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In this short review, drug delivery systems, formed by polysaccharide-based (i.e.,
agarose, alginate, and chitosan) aerogels, are analyzed. In particular, the main papers,
published in the period 2011–2020 in this research field, have been investigated
and critically discussed, in order to highlight strengths and weaknesses of the
traditional production techniques (e.g., freeze-drying and air evaporation) of bio-aerogels
with respect to supercritical CO2 assisted drying. Supercritical CO2 assisted drying
demonstrated to be a promising technique to produce nanostructured bio-aerogels
that maintain the starting gel volume and shape, when the solvent removal occurs at
negligible surface tension. This characteristic, coupled with the possibility of removing
also cross-linking agent residues from the aerogels, makes these advanced devices safe
and suitable as carriers for controlled drug delivery applications.
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INTRODUCTION

Pharmaceutical industry is evolving from traditional drug delivery systems, in which a biopolymeric
matrix is used to provide weight, volume and flowability, toward new formulations, in which a
biopolymer is adopted as drug performance enhancer in terms of release time and bioavailability
(Agüero et al., 2017; Yuan et al., 2018; Shi et al., 2019; Wei et al., 2020; Liu et al., 2021).

In this field, the production of micro- and nanoparticles has been widely investigated, since
they provide effective ways to address issues related to poorly water-soluble drugs and patient
compliance (Agnihotri et al., 2004; Markman et al., 2013; Singh et al., 2019; Guastaferro et al., 2020).

Nowadays, also polymeric gels are becoming promising matrices for drug delivery, thanks
to their nanostructured morphology that allows to reach larger drug loadings and an improved
controlled release of the active compounds over time. In this regard, Cardea et al. (2018) realized
poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) aerogels loaded with curcumin

Abbreviations: Ag, silver; AGR, agarose; ALG, alginate; ATP, adenosine 5′-triphosphate; BSA, bovine serum albumin;
CAALG, calcium alginate; CPT, camptothecin; βCD, β-cyclodextrin; CMC, carboxymethyl cellulose; CHX, chlorexidine; CPL,
clinoptilolite; CS, chitosan; CS-C, nanoclay-loaded chitosan; CS-L, layer double hydroxide-loaded chitosan; DIC, diclofenac
sodium; DOX, doxorubicin; ETAGR, ethylenediamine-modified agarose; 5-FU, 5-fluorouracil; GO, graphene oxide; GTA,
gluteraldehyde; G, guluronate; HAp, hydroxyapatite; IDM, indomethacin; KET, ketoprofen; KGM, konjac glucomannan;
MSTR, maize starch; NIM, nimesulide; NSAIDs, non-steroidal anti-inflammatory drugs; PEG, polyethyleneglycol; PVDF-
HFP, poly(vinylidene fluoride-hexafluoropropylene); S. aureus, staphylococcus aureus; SC-CO2, supercritical CO2; SuperLip,
supercritical assisted liposomes formation; TC, tetracycline hydrochloride.
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in order to obtain a prolonged drug release. Nanofibrous aerogels
characterized by open interconnected pores and high porosity
value (almost 94%) were produced by supercritical drying, and
curcumin release was extended up to 44 h. Also Follmann
et al. (2020) realized nanofibrous silica-based hybrid gels, with
the aim to deliver camptothecin (CPT), a poorly water-soluble
anticancer drug, in a sustained manner. In this case, aerogels
ensured CPT release for more than 2 weeks. Giray et al. (2012)
realized a composite gel consisting of a silica core coated by
polyethyleneglycol (PEG). The results indicated that a slower
release of ketoprofen was achieved increasing PEG diacrylate
concentration, since it lowered aerogel permeability when it
was immersed in an aqueous solution. Therefore, the main
advantages of these systems over the traditional ones are: (i)
tendency to deliver pharmaceutical compounds more selectively
to a specific site, (ii) to maintain drug levels in the desired range,
(iii) to increase patient compliance, and (iv) to prevent side effects
(Van der Lubben et al., 2001; Guenther et al., 2008; Mehling et al.,
2009; García-González et al., 2011; Marin et al., 2014; Lovskaya
et al., 2015; Sosnik et al., 2021).

In this context, biocompatibility and biodegradability are
essential features; therefore, polysaccharide-based polymers can
be considered as “key formulation ingredients,” due to their
natural properties (Zheng et al., 2015; Ferreira et al., 2016;
Manivasagan and Oh, 2016; Wang et al., 2019). However, the
final porous structure of these gels, required for drug release,
depends on the kind of drying technique used. In particular, gels
can be termed as “xerogel” when sample drying is carried out
under ambient pressure and at room temperature, for some days
(Conzatti et al., 2017; Takeshita et al., 2020b). Despite the energy-
saving advantage of this technique, it leads to the formation of a
condense structure that may have low porosity values and large
shrinkage (Mirzaei et al., 2013; Buchtová and Budtova, 2016;
Sukhodub et al., 2018; López-Iglesias et al., 2019). “Cryogels” are
produced when the solvent inside the gel matrix is extracted by
freeze drying. During this process, the liquid part in the wet-
gel is frozen and, subsequently, under low pressure, the frozen
wet-gel is dried by sublimation (Cheng et al., 2012; Gupta and
Nayak, 2016; Mahmoud and Salama, 2016; You et al., 2017;
Rubio-Elizalde et al., 2019; Yang et al., 2019).

The processing steps involved in “aerogels” production are
summarized in Figure 1. Aerogel production frequently starts
from the formation of a gel in an aqueous solution, adding a
chemical, physical or enzymatic cross-linker. Operating in this
way, a hydrogel is obtained. The following step is the replacement
of the water present in the 3-D network of the hydrogel by
an organic solvent; the resulting gel is named as solvogel.
Solvent exchange step is a critical and dynamic process that
can strongly affect the final aerogel morphology. In particular,
solvent composition, kind of solvent and exchange rate are the
main parameters to be investigated (Takeshita et al., 2020a).
According to Takeshita et al. (2020a), a low affinity between the
polymer forming the gel and the substituting solvent induces
the formation of an aerogel-like structure during the solvent
exchange itself and a drastic shrinkage of the gel. Therefore, to
minimize this phenomenon, some guidelines can be followed: (i)
to select an organic solvent at high affinity with the biopolymer

(Takeshita et al., 2020a); (ii) to perform a multi-step solvent
exchange (García-González et al., 2011; Baldino et al., 2019),
at increasing percentage by volume of the solvent substituting
water. Operating in this way, the liquid-liquid extraction and
substitution of water with the organic solvent selected, evolves
gradually, reducing gel shrinkage and other undesired structure
modifications. Then, the solvent is extracted from the solid
network by supercritical CO2 (SC-CO2): a supercritical mixture
with an almost zero surface tension is formed, at the opportune
operative conditions of pressure and temperature, between CO2
and the organic solvent that avoids the collapse of the delicate gel
nanostructure (Reverchon et al., 2008; Cardea et al., 2009; Baldino
et al., 2016; Muñoz-Ruíz et al., 2019).

Gels dried under supercritical conditions show unique
properties, such as large porosity, uniform pore sizes, and high
surface area, in the range of 500–1,200 m2/g, due to mesoporous
(<50 nm and >2 nm) and micropores (<2 nm) distribution
inside the polymeric matrix (Soleimani Dorcheh and Abbasi,
2008; Baldino et al., 2015, 2019; García-González et al., 2015).
Moreover, they are made up of about 95% of air or gas by volume
and, consequently, are very light in weight (Del Gaudio et al.,
2013; Della Porta et al., 2013; Lu et al., 2014; Mallepally et al.,
2015; Quraishi et al., 2015; Baldino et al., 2019). Aerogels could
overcome the problems associated with slow drug dissolution
rate, unfavorable pharmacokinetics, poor bio-distribution and
lack of selectivity for target tissues (Ulker and Erkey, 2014;
Lovskaya et al., 2015; Mohammadian et al., 2018). Therefore, the
combination of the outstanding structural properties of aerogels
with the physiological compatibility of polysaccharides would
result in high potential drug delivery systems (Huang et al., 2011;
Matricardi et al., 2013; Shelke et al., 2014; Ren et al., 2018).

In this short review, the attention will be focused on the
production of chitosan (CS), alginate (ALG), and agarose (AGR)
aerogels for the pharmaceutical field. Indeed, among the other
applications, these biopolymers have also been studied for drug
delivery, and the respective percentages of investigation are:
11.92% agarose, 37.74% alginate and 50.34% chitosan. They
were calculated using the database Science Direct, looking at
the number of papers written in the period 2011–2020. The
path used was the following one: “biopolymer (AGR/ALG/CS),
drug delivery, aerogel/cryogel.” Strengths and weaknesses of the
traditional production techniques (e.g., freeze-drying and air
evaporation) of these bio-aerogels will be critically compared
with supercritical CO2 assisted drying, to highlight possible
indications to obtain advanced bio-carriers for controlled drug
delivery applications.

CHITOSAN-BASED GELS

Chitosan is derived from chitin that is the major component
of the crustacean exoskeleton, and is naturally hydrophilic. CS
exhibits biocompatible, biodegradable, and non-toxic properties
(Pillai et al., 2009; Venkatesan and Kim, 2010).

The first step toward CS-based aerogel production is
represented by hydrogel formation (Shi et al., 2021). CS hydrogels
can be prepared by non-covalent strategies that take advantage of
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FIGURE 1 | Aerogel production procedure.

ionic interactions, H-bonding and Van der Waals forces. In these
cases, gel formation can be reversed (Cerchiara et al., 2002; Berger
et al., 2004; Boucard et al., 2005). However, physically cross-
linked gels could present some drawbacks; i.e., weak mechanical
strength, uncontrolled gel pore size and fast dissolution kinetics
(Dash et al., 2011). Improvements of mechanical properties can
be obtained by permanent hydrogel networks, using covalent
bonding between polymeric chains. In particular, the presence
of –NH2 and –OH groups on CS chains offers the possibility
to create different linkages, such as amide and ester bonding,
as well as Schiff base formation (Croisier and Jérôme, 2013).
The production of chemically cross-linked gels is achieved by
mixing chitosan aqueous solutions with cross-linkers or charged
polymers, under specific conditions of pH and temperature
(López-León et al., 2005; Liang et al., 2009; Cui et al., 2014;
Pellá et al., 2018). Glutaraldehyde (GTA), diglycidyl ether,
diisocyanate, and diacrylate, are generally used for this purpose
(Hoare and Kohane, 2008). However, their use in pharmaceutical
and biomedical applications is restricted, since these cross-
linking agents can deactivate or limit drug efficiency and can
be cytotoxic for cells (Zeiger et al., 2005; Takigawa and Endo,
2006). In order to overcome these limitations, Takeshita et al.
(2021) synthesized chitosan aerogels using a green technology
that avoided the use of harmful chemicals, such as aldehyde
cross-linkers. In particular, CS aerogels were produced by urea-
induced gelation. Urea is an industrial reagent that is widely used
due to its low cost and low toxicity. In this study, urea-induced
gelation was followed by ethanol exchange and SC-CO2 drying.
However, a drastic shrinkage was observed for CS samples at
each value of urea concentration. Also genipin, that is a natural
chemical compound ables to bind amino groups between amino
molecules, can be used to produce a cross-linked CS at good
mechanical and degradative properties (Dimida et al., 2015). CS
hydrogels can be also prepared by increasing pH of the acidic
polymer solutions. In this way, a sol-gel transition is promoted,
due to hydrophobic interactions (Moura et al., 2007; Tabernero
et al., 2020). Pereira et al. (2020) synthesized CS microspheres
loaded with silver (Ag) nanoparticles, through pH inversion
mechanism, to be used as bactericidal agent. The results revealed
that these systems were effective against Gram-positive and

Gram-negative microorganisms. The Ag-loaded CS microspheres
were also tested as drug delivery systems, and ibuprofen was
used as model drug. The addition of Ag nanoparticles into
polymeric matrix promoted a significant delay of ibuprofen
release that was extended up to 6 h, with respect to CS-only
based microparticles. Gómez et al. (2018) fabricated colloidal
suspensions of CS/chondroitin that were subsequently freeze
dried to obtain lyophilized nanocomplexes. These cryogels were
loaded with a garlic extract and tested against Staphylococcus
aureus (S. aureus), a pathogenic microorganism in chronic
skin lesions. The dried gels showed a non-homogeneous
morphology consisting of fibers and sheets. The introduction of
the extract led to an increase of pristine gel hardness and to an
enhanced antibacterial action against S. aureus. Obaidat et al.
(2015) prepared CS-based aerogel carriers using two different
technologies, i.e., SC-CO2 assisted drying and freeze drying.
Then, these carriers were loaded with salbutamol. SEM analysis
revealed several cracks and voids in the freeze dried samples;
whereas aerogels preserved a high open porosity and textural
properties. The release profile of salbutamol from samples
produced by supercritical drying could be considered suitable
for pulmonary drug delivery systems; the release from cryogels
was instead negatively affected by a low porosity and a low
value of surface area. Terzić et al. (2018) prepared CS-based gels
and investigated how the drying technique used could affect the
drug release system behavior. With the aim of increasing CS
hydrophilicity, it was blended with itaconic acid and methacrylic
acid. Then, thymol, that represents the main constituent of
oregano essential oil and has a strong antibacterial action, was
supercritically impregnated into the polymeric matrix. Two
different techniques were used for drying: air drying that led to
xerogels formation, and SC-CO2 drying, for aerogel production.
SEM analysis showed that xerogels structure was non-porous;
indeed, stresses occurred on the pore walls during the extraction
of the solvent, inducing the collapse of the gel native structure.
On the other hand, during SC-CO2 drying, time resulted the key
factor of the process to ensure the desired value of porosity: short
processing time led to an incomplete removal of the solvent and,
subsequently, a low value of porosity was detected. Due to the
high specific surface area, the amount of thymol incorporated
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into CS aerogel was much higher than the amount loaded into
CS xerogel. López-Iglesias et al. (2019) produced CS aerogels
loaded with vancomycin to treat infections in chronic wounds.
Hydrogel macroparticles were prepared via sol-gel processing
and alcogels were subsequently dried. However, xerogels were not
able to preserve the intrinsic gel nanoporous structure and high
shrinkage values were detected; whereas CS aerogels preserved
the overall porosity. A fast release of vancomycin from CS aerogel
particles was measured during the first hour and it was followed
by a slower release during the next hours.

The initial drug burst effect can be considered a relevant
drawback when a sustained drug release is required (Spinks
et al., 2006; Aryaei et al., 2014; Xie et al., 2018; Wahba, 2020).
To address this issue, CS hydrogels can be covalently cross-
linked using UV irradiation or GTA, to obtain an improved
mechanical stability (Zeiger et al., 2005; Takigawa and Endo,
2006; Baldino et al., 2015). Baldino et al. (2015) produced CS
aerogels by SC-CO2 drying. These samples were characterized
by a nanofibrous structure, with an average pore size of 100 nm.
Moreover, they demonstrated that, thanks to this process, it was
possible to obtain a complete removal of GTA from CS gels: the
supercritical mixture (CO2 + ethanol) showed a high affinity
toward GTA, favoring its removal from the samples. For this
reason, SC-CO2 drying can be considered a promising process
to purify chemically cross-linked CS aerogels, to be used for
pharmaceutical applications. Mirzaei et al. (2013) prepared CS
aerogels cross-linked with GTA for drug delivery. SEM images
demonstrated that these xerogels had an average pore size ranging
from 100 to 500 µm. Moreover, the swelling trend of these CS
xerogels decreased by increasing the amount of cross-linker.

Recently, nanohybrid gels have been used as drug delivery
carriers. These pharmaceutical systems are composite materials;
they are made up using organic polymers loaded with inorganic
nanoparticles. Nanoparticles are supposed to suppress burst
drug release behavior, leading to a slower and more continuous
release of drugs. Wang et al. (2017) prepared hybrid cryogels
of CS, carboxymethyl cellulose (CMC) and graphene oxide
(GO), crosslinked by Ca+2. These gels were synthesized using
an electrostatic self-assembly approach, followed by freeze
drying. SEM images showed a cryogel morphology that was
mainly characterized by irregular CS-CMC clusters located
on GO sheets. These samples were used to investigate the
release of 5-fluorouracil (5-FU), a chemotherapeutic agent
adopted in the treatment of cancer. GO addition delayed
the release of 5-FU and overcame burst release problems
associated with CS-based aerogels. Dinu et al. (2016) synthesized
CS/clinoptilolite (CPL) biocomposite cryogels by cryogelation.
DIC and indomethacin (IDM) were loaded into these cryogels
using the solvent evaporation technique. The release profiles of
DIC and IDM from CS/CPL composites were pH-dependent,
and drug release increased when pH varied from 1.2 to
7.4. Mahanta et al. (2019) realized CS nanohybrid cryogels
using two kinds of disk-shaped nanofillers of opposite surface
charges, 30B nanoclay (CS-C), negatively charged, and layer
double hydroxide (CS-L), positively charged. The antibacterial
drug, tetracycline hydrochloride (TC), was used as a model
drug to investigate the release kinetics. Nanohybrids exhibited

sustained release kinetics in both cases (hydrogel and dried
gels). Scaffolds induced a 90, 69, and 56% of drug release
in 15 h, from CS, CS-C, and CS-L, respectively; whereas a
58, 40, and 28% of drug release was measured using the
respective hydrogels. A critical summary of these papers is
reported in Table 1.

ALGINATE-BASED GELS

Alginate is a naturally occurring anionic polymer, typically
obtained from brown seaweed, and has been extensively used
for pharmaceutical applications, thanks to its biocompatibility,
low toxicity, low cost and easy gelation (García-González et al.,
2015; Pantić et al., 2016; Athamneh et al., 2019; Lovskaya and
Menshutina, 2020). ALG hydrogels formation can be induced
by different cations, such as: H+, Ca+2, Ba+2, Cu+2, Sr+2,
Zn+2, Mn+2, Fe+2, Al+3, and Fe+3 (Cao et al., 2020). Indeed,
the presence of negatively charged ions in ALG molecules can
lead to the formation of polyelectrolyte complexes, because they
give the possibility to bind positively charged ions (Hu et al.,
2021). Ca+2 is the most used divalent cation to induce alginate
gelation, since it shows a high affinity toward the bio-polymer
guluronate (G) blocks (Hu et al., 2021). Reynolds and Enquist
(1973) proposed, for the first time, the theory of Ca+2 induced
ALG gelation mechanism, defining the gel structure as an egg-
box model. In this structure, Ca+2 coordinates with six oxygen
atoms of two neighboring G units and one to three oxygen
atoms of H2O to form a stable structure. However, depending
on the final application, different kind of ions can be used: e.g.,
Ba-ALG gels have been widely used in nanomedicine and Sr-
ALG gels show a great potential for tissue regeneration, since
they can enhance cell proliferation (Hu et al., 2021). One critical
drawback of ionically cross-linked ALG gels is the limited long-
term stability in physiological conditions, because these gels
can easily dissolve due to the release of divalent ions into the
surrounding media, as a consequence of exchange reactions with
monovalent cations (Waldman et al., 1998; Qin, 2004, 2005;
Santos Miranda et al., 2006).

ALG hydrogels similarity to the extracellular matrices of living
tissues allows wide applications in the delivery of small chemical
drugs and proteins (Rowley et al., 1999; Augst et al., 2006;
Bidarra et al., 2014). Athamneh et al. (2019) realized aerogel
microspheres based on sodium alginate and hyaluronic acid
for pulmonary drug delivery. Emulsion gelation was combined
with SC-CO2 gel drying and, at the end, aerogels, at high
specific surface area and good aerodynamic properties, were
obtained. García-González et al. (2015) investigated the release
kinetics of ketoprofen (KET) from ALG-based aerogels. These
authors found that ALG aerogels accelerated KET release at
simulated gastric pH conditions. Moreover, it was noted that KET
release was mainly governed by a Fickian diffusion mechanism.
Sukhodub et al. (2018) synthesized a hydroxyapatite-alginate
(HAp)-ALG nanostructured composite for the controlled release
of chlorexidine (CHX). The dried samples were obtained by
hydrogel drying at 37◦C in warm ambient and by freeze
drying for 24 h. The densest morphology corresponded to
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TABLE 1 | Gels of agarose, alginate and chitosan, applied in drug delivery.

References Materials Process Advantages Disadvantages

Mirzaei et al. (2013) GTA/CS SC-CO2 drying Improved mechanical stability of CS upon
the addition of GTA

GTA caused negative effects on pepsin
activity

García-González
et al. (2015)

KET/ALG SC-CO2 drying Accelerated KET release pH-sensitive aerogels

Obaidat et al.
(2015)

Salbutamol/CS SC-CO2 drying
Freeze drying

Aerogel provided good salbutamol
release kinetics

Salbutamol release was negatively
affected by low porosity values

De Cicco et al.
(2016)

ALG/Aminated
pectin/Doxycycline

Prilling + SC-CO2 drying Aerogel characterized by open pore
structure and high specific surface area

Complex process

Dinu et al. (2016) CPL/DIC/IDM/CS Cryogelation + solvent
evaporation

The addition of inorganic particles (CPL)
improved CS gel stability during drug
release

Time-consuming process

Sukhodub et al.
(2018)

HAp/ALG/CHX Air drying
Freeze drying

Air drying is an energy-save process During air drying, only a small amount
of CHX was incorporated into the
scaffolds

Wang et al. (2017) CS/CMC/GO/5-FU Electrostatic self-assembly
approach + SC-CO2 drying

Burst effect associated to CS-based
aerogel was eliminated after GO addition

Time-consuming process; Irregular
morphology

Gómez et al. (2018) CS/Chondroitin/
S. aureus

Freeze-drying of colloidal
suspensions

Cryogels with enhanced antibacterial
action against S. aureus

Time-consuming process

Mustapa et al.
(2018)

C. nutans/ALG SC-CO2 drying + SC-CO2

impregnation
The same amount of drug was
incorporated into the gel using
supercritical impregnation instead of
organic solvents

Time-consuming process

Athamneh et al.
(2019)

Sodium
Alginate/Hyaluronic
acid

Emulsion
gelation + SC-CO2 drying

High specific surface area No experiments in vitro were performed

Franco and De
Marco (2020)

NIM/KET/DIC/
MSTR/CAALG

SC-CO2 drying + SC-CO2

impregnation
CAALG aerogel promoted a controlled
release of non-steroidal anti-inflammatory
drugs

Not all the solubilised drug in SC-CO2

was absorbed onto the aerogel, and
the non-absorbed drug can precipitate
in form of nanoparticles

López-Iglesias et al.
(2019)

Vancomycin/CS SC-CO2 drying
Freeze drying
Air evaporation

Overall aerogel porosity preserved during
the supercritical drying

Cryogels and xerogels showed a
condense structure;
Burst effect was detected during the
drug release from aerogel

Kim et al. (2019) βCD/ETAGR/
BSA/DOX

Freeze drying AGR derivatives allowed the production
of a DD system

ETAGR had a lower cross-linking
density than unmodified AGR and, for
this reason, burst effect was detected
during the drug release test

Lynam et al. (2015) Sucrose-
AGR/Proteins

SC-CO2 drying Sucrose modified hydrogels were
characterized by smaller and more
uniform pore size

Sucrose particles could be present on
the gel

Mahanta et al.
(2019)

CS-C/CS-L/TC Freeze drying The addition of nanofillers provided a less
collapsible pore structure;
Nanocomposite exhibited a sustained
drug release

CS aerogel showed a collapsible cell
structure

Yuan et al. (2018) KGM/AGR/
Ciprfloxacin

Freeze drying Drug load efficiency and sustained
release capacity of AGR hydrogels were
enhanced by KGM incorporation

AGR hydrogels showed a significant
burst effect

Witzler et al. (2019) Amoxicillin/AGR-
coated
HAp

Freeze drying
SC-CO2 drying

Supercritically dried samples did not
exhibit large pores and seemed to be
very homogeneous;
Composite materials slowed down drug
release for both water-soluble drugs

AGR scaffolds exhibited an initial burst
release

Pereira et al. (2020) Ibuprofen/Ag/CS pH inversion + under
vacuum evaporation

A sustained release of ibuprofen was
ensured

Epichlorohydrin was used as chemical
cross-linker

Trucillo et al. (2020) Ampicillin-loaded
liposomes/CAALG

SuperLip + SC-CO2 drying A more sustained ampicillin release was
ensured using the meta-carrier

Part of the liposomes was lost in the
solvent used for solvent-exchange

Takeshita et al.
(2021)

Urea/CS Urea-induced
gelation + SC-CO2 drying

Toxic chemical cross-linkers were avoided Low values of urea concentration led to
a drastic shrinkage of the final sample
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the composite xerogel dried at 37◦C; whereas the freeze dried
sample had a porous morphology whose homogeneity was
slightly improved after HAp addition. Increasing the amount
of ALG in the composite gels led to an increase in the volume
of adsorbed and released CHX, and the release time also
increased from 24 to 72 h. Trucillo et al. (2020) produced
a meta-carrier; namely, a carrier entrapped inside another
carrier, formed by a liposome loaded aerogel. The antibiotic
(ampicillin) was encapsulated into the liposomes, produced by a
supercritical assisted liposomes formation (SuperLip) technique.
SC-CO2 drying was selected to produce ALG aerogels loaded
with ampicillin loaded liposomes. The structures obtained in
the case of water exchange with ethanol and acetone were
characterized by different morphologies; in particular, the
structures obtained in the first case showed nanofibers and open
pores, whereas the other ones were uniformly nanoporous. Drug
release tests demonstrated that ampicillin release time from
these meta-carriers was about twice than its release time from
liposomes alone.

Franco and De Marco (2020) used SC-CO2 adsorption
to incorporate three non-steroidal anti-inflammatory drugs
(NSAIDs), nimesulide (NIM), (KET) and diclofenac sodium
(DIC), into maize starch (MSTR) and calcium alginate (CAALG)
aerogels. For each NSAID, it can be noted that the amount
of drug adsorbed in CAALG was generally higher than the
amount loaded in MSTR. Both aerogels were formed by a
microporous structure, preserved after supercritical adsorption.
The dissolution tests revealed that the adsorption into MSTR
allowed a faster release of NSAIDs than pure crystalline drugs;
whereas CAALG promoted a controlled release of NSAIDs.
Gonçalves et al. (2016) realized ALG-based hybrid aerogels in
form of particles to be used as mucosal drug delivery systems.
Gel drying and KET loading were performed using SC-CO2.
All ALG-based macroparticles showed high specific surface area
and large pore volume. Moreover, these formulations were able
to provide a slower release of KET in comparison with the
pure one. De Cicco et al. (2016) realized aerogel formulations
based on ALG and amidated pectin, in form of core-shell
microparticles, that were dried using SC-CO2. At the end of
the process, these samples were characterized by an open pore
structure and high specific surface area. These polymeric aerogels
were loaded with doxycycline and the results demonstrated that
drug release was affected by pectin and ALG amount. Moreover,
doxycycline release kinetics was mainly governed by swelling
matrix and erosion phenomena. Mustapa et al. (2018) produced
ALG hydrogels that were supercritically dried. Plant extracts of
Clinacanthus nutans (C. nutans) were impregnated into ALG
aerogels via SC-CO2 assisted impregnation. C. nutans-50 extract
was released faster from ALG when was impregnated using
supercritical conditions. A critical summary of these papers is
reported in Table 1.

AGAROSE-BASED GELS

Agarose is currently used in various research fields including
food, DD, DNA electrophoresis, and tissue engineering, owing to

its thermo-reversible gel forming ability (Sakai et al., 2007; Gu
et al., 2017).

In order to create an AGR gel, heating and cooling processes
are involved, and gelation occurs at high temperatures, making
difficult to load heat-sensitive drugs. Therefore, researchers
have developed AGR gels with low gelling temperatures by
modification through acetylation (García-Ruiz et al., 2001),
alkylation, alkenylation, acylation, and oxyalkylation (Zhang
et al., 2018). The introduction of functional groups hinders the
formation of the helicoidal structure at low temperatures, thereby
lowering the gelling temperature of AGR (Forget et al., 2015).
Moreover, for the development of more innovative AGR-based
materials, AGR should comprise special functional groups, such
as tosyl or amine moieties (Gericke and Heinze, 2015).

The diffusion characteristics of various substances, including
drugs, from AGR gels, are related to the rheological properties
of the gels (Normand et al., 2000; Kim et al., 2019). Therefore,
AGR derivatives with low gelation temperatures can deliver the
substance quickly because the double helicoidal structure during
gelation is reduced and, subsequently, the storage modulus is
lowered. For this reason, there is a limit in developing effective
DD systems that can control the release rates using AGR
derivatives with low gelation temperatures (Kim et al., 2019).

Kim et al. (2019) described the introduction of β-cyclodextrin
(βCD) into an ethylenediamine-modified agarose (ETAGR) for
the development of AGR at low gelling temperatures. The
modified gels were prepared by freeze drying and used for both
bovine serum albumin (BSA) and doxorubicin (DOX) release.
The section of non-functionalized AGR gel was characterized
by a non-uniform distribution of pore sizes. The release
profiles showed that increasing the cross-linking density of the
gel or increasing AGR concentration, the diffusion rate and,
subsequently, the release kinetics of BSA, slowed down. Since
CFAs had lower cross-linking density than AGR, due to the
presence of ethylenediamine groups, BSA was released within
a few hours with a non-negligible initial burst effect. Lynam
et al. (2015) developed AGR scaffolds used for the controlled
release of proteins, for nerve repair. Solvogels were supercritically
dried after the replacement of water in AGR hydrogel with
ethanol. Pores of 0.10 µm were identified; moreover, SEM images
showed a homogeneous and nanoporous morphology. Witzler
et al. (2019) investigated the release behavior from AGR-coated
Hap, using two model drugs, i.e., adenosine 5′-triphosphate
(ATP) and suramin. A prolonged release over 4 days was found
for both samples (cryogel and aerogel). However, freeze dried
samples exhibited large pores in the range of several hundred
micrometers. This was due to the growth of ice crystals during
the freezing process. In contrast to the freeze dried samples, the
SC-CO2 dried ones were characterized by a higher specific surface
area. Yuan et al. (2018) produced a polymeric blend with konjac
glucomannan (KGM) and AGR, for ciprofloxacin release, using
freeze drying. KGM is a natural polysaccharide found in the tuber
of Amorphophallus konjac. The addition of KGM determined a
clear effect on the internal morphology of AGR gels: the increase
in KGM led to a more compact internal structure with smaller
pores. The release results demonstrated that encapsulation, drug
loading efficiencies, and sustained release capacity of AGR
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cryogels, were enhanced by the incorporation of KGM. However,
more than 95% of ciprofloxacin was released in the first half hour,
because most of the drug was localized on the surface of the
polymeric matrix. A critical summary of these papers is reported
in Table 1.

CONCLUSION

In this short review, the main production techniques of
drug delivery systems, based on natural, biocompatible and
biodegradable polymers, were analyzed. Bio-based aerogels are
supposed to be promising candidates as drug carriers, thanks to
the native overall nanoporosity and the high specific surface area.
These features allow to reach a high drug loading and to obtain a
sustained drug release over time.

Freeze drying and air evaporation are the most consolidate
and frequently used drying techniques to produce these bio-
polymeric systems. However, they can lead to dense and/or
not homogeneous final gel structures; therefore, alternative
drying techniques should be selected to preserve these relevant

characteristics for drug release. Supercritical CO2 assisted
drying can overcome these drawbacks, allowing to produce
nanostructured bio-aerogels, that maintain the starting gel
volume and shape. These aerogel properties are preserved when
(i) water/solvent exchange step is carefully performed by selecting
the opportune organic solvent and a slow exchange rate, and
(ii) the process operative conditions guarantee the formation of
a supercritical mixture (CO2 + organic solvent) at negligible
surface tension. Moreover, SC-CO2 assisted drying can also
remove cross-linking agent residues from the aerogels, making
these advanced bio-carriers safe and suitable for controlled drug
delivery applications.
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