulation tasks and statistical analyses were
performed. Simulation results are stored in binary HDF5
(Hierarchical Data Format version 5) files (The HDF Group,
2021). For intermediate evaluation and processing tasks, such
as the diagnosis of flux (non-)identifiability and compiling
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the results, custom Python and Matlab (The MathWorks,
Inc., Natick MA, USA) scripts were developed that enable
the fully automated execution of the evaluation. All scripts
are included in the Supplementary Information to guarantee
reproducibility of the data analyses and to allow for replication
experiments. The complete execution pipeline is documented in
the Supplementary Information S1 (Section S2).

2.2. Construction of a 13C-MFA Model for
S. clavuligerus
A 13C-MFA network model of the core central metabolism of
S. clavuligerus was formulated based on previous work (Medema
et al., 2010; Ramirez-Malule et al., 2016, 2018; Gómez-Ríos et al.,
2020). Reactions of CA biosynthesis via the clavam pathway were
added (Ramirez-Malule et al., 2018). A visual overview of main
reaction pathways is provided in Figure 1. All main metabolic
pathways of central carbon metabolism were included in the
model, including glycolysis (emp), pentose phosphate pathway
(ppp), tricarboxylic acid (tca) cycle, anaplerotic reactions, urea
cycle, clavam pathway, as well as lumped amino acid biosynthesis
pathways. Cellular growth was modeled based on the biomass
composition measured for Streptomyces coelicolor (Borodina
et al., 2005), due to strong evidence that the genome core
between the two Streptomyces strains is highly conserved (Alam
et al., 2011). Here, for each biomass component one efflux
was formulated, with a flux value given by the respective
biomass contribution multiplied by the dilution rate. Reaction
bidirectionalities were formulated according to Bouvin et al.
(2015). For all intracellular reactions, carbon atom transitions
were formulated. The 13C-MFAmodel consists of 48 intracellular
metabolites and 89 reactions (74 uni- and 15 bidirectional),
has two uptake reactions [for glycerol (GLYC) and arginine
(ARG)] and has 22 independent (free) flux parameters (7 net
and 15 exchange fluxes) (Wiechert and de Graaf, 1996). All net
fluxes are constrained by a lower and upper bound of ± 100%
of the GLYC uptake, respectively. The exchange fluxes of all
bidirectional reaction steps were constrained by an upper bound
of 200% of the GLYC uptake. The complete model, specified in
the universal flux modeling language FluxML, is provided in the
Supplementary Data S2.

2.3. Experimental Design Setting for the
13C-MFA Study
For our study, we conceived an experimental setup for
S. clavuligerus that is relevant to characterize metabolic fluxes
under CA production conditions (Sánchez et al., 2015; Ramirez-
Malule et al., 2018).

Isotope labeling experiment: S. clavuligerus is cultivated under
chemostat conditions at a dilution rate of 0.03 h-1 (Bushell
et al., 2006). A growth medium is considered that contains
GLYC and ARG as sole carbon sources in concentrations of
20 and 0.17 g/L, respectively, which was found beneficial for
CA production (Ser et al., 2016). Therefore, GLYC (C-3) and
ARG (C-5), both feeding into clavam biosynthesis, qualify as
tracers. All commercially available isotopic species are considered
in the ED study. These are [U-13C3]-, [1,3-13C2]-, [2-13C1]-,
and [12C]-GLYC, and [U-13C6]-, [6-13C1]-, and [12C]-ARG. For
a purity of 99 atom%, the costs of these tracers vary between

0.36 $/g ([12C]-GLYC) and 3,449 $/g ([U-13C6]-ARG). The ILE is
performed in a bioreactor with a working volume of 250 ml. To
achieve isotopic stationarity of the label in protein-bound amino
acids, samples are withdrawn after 5 bioreactor residence times
(approximately 20 cell divisions) (Wiechert and Nöh, 2005). Full
specification of tracers used in this study is available in the
Supplementary Information S1 (Table S1).

Measurements: Extracellular ratemeasurements for the uptake
of ARG, CA production and CO2 secretion are assumed to be
available. Standard deviations of these rates are formulated based
on experience (5% for ARG and CA, 20% for CO2). The specific
GLYC uptake rate of 4.9 mmol GLYC/gCDW/h (glyc_in) is scaled
to a value of 100 and all fluxes are related to this rate. The
ARG uptake rate (arg_in) is constrained to values below 3% of
the glyc_in, as estimated from the demand for CA production
(Bushell et al., 2006).

For measuring isotopic labeling patterns of proteinogenic
amino acids, gas chromatography–mass spectrometry (GC–MS)
was selected as analytical tool, being the predominantly used
analytical device in 13C-MFA. Mass isotopomer distributions of
16 commonly detected amino acids comprising 41 measurement
groups (167 independent measurements in total) are assumed
(Supplementary Information S1, Table S2). For the prediction
of the expected measurement error, the following linear error
model was employed:

σ
(
ymeas

)
= 4.120 10−2 · ymeas + 6.655 10−3 (1)

as derived from a previous literature survey (Nöh et al., 2018).
The complete measurement configuration model is found in the
FluxML file (Supplementary Data S2).

2.4. Traditional Optimal ED Workflow for
13C-MFA
To introduce the formal notation used throughout and for
convenience of the reader, we recapitulate the essentials of the
traditional workflow for the optimal design of isotopic tracer
experiments. At metabolic steady-state, the intracellular flux
vector v of a given metabolic reaction network, obeys a linear
stoichiometric system:

S · v = 0, C · v ≤ c (2)

with the m × n dimensional stoichiometric matrix S (with
m < n), and additional linear flux constraints to exclude
physiologically meaningless states, to set reaction directions,
or to equate fluxes of scrambling reactions (Wiechert and
de Graaf, 1997). Therewith, the system in Equation (2) defines
the flux solution space V, a convex polytope. A basis of V is
given by the independent (or free) fluxes vfree ∈ R

n−rank(S)

(Wiechert and de Graaf, 1996). Notice that while the number
of independent fluxes is unique, the choice of the free flux
set constituting the vector vfree is non-unique. Since the
knowledge of vfree is sufficient to determine the complete flux
vector v, the attribute “free” is omitted for brevity, unless
otherwise noted.

The aim of 13C-MFA is to determine the fluxes that best
explain a set of isotopic steady-sate labeling measurements y.
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FIGURE 1 | Metabolic network model of the central carbon metabolism of S. clavuligerus (simplified view). The model comprises 48 intracellular metabolites (bold)

and 89 reactions (italic), grouped into 8 pathways (color-coded): glycolysis (emp), pentose phosphate pathway (ppp), tricarboxylic acid cycle (tca), anaplerosis (ana),

urea cycle (urea), clavam biosynthesis pathway (clavam), uptake (upt) and lumped biosynthesis reaction for biomass (bm). The full model specification in FluxML

format is found in Supplementary Data S2.

To this end, a 13C-MFA model is formulated with which the
labeling measurements y are calculated, given some feasible
fluxes and substrate mixture xinp, which is a cocktail composed
by available substrate species:

y = f
(
v, xinp

)
+ ǫ, with ǫ ∼ N (0,6) , v ∈ V, xinp ∈ Xinp (3)

The non-linear function f follows from mass balancing of
the atom transition model (Wiechert et al., 1999). Here,

the measurement errors ǫ are assumed to be independent
and normally distributed with zero mean and measurement
covariance matrix 6.

The information about how precise the fluxes are expected
to be, given the measurements is captured in the approximate
flux covariance matrix Cov, which is derived from the Fisher
Information matrix FIM. The FIM relies on the first order
sensitivities (i.e., the Jacobian) of the labeling system (3) at some
reference flux vector v⋆:
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FIM
(
v⋆, xinp,6

)
=

∂ y

∂ v

∣∣∣∣
T

v⋆

·6−1 ·
∂ y

∂ v

∣∣∣∣
v⋆

(4)

Hence, the FIM, and therefore the estimated flux covariance
matrix Cov, can be influenced by deliberate choice of the design
variables: the composition and errors of the measurements, y
and 6 (both considered fixed in this study), as well as the input
substrate composition xinp.

With Equation (4) the cyclic problem of non-linear ED
becomes apparent: the FIM relies on the assumption that v⋆ is
a good approximation of the true fluxes, which, however, we wish
to determine with the ILE. Depending on the non-linearity of
the 13C-MFA model (3), evaluating Equation (4) at some other
flux vector may yield a different FIM and, consequently, different
approximate flux (co)variances:

Cov
(
v⋆, xinp,6

)
= FIM−1

(
v⋆, xinp,6

)
(5)

This procedure comes with an additional caveat: to ensure that a
design is non-degenerate, the FIM is required to be invertible.
Technically, invertibility is enforced by imposing lower and
upper thresholds for the singular values and the condition
number of the FIM (Golub and van Loan, 1996). Such thresholds
are then met by removing statistically non-identifiable fluxes by
fixing their value to the respective reference value in v⋆ (Wiechert
and de Graaf, 1997; Isermann and Wiechert, 2003). In reality
this means that the inversion leads to a dimension reduction
of the free flux space, which ties the design even tighter to the
flux guesstimate. Formally, we call the selection of the remaining
nact identifiable free fluxes active fluxes, and denote them by
vact . The removal of statistically non-identifiable fluxes is not
necessarily unique, implying that any criterion relying on the
covariance matrix depends on the choice made. For simplicity,
out of all possible active flux sets, the one with the overall
minimal covariances is selected. Consequently, the covariance
matrix depends on the choice of vact . To not overload notation,
we omit this dependency for brevity.

For the purpose of ED, the information about the expected
flux precision is condensed to a single value, giving raise to
a criterion which is maximized by varying the tracer mixture.
For this, multiple “alphabetical” information criteria have been
proposed (Pukelsheim, 1993). The most prominent among these
is the D-criterion, which measures the volume of the expected
flux confidence ellipsoid in the (dimension-reduced) flux space:

8D,nact

(
xinp, v⋆

)
=

2 nact

√
det

(
Cov

(
v⋆, xinp,ref ,6

))

det
(
Cov

(
v⋆, xinp,6

)) (6)

Here, for the ease of interpretability, the D-criterion values are
related to some predefined reference ILE. In this way, values
larger (smaller) than 1 indicate that the design is improved
(worse) as compared to the reference tracer.

In optimal ED (O-ED) designs with a high number of
identifiable fluxes are preferred (requiring a minimal number
of flux fixations). This implies that optimal designs are often
conditioned on the highest possible nact , where nact is usually
found by an iterative procedure. Nonetheless, also partial designs,

targeting only a sub-set of the fluxes, may be desired (Möllney
et al., 1999). We subsume all cases under the same notation,
indicated by the effective dimensionality of the criterion value:

max
xinp∈Xinp

8D,nact

(
xinp, v⋆

)
(7)

It should be remarked that in Equation (7) instead of the
D-criterion any other information metric may be used.

In practice, 13C-MFA tracer mixture compositions contain no
more than a handful of species. Hence, Equation (7) is solved
by grid searching. For a substrate with s different tracer species
evaluated on an equally spaced grid with an interval distance of
d, this amounts to

1

(s− 1)!

s−2∏

i=0

(
1

d
+ 1+ i

)
(8)

design combinations to be tested and collected. Finally, these
D-criterion values 8D,nact are visualized in mixture triangles
from which the optimal tracer combination is read off (cf.
Figure 2). The computational O-ED workflow is summarized in
Algorithm 1.

To summarize, the assumption that v⋆ is a good estimate
of the true fluxes, conditions the traditional O-ED to the
flux guesstimate. In addition, covariance-based criteria relying
on an inversion of the FIM may encounter the need for a
dimensional reduction of the ED, which also ties the design to
the flux guesstimate.

3. RESULTS AND DISCUSSION

3.1. When Traditional ED Is of Limited
Utility: An Illustrative Example
In this work, we take the industrially relevant non-model
organism S. clavuligerus as an example. The Gram-positive
bacterium is a natural producer of CA, a potent inhibitor
of β-lactamase enzymes secreted by bacteria as a defense
mechanism against β-lactam antibiotics (Brown et al., 1976;
Ramirez-Malule, 2018; Ramirez-Malule et al., 2018; López-
Agudelo et al., 2021). S. clavuligerus grows on GLYC as main
carbon source, while amino acid supplementation, e.g., ARG,
improves CA titer. GLYC is converted to glyceraldehyde-3-
phosphate and then incorporated to the β-lactam ring of the CA
molecule via the clavam pathway, whereas ARG provides carbon
for the remaining part of the metabolite. Precise quantitative
information about the intracellular fluxes from these substrates
toward the clavam pathway is lacking so far. We take the
experimental scenario of CA production with S. clavuligerus as
an example to showcase the shortcomings of the traditional O-ED
workflow (Algorithm 1).

We selected two different flux constellations from the
space of stoichiometrically feasible ones. Flux constellation I
is characterized by a low flux through the urea cycle and a
high CA flux, whereas flux constellation II has a low flux
through the clavam pathway, mimicking low CA production,
and consequently a high CO2 secretion and metabolically active
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Algorithm 1 Traditional optimal tracer design.

1: function COMPUTETRACERDESIGNMETRICS(v⋆, nact ,Xinp)
2: arch← ∅
3: for allmixtures xinp ∈ Xinp do

4: Vact ← {̂vact | v̂act is composed of identifiable fluxes ∧dim (̂vact) = nact}
5: vact ← argmin

v̂act∈Vact

INFOMETRIC(xinp, v⋆, v̂act) ⊲ Select best active flux vact out of Vact

6: 8D,nact

(
xinp, v⋆

)
← INFOMETRIC(xinp, v⋆, vact)

7: insert
[
8D,nact

(
xinp, v⋆

)
, xinp, vact , nact

]
into arch

return arch

FIGURE 2 | Expected information for two different flux constellations. Ternary triangles for mixtures of [12C], [U-13C6], and [6-13C1] tracer species of ARG and

[2-13C1]-GLYC. The triangles are calculated for two different flux constellations (I and II) differing, inter alia, in the clavam pathway flux (see also

Supplementary Information S1, Table S3). The upper row gives results for a full design (9 active fluxes), the lower row for a dimension-reduced design (3 active

fluxes).

urea cycle. The values for both flux constellations are available in
Supplementary Information S1 (Table S3).

For a [2-13C1]-GLYC tracer we explored the D-criterion
landscape for mixtures of three ARG species, namely [12C]-,
[U-13C6]-, and [6-13C1]-ARG. The results in terms of 8D are

represented by ternary plots shown in Figure 2. First, for 9
active fluxes (the maximal number of identifiable fluxes out of
22 free fluxes with the reference mixture), we found mixtures
that are informative for both constellations, namely mixtures
that are dominated by [6-13C1]-ARG, and unfavorable mixtures,
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primarily mixtures with a high proportion of [12C]-ARG. In
particular, the information-less mixtures migrate from 70%
[12C]-ARG and 5% [U-13C6]-ARG for flux constellation I to
15% [12C]-ARG and 75% [U-13C6]-ARG for flux constellation
II, while the proportion of [6-13C1]-ARG remains similar.
Consequently, whereas for constellation I, 10% [6-13C1]-ARG
and 90% [U-13C6]-ARG is a highly informative mixture, it
performs poorly for constellation II. Strikingly, constellation II
shows a large gray region in the mixing triangle, representing
tracer compositions leading to a singular FIM, meaning that
these mixtures are unable to identify some of the 9 active fluxes.

When reducing nact to 3, a minimum of three fluxes can
be identified by all tested mixtures. However, compared to
nact = 9, the design results, captured by the mixing triangles,
change drastically. This could be expected, since full and
dimension-reduced designs have a different set of target fluxes.
The previously information-less mixtures with low [U-13C6]-
ARG content are among the best performers. Also in this
case, the information landscapes of the two flux constellations
have different characteristics. Mixtures with low [6-13C1]- and
[U-13C6]-ARG portions are clearly favored by constellation I,
whereas for constellation II the proportions of [6-13C1]- and
[12C]-ARG tracers do not matter as long as the contribution of
[U-13C6]-ARG remains small.

In summary, the optimal mixture can be quite different
for different feasible flux constellations. As such, this is not
problematic, as long as the flux (co)variances remain coherent
over the flux space. In the example, this coherence is, however,
broken as indicated by the large gray area for the full design
(nact = 9). This motivates the introduction of a criterion
that favors designs being informative on average, in view of
the whole relevant flux space. Secondly, it appears beneficial
to delay the design decision on the modeling choice of nact to
the post-processing phase, rather than conditioning the design
decision on it.

3.2. Robustified Experimental Tracer
Design Workflow R-ED
In a situation, where precise knowledge about the true flux
distribution is lacking, tracer designs that are informative for
a wide range of possible flux values (i.e., robustified designs)
are preferable over those designs that are confined to a specific
flux setting (optimal designs). To make the design choice less
vulnerable to assumptions about flux values, we need to account
for all possible flux values. When no prior knowledge on the in
vivo fluxes is available, hence, the whole feasible flux space V, as
defined by (2), is to be considered. This comes with the need of
an update for the information criterion.

3.2.1. Criteria for Robustified Experimental Tracer

Design
To characterize the robustness of substrate mixtures with respect
to the flux uncertainty, we introduce three design criteria, two
targeting the information gain of the ILE and one cost-related
criterion. Both information criteria rely on a sample of flux
constellations that are representative for the whole feasible flux
spaceV. Here, the population is derived by random sampling ofnS

flux maps vi, drawn from the convex flux space V. The resulting
set of sampled flux maps is denoted VnS = {vi}i=1,...,nS .

For characterizing the informativeness of the designs over a
set of sampled flux maps, taking the 2-quantile (median, Q2) of
the D-criterion values over the set is an apparent choice:

8̂D,nact

(
xinp

)
= Q2{8D,nact

(
xinp, vi

)
,∀vi ∈ VnS} (9)

The higher the median, 8̂D,nact , the smaller are the typically
expected flux variances, and hence the more favorable is
the design on average. Here, as noted in section 2.4, other
alphabetical criteria work equally well.

A second criterion for robustified tracer design, motivated in
the illustrative example, is the proportion of the flux space for
which the particular tracer choice achieves nact identifiable fluxes.
We call this criterion the coverage of the tracer design. Precisely,
the proportion of fluxmap samples vi out ofVnS , for which at least
one statistically identifiable flux set is found, defines the coverage:

8̂Cover,nact

(
xinp

)
=

card
(
{vi ∈ VnS | x

inp has nact identifiable fluxes}
)

nS
(10)

This means, the higher the coverage of a substrate mixture, the
higher is the chance to identify nact fluxes over the relevant flux
space V. We express the coverage in percents, where 0% (100%)
indicates that none (all) of the flux samples have nact identifiable
fluxes. Notice, that the coverage criterion does not make a
statement about how well the fluxes are identified. Conversely,
the 8̂D,nact values carry no information about how likely it is to
identify nact fluxes.

Finally, as a third criterion, we take costs into account. Here,
we restrict cost considerations to tracer costs as we have shown
before that these are the by far predominant cost drivers (Nöh
et al., 2018). The cost of each ILE is calculated by multiplying
the relative abundance of each tracer species with their required
absolute amounts and their costs per gram:

8$
(
xinp

)
= cT · xinp (11)

3.2.2. R-ED Workflow
In R-ED, we are interested in ILEs which maximize both
information criteria (9) and (10), while remaining economically
feasible. As motivated in the illustrative example, the selection
of the best tracer design involves to take trade-off decisions
between the objectives. The optimal trade-offs between the
objectives, the so-called Pareto optima, can be obtained by
multi-objective optimization approaches (Nöh et al., 2018). In
many practically relevant situations, besides inspecting the Pareto
optima, it may also be worthwhile to consider non-Pareto design
sets. For example, not all tracers may be available at the assumed
price or a dual mixture composition may be favored over a
mix of four tracers, although it is slightly less informative. We
therefore opted for an exploratory approach, which enables the
experimenter to study the relationship between the substrate and
the information criteria, to eventually make an informed decision
on a useful substrate mixture.
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Algorithm 2 Robust tracer design.

1: function COMPUTEROBUSTTRACERDESIGNMETRICS(nS , Xinp)
2:

3: ⊲ Phase I: SAMPLING
4: VnS ← SAMPLEFLUXSPACE(nS)
5:

6: ⊲ Phase II: PRE-ANALYSIS
7: dataPool← ∅
8: for all flux samples vi ∈ VnS do

9: for all nact ≤ nfree do

10: insert COMPUTETRACERDESIGNMETRICS(vi, nact , Xinp) into dataPool

11: ⊲ dataPool contains information on a per flux map sample basis
12:

13: ⊲ Phase III: EXTRACTION
OF METRICS

14: aggregatedDataPool← ∅
15: for allmixtures xinp ∈ Xinp do

16: for all nact ≤ nfree do

17: G← {d ∈ dataPool | d has mixture xinp∧ d has nact active fluxes}
18: 8̂D,nact (x

inp)← Q2{8D,nact

(
xinp, vi

)
, ∀ flux values vi ∈ G}

19: 8Cover,nact (x
inp)← card(G)

nS
20: cv ← count occurrences of each identifiable flux in G
21: 8$(xinp)← COMPUTETRACERCOSTS(xinp)
22: insert

[
8̂D,nact (x

inp),8Cover,nact (x
inp),8$(xinp) , xinp, nact , cv

]
into aggregatedDataPool

23: return aggregatedDataPool

The R-ED algorithm proceeds in three phases (cf.
Algorithm 2). Firstly, for a given 13C-MFA model the feasible
flux space is sampled uniformly providing nS flux map samples
VnS (SAMPLEFLUXSPACE). In case that prior knowledge about
the fluxes exists, e.g., in form of a joint confidence ellipsoid,
non-uniform Gaussian sampling can be employed instead
(Jadebeck et al., 2020).

In the second phase, the conventional O-ED module
(Algorithm 1 COMPUTETRACERDESIGNMETRICS) is applied to
every flux map sample vi (instead of just v⋆). For every nact the
information criterion8D,nact and the selection of active fluxes vact
are collected in a data pool.

In the third phase, the three design metrics are extracted
from the data pool. To this end, by iterating over all tracer
combinations and identifiable (active) flux sets, themedian-based
D-criterion (9) and the coverage (10) are calculated. Furthermore
tracer costs 8$

(
xinp

)
are added (COMPUTETRACERCOSTS).

Because we may be interested in particular fluxes to be
identifiable, the number of times they contribute to the active
flux sets is also derived. All these criteria are collected in
the aggregated data pool, containing all relevant information
for making design decisions. The aggregated data pool is
then subjected to visual post-processing to identify a suitable
experimental setting for the ILE as showcased below.

3.2.3. Implementation of the R-ED Workflow
The R-ED workflow schematic is shown in Figure 3. As input,
a valid 13C-MFA model is required. One convenient way to
set up a model is to employ the Omix software for visual

network composition (for details see section 2.2). The model
contains the information about reaction stoichiometry, carbon
atom mappings, measurement configurations (external rates and
label incorporation) together with their standard deviations,
formulated in an FluxML model (model.fml). The FluxML
model is validated against the FluxML language standard as
defined in the W3C XML Schema www.13cflux.net/fluxml using
the FluxML parser fmllint. Tracer species are specified,
together with purity (atom%) and costs ($ per substrate
feed), in separate tracer specification XML files (mix.fml).
Exemplary model and tracer specification files are available in
Supplementary Data S2.

In phase I, the flux space V is sampled uniformly. To this
end, the ssampler tool of the high performance simulator
13CFLUX2 is called, which implements the Markov Chain
Monte Carlo algorithm Hit-and-Run (Bélisle et al., 1993).
Another alternative is to call the sampling suite HOPS (Jadebeck
et al., 2020), a library which contains various efficient sampling
algorithms specially tailored to polytope sampling. Sampling
results are collected in a HDF5 file (samples.hdf5). Then,
each individual sample vi ∈ VnS is transferred to the
model using the setfluxes command. With the resulting nS
FluxML models (model_vi.fml) and the tracer specification
file mix.fml, the edscanner tool is called to generate
the tracer mixture grid (Xinp, card(Xinp) = nT) of desired
granularity. For all tracer combinations the first-order derivatives
of the labeling states with respect to the fluxes (i.e., the
Jacobians) are calculated with the 13CFLUX2 simulator. Per
flux sample one Jacobian is generated and stored in an HDF5
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FIGURE 3 | Computational workflow for robustified tracer design. The R-ED workflow consists of four main blocks: Phase 0 - Model setup: Assembly and

configuration of the metabolic model with Omix; Phase I - Sampling: Determining a set of flux maps that are representative for the feasible flux space and computation

of Jacobians of the labeling systems with 13CFLUX2; Phase II - Pre-analysis: Determination of active flux sets and calculation of design metrics for the flux map

samples; Phase III - Extraction: Aggregating the results from different flux map samples to combined metrics. The aggregated data pool is then subjected to further

analysis to support informed decision-making. Matlab and Python scripts are found in the Supplementary Data S3.

file, resulting in nS edscan_sample_vi.hdf5 files with nT
Jacobians each.

In phase II, information metrics are calculated for each
flux sample – tracer mixture combination (Algorithm 1). The
Fisher matrices are calculated from the measurement covariance
matrices and the Jacobians generated in the previous phase,
according to Equation (4). For computational efficiency, the
calculation of the information metrics are performed in parallel
with a Python script (Global_Algorithm.py. Results are
collected in a data pool (Results_comb.hdf5).

In the final phase of the R-ED workflow, the data pool is
further evaluated by the Matlab script Aggregate_all.m
to aggregate the information criteria and to calculate the ILE
costs. The aggregated data pool contains the information that
can be interrogated from different angles to support decision-
making about the ILE. Various strategies are possible, which are
discussed in the next section. Further details about the workflow
execution are provided in the Supplementary Information S1

(Section S2). Glueing and analysis scripts are available in
Supplementary Data S3.

3.3. Applying the R-ED Workflow to
S. clavuligerus
Streptomyces bacteria are known to be potent producers of a
broad range of antibiotics (de Lima Procópio et al., 2012). The
genus includes strains such as S. griseus for the production of
streptomycin, S. venezuelae for chloramphenicol, or S. fradiae
for fosfomycin, neomycin and tylosin (Okamoto et al., 1982;
Demain and Sanchez, 2009). To increase treatment efficiency
and to mitigate emerging bacterial resistances, combinations of
antibiotics are administered. Here, one common strategy is to
combine an antibiotic with a drug which inhibits the antibacterial
defense system. For instance, resistance to β-lactam antibiotics
is tackled by so-called β-lactamase inhibitors. One important
inhibitor, which is used in conjunction with β-lactam antibiotics
such as penicillin, is CA being produced by the filamentous
bacterium S. clavuligerus (Brown et al., 1976). The combination
of CA and amoxicillin is a well-established broad-spectrum
antibacterial treatment (World Health Organization, 2019a,b),
which was prescribed in 2018 almost 8 million times in the
US alone (Kane, 2021). Although bioprocess development and

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 9 June 2021 | Volume 9 | Article 685323

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Beyß et al. Robustifying Tracer Design for 13C-MFA

genetic engineering successfully improved CA yields (Li and
Townsend, 2006; Ünsaldı et al., 2017; Ramirez-Malule et al., 2018;
Gómez-Ríos et al., 2019; López-Agudelo et al., 2021), rational
metabolic engineering based on the precise knowledge of the
fluxome of S. clavuligerus is expected to push the limits further.
The knowledge about in vivo fluxes is, however, still very limited
(Medema et al., 2010; Ramirez-Malule et al., 2018; Gómez-Ríos
et al., 2020), which makes this system an ideal showcase for the
proposed R-ED methodology.

For the production of CA with S. clavuligerus two carbon
sources are essential, GLYC andARG. For both a variety of tracers
are available that come with diverse costs (varying over an order
of magnitude). Thus, the question is how to guide the selection
for an ILE that does not risk being information-free while
remaining economically efficient under high uncertainty about
the intracellular fluxes.We applied the R-EDworkflow (Figure 3)
within the experimental setting described in section 2.3. The
ARG and GLYC species are sampled in 10% steps resulting in
66 · 286 = 18,776 mixtures. Costs range from 10$ (unlabeled)
to 25k$ (100% [1,3-13C2]-GLYC and 100% [U-13C6]-ARG).
D-criterion values are related to a (hypothetical) reference ILE
with a tracer mixture consisting of 100% [2-13C1]-GLYC and
100% [6-13C1]-ARG (16.6k$). The results of the R-ED workflow
are collected in the aggregated data pool which is found in
Supplementary Data S4.

3.3.1. Exploration of the Metric Criteria Space
Figure 4 summarizes the evaluation of mixtures as scatter plots,
ordered according to the number of active fluxes (4 ≤ nact ≤ 9).
From the results the trade-off between flux identifiability and
coverage becomes apparent. With larger nact , the coverage
criterion decreases, meaning that it is less likely to find mixtures
that assure a high number of identifiable fluxes over the whole
possible flux space. The D- and coverage- criteria are highly
non-linearly correlated. Nevertheless, for a fixed 8cover,nact , often
a range of 8̂D,nact exists and vice-versa. In particular, mixtures
can be found that are likely to identify a certain number of
fluxes and do so well, or conversely, good choices for one
flux sample are available that are often well-performing for
many others, too. At the same time, there is the tendency that
more informative (as measured with the D-criterion) designs
are also more costly. Nonetheless, as we show below, there
are often cheaper alternatives available that outperform more
expensive mixtures.

3.3.2. Choosing an Informative Mixture
For further evaluation, the aggregated data pool is consulted
that contains all mixture characteristics computed by the
R-ED workflow. The aggregated data pool is available in the
Supplementary Data S4. Here, we summarize ourmain findings.
With regard to tracer compositions, top performers contain high
proportions of either [2-13C1]- or [1,3-13C2]-GLYC, where our
evaluation shows that [2-13C1]-GLYC almost always outperforms
the 50% more expensive [1,3-13C2]-GLYC. In contrast to GLYC,
for ARG tracers no similarly clear picture emerges. Here, a
broad range of ARG mixtures perform almost equally well. This
gives flexibility in selecting the ARG mixture and allows making
comparably cheap tracer choices.

For decision-making, as in the classical O-ED workflow, a
value for nact has to be chosen as a baseline for interpretation.
Whereas in case of O-ED the choice has to be made a priori,
in the R-ED workflow the decision is only made after inspecting
the outcome, and it can be revised if considered appropriate. For
our showcase, a reasonable choice is to select the highest nact for
which the coverage criterion is above 95%, as indicated by the
dashed horizontal line in Figure 4, in our case nact = 7.

For the further evaluation, we therefore fixed nact to 7.
Regarding the metrics, the highest coverage and D-criterion
values are 98% and 1.01, respectively. They are obtained by
a mixture of [2-13C1]-GLYC and 100% [U-13C6]-ARG with
costs of 17.1k$ (Supplementary Information S1, Figure S2).
This mixture is denotedMix 1 in the following. Interestingly, this
is also one of the cheapest mixtures with comparable information
quality. A common strategy in 13C-MFA is to reduce labeling
costs by “diluting” the tracer mixture with inexpensive naturally
labeled substrates. Interrogation of the aggregated data pool
shows that adding naturally labeled GLYC is of little utility in
our case. Introducing 20% naturally labeled [12C]-GLYC reduces
cost to only 13,9k$, but also lowers the D-criterion to 0.75 and
the coverage to 88%. A by far better alternative is the mixture of
50% [12C]-, 40% [2-13C1]-, and 10% [1,3-13C2]-GLYC combined
with 50% [12C]-, 40% [6-13C1]- and 10% [U-13C6]-ARG, termed
Mix 2, which leads to cost of 9.2k$, a coverage of 96.5% and a
D-criterion value of 0.90. This is also the cheapest mixture that
satisfies a 95% coverage cut-off.

An often applied affordable substrate choice for ILEs with
GLYC is to take a mixture of fully and naturally labeled
GLYC (e.g., Beste et al., 2011; Alagesan et al., 2013). The best
performing mixture of this type contains 10% fully labeled
[U-13C3]-GLYC. The corresponding ARG mixture is e.g., 40%
[U-13C6]- and 60% [12C]-ARG, henceforth denoted Mix 3.
Consequently, the costs are comparatively low with 1.9k$,
but the coverage and D-criteria are only moderate (80%
and 0.66, respectively). Being among the cheapest mixtures,
this composition is a good compromise for an efficient
ILE. Figure S2 in Supplementary Information S1 shows the
location of the selected mixtures in the context of the overall
mixture evaluation.

While showing the exploratory strength of R-ED, the question
remains how well a R-ED selected mixture performs compared
to a mixture that is selected from a traditional O-ED. To
benchmark our R-ED approach in this regard, we calculated
the O-ED criterion value according to Equation (7) for the
most likely flux map, i.e., the center of mass of the feasible
flux space using the three GLYC species ([12C]-, [2-13C1]-,
and [U-13C3]-GLYC), while fixing ARG to 100% [U-13C6]-
ARG (Supplementary Table S3). The resulting mixture triangle
is presented in Supplementary Information S1 (Figure S3). The
most informative mixture is made up of 100% [2-13C1]-GLYC
and 100% [U-13C6]-ARG, which is identical to Mix 1, in line
with the results from our R-ED. The O-ED mixing triangle also
shows an informative region with mixtures of 50% [U-13C3]- and
50% [12C]-GLYC (cost 8.8k$). A comparison with R-ED results
reveals that this mixture provides a coverage of only 60%, and it is
thus not very likely to identify 7 fluxes at least. Furthermore, the
mixture is not very informative, with a normalized D-criterion
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FIGURE 4 | Evaluation of mixtures. Design criteria for selected nact values (and for the remaining in Supplementary Information S1, Figure S1). Scatter plots of

normalized D-criterion values (8̂D,nact , larger values are better) versus coverage (8cover,nact , larger values are better). The substrate costs (8$) are color-coded as

indicated by the color bar. The horizontal dashed line indicates a 8cover,nact value of 95%. Corresponding mixtures are available in the aggregate data pool

(Supplementary Data S4).

value of only 0.6. This highlights the benefits of performing R-ED,
as it shows that the results for one flux map are not representative
for the whole flux space.

3.3.3. Mixture Designs: An In-depth Look
With the three mixture candidates at hand, we next explore
their performance in terms of specific flux information, i.e.,
dimension-reduced designs for nact = 1. Thereby, we uncover
specific weaknesses and strength of the mixtures, aiding the
final design decision. For Mix 1 to 3, we exemplary investigate
net fluxes of the main pathways: ppp1 (pentose-phosphate
pathway), tca8 (tricarboxylic acid cycle), urea2 (urea cycle),
and ana2 (anaplerosis) (cf. Figure 1). The results for these four
fluxes are shown in Figure 5, and for the remaining fluxes
in Supplementary Information S1 (Figure S4). For each of the
mixtures, the proportion of flux samples, for which the particular
flux was identified is given, along with the distribution of the
corresponding flux standard deviations.

For eachmixture, the flux standard deviations are qualitatively
comparable, and each flux is identifiable with a standard
deviation below 35 (referred to a GLYC uptake of 100). Among
the fluxes shown, the ppp1 flux is the best determinable flux for
all three mixtures. Nonetheless, for the ppp1, tca8 and urea2 net
fluxes the mixtures generally show a qualitatively very similar
performance, where the coverage gradually drops from Mix 1 to
3, while the flux standard deviations are comparable for Mix 1
and Mix 2, but increase for Mix 3. This effect is most prominent
for tca8, where the coverage drops from 93% to 47%, while the
median standard deviation increases from 8.2 to 19.2. In contrast,
Mix 3 is the best performing mixture for ana2, with a coverage of

56%, which means that it is more than twice as likely to identify
ana2 with Mix 3 as it is with Mix 1 or Mix 2. This discrepancy
between the performance of the mixture for the fluxes stresses
the importance of a flexible evaluation procedure, as a design that
is considered favorable for all fluxes may indeed turn out to be
sub-optimal for a specific set of fluxes.

Looking at the information metrics for the
dimension-reduced designs (Figure 5 and Figure S2 in
Supplementary Information S1), most of them (e.g., ppp1,
tca8, urea2) show the same trends as the full design with
nact = 7. The full design represents an average over all fluxes.
Nonetheless, some selected designs (for example ana2) exhibit
a different characteristic than the average. Such deviations only
become visible by taking a closer look at the information metrics.

4. CONCLUSION

Many existing O-ED methods for 13C-MFA rely on information
criteria that depend on the flux covariance matrix. Since the
determination of this information matrix is based on first-order
sensitivities, these methods may have poor performance when
the underlying labeling system is a highly non-linear function
of the fluxes. Furthermore, in the traditional O-ED workflow,
proposed labeling strategies are commonly conditioned on an a
priori choice of identifiable fluxes, which limits the exploration
of potent tracer compositions. We here present the robustified
tracer design workflow R-ED. R-ED enables the exploration of
tracer mixtures that work well for all possible fluxes, rather
than being confined to a single flux map. Besides the flux
precision (confidence intervals) and the tracer costs, R-ED
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FIGURE 5 | R-ED performance for three mixtures with respect to selected net fluxes. Comparison of information and cost criteria for mixtures Mix 1, Mix 2, and Mix 3

with focus on the net flux through main pathways: pentose phosphate pathway (ppp1), tricarboxylic acid cycle (tca8), urea cycle (urea2), and the anaplerosis (ana2)

(c.f. Figure 1). For each of the four fluxes, the box plots show the distribution of flux standard deviations over all flux samples, where the center line marks the median

standard deviation (value given below the box plot). The red bars show the relative frequency with which the flux was found to be identifiable, i.e., the proportion of

samples for which this particular flux was an active flux. Results for the remaining fluxes are given in Supplementary Information S1 (Figure S4).

employs a new information metric, the so-called coverage, which
characterizes the robustness of the tracer mixture in terms of flux
identifiability. Instead of formulating R-ED as multi-objective
problem, we opted for a sampling based approach, which allows
us to explore the multi-variate design criteria landscape in-depth.
Therewith, our work proposes a generalization of existing ED
approaches, tailored to cases where the prediction of informative
substrates has hitherto not been reliably possible.

We showcased the potential of R-ED by applying the
workflow to the ILE design for S. clavuligerus, a potent antibiotic
producer of CA, for which we identified highly informative,
yet economic GLYC and ARG tracer mixtures. Particularly, we
demonstrated the advantages of R-ED and its benefits over
common ad hoc cost saving strategies such as the introduction
of unlabeled substrates. Interestingly, as an example for highest
informativeness, [2-13C1]-GLYC was preferred over the more
expensive and often applied [1,3-GLYC2]. Application of R-
ED to S. clavuligerus therefore enables the exploration of
new labeling strategies to gain insights into central metabolic
and production pathway fluxes in this organism. Of course,
whether a designed labeling strategy is successful can only be
revealed by conducting the ILE because any ED is only as
good as its underlying assumptions. Thus, from the experimental
perspective, implementing one of the proposed tracer mixtures to
S. clavuligerus is the next step.

From the computational perspective, by its reliance on
existing 13C-MFA modules and by being independent of the
network model, the R-ED workflow is generally applicable and
easily transferable to other organisms for planing the very first
ILE. In this context, we recommend the use of R-ED to minimize
the risk of an information-less first experiment. By trading off

design criteria in an exploration-based manner, users of R-ED
can decide how to configure a cost-efficient ILE. After some
knowledge about the fluxes has become available, this knowledge
can be readily integrated as prior information into existing
ED pipelines.
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